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Figure 1: We present a new large dataset of multiview human body expressions for modeling view-specific appearance and geometry.

107 synchronized cameras capture the expressions of 772 distinctive subjects. We focus on five elementary expressions: face (blue), gaze

(yellow), hand (pink and purple), body (light orange), and garment including top (light blue) and bottom (light green).

Abstract

This paper presents a new large multiview dataset called

HUMBI for human body expressions with natural clothing.

The goal of HUMBI is to facilitate modeling view-specific

appearance and geometry of gaze, face, hand, body, and

garment from assorted people. 107 synchronized HD cam-

eras are used to capture 772 distinctive subjects across gen-

der, ethnicity, age, and physical condition. With the mul-

tiview image streams, we reconstruct high fidelity body ex-

pressions using 3D mesh models, which allows representing

view-specific appearance using their canonical atlas. We

demonstrate that HUMBI is highly effective in learning and

reconstructing a complete human model and is complemen-

tary to the existing datasets of human body expressions with

limited views and subjects such as MPII-Gaze, Multi-PIE,

Human3.6M, and Panoptic Studio datasets.

1. Introduction

We express sincere intent, emotion, and attention

through our honest body signals [50], including gaze, facial

expression, and gestures. Modeling and photorealistic ren-

dering of such body signals are, therefore, the core enabler

of authentic telepresence. However, it is challenging due to

∗Both authors contributed equally to this work

the complex physical interactions between texture, geome-

try, illumination, and viewpoint (e.g., translucent skins, tiny

wrinkles, and reflective fabric). Recently, pose- and view-

specific models by making use of a copious capacity of neu-

ral encoding [6,39] substantially extend the expressibility of

existing linear models [16]. So far, these models have been

constructed by a sequence of the detailed scans of a target

subject using dedicated camera infrastructure (e.g., multi-

camera systems [7, 25, 73]). Looking ahead, we would ex-

pect a new versatile model that is applicable to the general

appearance of assorted people without requiring the mas-

sive scans for every target subject.

Among many factors, what are the core resources to

build such a generalizable model? We argue that the data

that can span an extensive range of appearances from nu-

merous shapes and identities are prerequisites. To validate

our conjecture, we present a new dataset of human body

expressions called HUMBI (HUman Multiview Behavioral

Imaging) that pushes to two extremes: views and subjects.

As of Nov 20191, the dataset is composed of 772 distinc-

tive subjects with natural clothing across diverse age, gen-

der, ethnicity, and physical condition captured by 107 HD

synchronized cameras (68 cameras facing at frontal body).

Comparing to existing datasets for human body expressions

such as CMU Panoptic Studio [24, 26], MPII [51, 52], and

1In a contract with public event venues, the dataset is expected to grow

every year.
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Figure 2: We present HUMBI that pushes towards two extremes:

views and subjects. The view-specific appearance measured by

107 HD cameras regarding five elementary body expressions for

772 distinctive subjects.

INRIA [31], HUMBI presents the unprecedented scale vi-

sual data (Figure 2) that are ideal for learning the detailed

appearance and geometry of five elementary human body

expressions: gaze, face, hand, body, and garment (Figure 1).

Our analysis shows that HUMBI is effective. We make

use of vanilla convolutional neural networks (CNN) to

learn view-invariant 3D pose from HUMBI, which quan-

titatively outperforms the counterpart models trained by ex-

isting datasets with limited views and subjects. More im-

portantly, we show that HUMBI is complementary to such

datasets, i.e., the trained models can be substantially im-

proved by combining with these datasets.

The main properties of HUMBI are summarized below.

(1) Complete: it captures the total body, including gaze,

face, hand, foot, body, and garment to represent holistic

body signals [28], e.g., perceptual asynchrony between the

face and hand movements. (2) Dense: 107 HD cameras

create a dense light field that observe the minute body ex-

pressions with minimal self-occlusion. This dense light

field allows us to model precise appearance as a function

of view [39]. (3) Natural: the subjects are all voluntary par-

ticipants (no actor/actress/student/researcher). Their activi-

ties are loosely guided by performance instructions, which

generates natural body expressions. (4) Diverse: 772 dis-

tinctive subjects with diverse clothing styles, skin colors,

time-varying geometry of gaze/face/body/hand, and range

of motion. (5) Fine: with multiview HD cameras, we recon-

struct the high fidelity 3D model using 3D meshes, which

allows representing view-specific appearance in its canoni-

cal atlas.

2. Related Work

We briefly review the existing datasets for modeling hu-

man body expressions: gaze, face, hand, body, and garment.

These datasets are summarized in Table 1.

Gaze Columbia Gaze dataset [62] and UT-Multiview

dataset [64] have been captured in a controlled environ-

ments where the head poses are fixed. In subsequent work,

such constraints have been relaxed. Eyediap dataset [43]

captured gaze while allowing head motion, providing natu-

ral gaze movements. MPII-Gaze dataset [81] measured in-

the-wild gaze from laptops, including 214K images across

15 subjects. This contains a variety of appearance and il-

lumination. RT-GENE dataset [18] takes a step further by

measuring free-ranging point of regard where the ground

truth was obtained by using motion capture of mobile eye-

tracking glasses.

Face 3D Morphable Model (3DMM) [10] was constructed

by 3D scans of large population to model the complex

geometry and appearance of human faces. For instance,

3D faces were reconstructed by leveraging facial land-

marks [8, 29, 36, 55, 57], and dense face mesh [17, 68]. No-

tably, 3DMM is fitted to 60K samples from several face

alignment datasets [8, 42, 56, 82, 85] to create the 300W-

LP dataset [84]. For facial appearance, a deep appearance

model [39] introduces view-dependent appearance using a

conditional variational autoencoder, which outperforms lin-

ear active appearance model [16].

Hand Dexterous hand manipulation frequently introduces

self-occlusion, which makes building a 3D hand pose

dataset challenging. A depth image that provides trivial

hand segmentation in conjunction with tracking has been

used to establish the ground truth hand pose [65–67, 69].

However, such approaches still require intense manual ad-

justments. This challenge was addressed by making use of

graphically generated hands [44, 45, 86], which may intro-

duce a domain gap between real and synthetic data. For real

data, an auxiliary input such as magnetic sensors was used

to precisely measure the joint angle and recover 3D hand

pose using forward kinematics [74, 78]. Notably, a multi-

camera system has been used to annotate hands using 3D

bootstrapping [61], which provided the hand annotations for

RGB data. FreiHAND [15] leveraged MANO [53] mesh

model to represent dense hand pose.

Body Markerless motion capture is a viable solution to mea-

sure dense human body expression at high resolution. For

example, multi-camera systems have been used to capture

a diverse set of body poses, e.g., actors and actresses per-

form a few scripted activities such as drinking, answer-

ing cellphone, and sitting [23, 60]. Natural 3D human be-

haviors were captured in the midst of the role-playing of

social events from a multiview system [27], while those

events inherently involve with a significant occlusion by

people or objects that inhibit modeling a complete human

body. Further, a 4D scanner [11,52] enabled high resolution

body capture to construct a parametric human models, e.g.,

SMPL [40]. Notably, image-to-surface correspondences on

50K COCO images [38] enabled modeling humans from a

single view image [32]. Further, rendering of human model

in images could alleviate annotation efforts [70].

Clothes Previous works have proposed to capture the natu-

ral cloth deformation in response to human body movement.

Cloth regions were segmented in 3D using multiview recon-

struction [13, 75]. To ensure the same topology when seg-

menting the cloth from 3D reconstruction, the SMPL body

model can be used to parametrize cloth motion, which pro-

duces physically plausible cloth geometry while preserving
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Dataset # of subjects Measurement method Gaze Face Hand Body Cloth

Columbia Gaze [62] 56 5 cameras X(fixed)
UT-Multiview [64] 50 8 cameras X(fixed)
Eyediap [43] 16 1 depth camera and 1 HD camera X(free)
MPII-Gaze [81] 15 1 camera X(free)
RT-GENE [18] 17 eyetracking device X(free)

CMU Multi-PIE [19] 337 15 cameras X

3DMM [10] 200 3D scanner X

BFM [49] 200 3D scanner X

ICL [12] 10,000 3D scanner X

NYU Hand [69] 2 (81K samples) Depth camera X

HandNet [74] 10 (213K samples) Depth camera and magnetic sensor X

BigHand 2.2M [78] 10 (2.2M samples) Depth camera and magnetic sensor X

RHD [86] 20 (44K samples) N/A (synthesized) X

STB [80] 1 (18K samples) 1 pair of stereo cameras X

FreiHand [15] N/A (33K samples) 8 cameras X

CMU Mocap ∼100 Marker-based X

CMU Skin Mocap [47] <10 Marker-based X X

INRIA [31] N/A Markerless (34 cameras) X X(natural)
Human EVA [60] 4 Marker-based and Markerless (4-7 cameras) X

Human 3.6M [23] 11 Markerless (depth camera and 4 HD cameras) X

Panoptic Studio [27, 61] ∼100 Markerless (31 HD and 480 VGA cameras) X X

Dyna [52] 10 Markerless (22 pairs of stereo cameras) X

ClothCap [51] 10 Markerless (22 pairs of stereo cameras) X(synthesized)
BUFF [79] 5 Markerless (22 pairs of stereo cameras) X X(natural)
3DPW [71] 7 Marker-based (17 IMUs) and Markerless (1 camera + 3D scanner) X X(natural)
TNT15 [72] 4 Marker-based (10 IMUs) and Markerless (8 cameras + 3D scanner) X

D-FAUST [11] 10 Markerless (22 pairs of stereo cameras) X

HUMBI 772 Markerless (107 HD cameras) X(free) X X X X(natural)

Table 1: Human body expression datasets.

wrinkle level details [51].

Our Approach Unlike existing datasets focusing on each

body expressions, HUMBI is designed to span geometry

and appearance of total body expressions from a number

of distinctive subjects using a dense camera array. Our tera-

scale multiview visual data provide a new opportunity to

generalize pose- and view-specific appearance.

3. HUMBI

HUMBI is composed of 772 distinctive subjects captured

by 107 synchronized HD cameras. 69 cameras are uni-

formly distributed across dodecagon frame with 2.5m diam-

eter along the two levels of an arc (0.8 m and 1.6 m) where

the baseline between adjacent cameras is approximately 10◦

(22 cm). Another 38 cameras are distributed across the

frontal quadrant of the dodecagon frame (average baseline:

10 cm) to densify cameras used for capturing face/gaze.

The dataset includes the five elementary body expressions:

gaze, face, hand, body, and garment. We use COLMAP [59]

to calibrate cameras, and upgrade the reconstruction to the

metric scale using physical camera baselines. Notable sub-

ject statistics includes: evenly distributed gender (50.7% fe-

male; 49.3% male); a wide range of age groups (11% of

thirties, 29% of twenties, and 26% of teenagers); diverse

skin colors (black, dark brown, light brown, and white);

various styles of clothing (dress, short-/long-sleeve t-shirt,

jacket, hat, and short-/long-pants). The statistics are sum-

marized in Figure 3. In this section, we focus on the re-

sulting computational representations while deferring the

detailed description of reconstruction approaches to Ap-

pendix.

Notation We denote our representation of human body ex-

pressions as follows:

• Images: I = {Ii} is a set of multiview images.

• 3D keypoints: K.

• 3D mesh: M = {V, E}.

• 3D occupancy map: O : R3 → {0, 1} that takes as input

3D voxel coordinate and outputs binary occupancy.

• Appearance map: A : R2 → [0, 1]3 that takes as input

atlas coordinate (UV) and outputs normalized RGB val-

ues.

Keypoint 3D keypoints on face (Kface), hands (Khand), and

body including feet (Kbody) are reconstructed by triangu-

lating 2D human keypoint detections [14] with RANSAC,

followed by a nonlinear refinement minimizing geometric

reprojection error. When multiple humans are visible, we

localize each subject via geometric verification.

3.1. Gaze

HUMBI Gaze contains ∼93K images (4 gaze directions

× ∼30 views per subject). We represent gaze geometry

using a unit 3D vector g ∈ S2 with respect to the moving

head coordinate system.

The head coordinate is defined as follows. The origin is

the center of eyes, o = (pl + pr)/2 where pl,pr ∈ R
3 are

left and right eye centers. The x-axis is the direction along

the line joining the two eye centers, (pl − o)/‖pl − o‖;

the z-axis is the direction perpendicular to the plane made

of pl, pr, and pm where pm is the center of the mouth,

orienting towards the hind face; y-axis is defined as a vec-

tor orthogonal to both x- and z-axes under right-hand rule

constraint.

For eye appearance, we provide two representations: (1)

normalized eye patches and (2) pose-independent appear-

ance map. For the normalized eye patches, we warp an

eye patch region such that the orientation and distance re-

main constant across views. RGB values are histogram-

equalized. For appearance, we select vertices of eye re-

gion in the Surrey face model [22] to build a canonical atlas

coordinate (UV) for each eye. We represent view-specific
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Figure 3: (Top and bottom) HUMBI includes 772 distinctive subjects across gender, ethnicity, age, clothing style, and physical condition,

which generates diverse appearance of human expressions. (Middle) For each subject, 107 HD cameras capture her/his expressions

including gaze, face, hand, body, and garment.

appearance map Agaze by projecting pixels in the image

onto that the atlas coordinate. Figure 4(a) illustrates view-

specific appearance across views with median and variance

of appearance. The variance map shows that the appear-

ance is highly dependent on viewpoint in particular in the

iris region.

3.2. Face

HUMBI Face contains ∼17.3M images (330 frames ×
68 views per subject). We represent face geometry using

a 3D blend shape model Mface (Surrey [22]) with 3,448

vertices and 6,736 faces. We reconstruct the shape model

using 68 facial keypoints (Kface) and the associated multi-

view images (Iface), i.e., Mface = fface(Kface, Iface) where

fface is a face alignment function. We align the face model

by minimizing reprojection error over shape, expression, il-

lumination, and texture parameters (see Appendix). Given

the reconstructed face mesh model, we construct a view-

specific appearance map Aface by projecting pixels in the

image onto its canonical atlas coordinate. For each view,

the projection map between the image and atlas coordinate

is established through the corresponding 3D locations in the

reconstructed mesh with bilinear interpolation. Figure 4(b)

illustrates view-specific appearance across views with me-

dian and variance of appearance. The variance map shows

that the appearance is dependent on views, e.g. the re-

gions of salient landmarks such as eye, eyebrows, nose, and

mouth, which justifies the necessity of view-specific appear-

ance modeling [39].

3.3. Hand

HUMBI Hand contains ∼24M images (290 frames ×
68 views per subject). We represent hand geometry us-

ing a 3D parametric model Mhand (MANO [53]) with

778 vertices and 1,538 faces. We reconstruct the mesh

model using hand keypoints (Khand with 21 keypoints), i.e.,

Mhand = fhand(Kface), where fhand is a hand alignment

function. We align the hand model to multiview images by

minimizing the Euclidean distance between hand keypoints

and the corresponding pose of the mesh model with a L2

parameter regularization. To learn the consistent shape of

the hand model for each subject, we infer the maximum

likelihood estimate of the shape parameter given the re-

constructed keypoints over frames (see Appendix). Given

the reconstructed hand mesh model, we construct a view-

specific appearance map Ahand by projecting pixels in an

image onto the canonical atlas coordinate. Figure 4(c) illus-

trates view-specific appearance across views with median

and variance of appearance. The variance map shows that

the appearance is dependent on view points.

3.4. Body

Each subject performs a sequence of motion and dance

performance, which constitutes ∼26M images. Given a set

of multiview images at each time instant, we reconstruct a

mesh model Mbody using body keypoints Kbody, and oc-

cupancy map Obody, i.e., Mbody = fbody(Kbody,Obody)
where fbody is a alignment function that matches the sur-

face of Mbody to the outer surface of the occupancy map

while minimizing the distance between the reconstructed

keypoints Kbody and the underlying pose of the mesh (see

Appendix). We use the SMPL parametric model [40] that

is composed of 4,129 vertices and 7,999 faces without hand

and head vertices.

Shape-from-silhouette2 [34] is used to reconstruct the

occupancy map Obody. The occupancy map is generated

by human body segmentation [37]. As a by-product, the se-

mantics (i.e., head, torso, upper arm, lower arm, upper leg,

2MultiView stereo [59] is complementary to the occupancy map.
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Multiview images

View-specific appearance

Median appearance

Appearance variance

(a) Gaze appearance

Multiview images View-specific appearance Median appearance

Appearance variance

(b) Face appearance

Multiview images View-specific appearance Median appearance

Appearance variance

(c) Hand appearance

Multiview images View-specific appearance Median appearance

Appearance variance

(d) Body appearance

Figure 4: View-specific appearance rendered from multiview images with median appearance and variance for (a) gaze, (b) face, (c) hand,

(d) body.

and lower leg) can be labeled at each location in the occu-

pancy map by associating with the projected body label [76]

as shown in Figure 5.

Given the reconstructed body mesh model, we construct

a view-specific appearance map Abody by projecting pixels

in an image onto the canonical atlas coordinate. Figure 4(d)

illustrates view-specific appearance across views with me-

dian and variance of appearance. The variance map shows

that the appearance is dependent on view points.

3.5. Garment

Given the body reconstruction, we represent the gar-

ment geometry using a garment mesh model Mcloth

as similar to [51]. An alignment function Mcloth =
fcloth(Mbody,Obody) is used to reconstruct the cloth mesh

model from the body model and occupancy map. A set

of fiducial correspondences between the cloth and body

meshes are predefined, which are used as control points for

cloth deformation. The deformed cloth is matched to the

outer surface of the occupancy map with a Laplacian reg-

ularization [63] (see Appendix). Three garment topologies

for each cloth piece are used, i.e., tops: sleeveless shirts

Figure 5: We reconstruct the body occupancy map and its outer

surface using shape-from-silhouette and associate the point cloud

with body semantics (head, body, arms, and legs).

(3,763 vertices and 7,261 faces), T-shirts (6,533 vertices,

13,074 faces), and long-sleeve shirts (8,269 vertices and

16,374 faces), and bottoms: short (3,975 vertices and 7,842

faces), medium (5,872 vertices and 11,618 faces), and long

pants (11,238 vertices and 22,342 meshes), which are man-

ually matched to each subject.
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Figure 6: Distribution of head pose, gaze and eye pose in normal-

ized space for MPII-Gaze, UT-Multiview, RT-GENE and HUMBI.

Horizontal and vertical axis represent yaw and pitch angle respec-

tively (unit: degree).

Bias / Variance ց UTMV MPII RTGENE HUMBI

Gaze 7.43 / 33.09 8.80 / 10.10 19.35 / 31.71 7.70 / 30.01

Headpose 4.20 / 29.28 12.51 / 16.04 17.97 / 22.48 1.42 / 24.77

Eyepose 8.43 / 15.40 20.81 / 19.02 3.21 / 17.49 8.78 / 19.04

Average 6.69 / 25.93 14.04 / 15.05 13.51 / 23.90 5.98 / 24.61

Table 2: Bias and variance analysis of the distribution of head

pose, gaze and eye pose (unit: degree, smallest bias and largest

variance in bold, second with underline).

4. Evaluation

We evaluate HUMBI in terms of generalizability, diver-

sity, and accuracy. For the generalizability, we conduct the

cross-data evaluation on tasks of single view human recon-

struction, e.g., monocular 3D face mesh prediction. For di-

versity, we visualize the distribution of HUMBI, e.g., gaze

direction distribution along the yaw and pitch angle. For

the accuracy, we measure how the number of cameras af-

fects the quality of reconstruction. More evaluations can be

found in Appendix.

4.1. Gaze

Benchmark Datasets We use three benchmark datasets:

(1) MPII-Gaze (MPII) [81] contains 213,659 images from

15 subjects, which was captured under the scenarios of ev-

eryday laptop use. (2) UT-Multiview (UTMV) [64] is com-

posed of 50 subjects with 160 gaze directions captured by

8 monitor-mounted cameras. Using the real data, the syn-

thesized images from 144 virtual cameras are augmented.

(3) RT-GENE [18] contains 122,531 images of 15 subjects

captured by eye-tracking glasses.

Distribution of Gaze Directions To characterize HUMBI

Gaze, we visualize three measures in Figure 6: (1) gaze

pose: the gaze direction with respect to camera pose; (2)

head pose: the head orientation with respect to the camera

pose; and (3) eye pose: the gaze direction with respect to

the head. HUMBI covers a wide and continuous range of

Testing

Training
MPII UTMV HUMBI

MPII UTMV

+ HUMBI + HUMBI

MPII 6.1±3.3 11.8±6.6 8.8±4.8 7.4±4.1 7.7±4.6

UTMV 23.3±9.4 5.0±3.2 8.2±4.5 9.4±5.1 5.4±3.2

HUMBI 23.7±13.7 14.6±10.3 7.9±5.4 8.9±6.2 8.0±5.4

Table 3: The mean error of 3D gaze prediction for the cross-data

evaluation (unit: degree).

head poses, due to numerous views and natural head move-

ments by many subjects. The yaw and pitch of gaze and eye

poses are distributed uniformly across all angles. The quan-

titative analysis of the bias and variance of the gaze distribu-

tion is summarized in Table 2. HUMBI shows the smallest

average bias (5.98◦ compared to 6.69◦-14.04◦ from other

datasets) and second-largest average variance (24.61◦ com-

pared to 25.93◦ of UTMV). Notice that UTMV is a synthe-

sized dataset while HUMBI is real.

Monocular 3D Gaze Prediction To validate the general-

izability of HUMBI Gaze, we use an existing gaze de-

tection network [81] to conduct a cross-data evaluation.

We randomly choose ∼25K images (equally distributed

among subjects) as experiment set for each dataset. One

dataset is used for training and others are used for test-

ing. Each data sample is defined as {(ec,hc),gc}, where

ec ∈ R
36×60,hc ∈ R

2,gc ∈ R
2 are normalized eye patch,

yaw and pitch angle of head pose, and gaze direction with

respect to a virtual camera c. The detection network is

trained to minimize the mean squared error of gaze yaw

and pitch angles. We conduct a self-data evaluation for each

dataset with 90%/10% of training/testing split. Table 3 sum-

marize the experiment results. The detector trained by MPII

and UTMV shows weak performance on cross-data evalu-

ation comparing to HUMBI with 3◦-16◦ margin. HUMBI

exhibits strong performance on cross-data evaluation with

minimal degradation (less than 1◦ drop). Also, UTMV +

HUMBI and MPII + HUMBI outperform each alone by a

margin of 4.1◦ and 13.9◦ when tested on the third dataset

MPII and UTMV respectively, showing that HUMBI is

complementary to UTMV and MPII.

4.2. Face

Benchmark Dataset We use 3DDFA [84] that provides

∼6K 2D-3D pairs of the 3D face geometry and the associ-

ated images. We use 90%/10% of training/testing split. The

base face model of 3DDFA is the Basel model [49], which

is different from our face model (Surrey [22]). We manually

pre-define the correspondences between two models in the

canonical coordinates.

Monocular 3D Face Mesh Prediction We evaluate

HUMBI Face by predicting a 3D face mesh using a recent

mesh reconstruction network [77]. The network encoder

directly regresses the 3D face shape and head pose from a

single view image. We modify the decoder to accommo-

date the differentiable Basel model. We train the network
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Figure 7: We measure viewpoint dependency of a face/body mesh

reconstruction model trained by multiple datasets. Augmenting

HUMBI substantially reduce the view dependency.

Testing

Training
3DDFA HUMBI 3DDFA+HUMBI

3DDFA 7.1±6.4 20.7±7.1 4.3±6.6

HUMBI 23.5±13.9 13.3±13.7 8.4±12.2

Table 4: The mean error of 3D face mesh prediction for cross-data

evaluation (unit: pixel).

with three dataset combinations, i.e., 3DDFA, HUMBI, and

3DDFA+HUMBI, and for each training, we minimize the

loss of the reprojection error with weak perspective pro-

jection model. To measure the accuracy, we use the re-

projection error scaled to the input image resolution (256

pixel). Table 4 summarize the results. From the results

of 3DDFA+HUMBI, the prediction accuracy is improved

from both datasets (2.8 pixels from 3DDFA and 4.9 pixels

from HUMBI) by combining two datasets, which indicates

the complementary nature of HUMBI. Due to the multiview

images in HUMBI, the network can learn the view-invariant

geometric representation, which allows precise reconstruc-

tion even with considerable occlusion as shown in Figure 7.

4.3. Hand

Benchmark Datasets We use three benchmark datasets:

(1) Rendered Handpose Dataset (RHD) [86] is a synthe-

sized hand dataset containing 44K images built from 20

freely available 3D models performing 39 actions. (2)

Stereo Hand Pose Tracking Benchmark (SHPTB) [80] is a

real hand dataset captured by a stereo rgb camera rig. (3)

FreiHAND [15] is a multi-view real hand dataset captured

by 8 cameras. (4) ObMan [21] is a large scale synthetic

hand mesh dataset with associated 2D images (141K pairs).

We use previous two datasets for the hand keypoint evalua-

tion and the last one for the hand mesh evaluation.

Monocular 3D Hand Pose Prediction To validate HUMBI

Hand, we conduct a cross-data evaluation for the task of the

3D hand pose estimation from a single view image, where

we use a recent hand pose detector [86]. We train and eval-

uate the model trained by each dataset and a combination

of HUMBI and each other dataset. The results are sum-

Testing

Training
S R F H S+H R+H F+H

STB (S) 0.72 0.40 0.22 0.47 0.40 0.52 0.44

RHD (R) 0.16 0.59 0.26 0.49 0.48 0.50 0.44

FreiHand (F) 0.15 0.40 0.72 0.37 0.35 0.43 0.35

HUMBI (H) 0.16 0.36 0.18 0.50 0.43 0.47 0.41

Average 0.30 0.44 0.36 0.46 0.42 0.48 0.41

Table 5: Cross-data evaluation results of 3D hand keypoint predic-

tion. Metric is AUC of PCK calculated over an error range of 0-20

mm.

marized in Table 5. We use area under PCK curve (AUC)

in an error range of 0-20mm as the metric. It show that

HUMBI is more generalizable for predicting 3D hand pose

than other three dataset (by a margin of 0.02-0.16 AUC).

Moreover, HUMBI is complementary to other datasets and

the performance of model trained by another dataset alone

is increased with HUMBI (by a margin of 0.04-0.12 AUC).

Monocular 3D Hand Mesh Prediction We compare

HUMBI Hand with synthetic ObMan [21] dataset. We use

a recent regression network [77] that outputs the hand mesh

shape and camera pose with minor modifications, e.g., we

change the size of the latent coefficient and the hand mesh

decoder to the ones from the MANO hand model. We train

and evaluate the network based on the reprojection error

with weak perspective projection model. The results are

summarized in Table 6. Due to the domain gap between the

real and synthetic data, the prediction accuracy of the net-

work trained with synthetic data is largely degraded on the

real data. However, by combining two datasets, the perfor-

mance is highly improved (even better than intra-data eval-

uation), e.g., ObMan+HUMBI can outperform ObMan and

HUMBI 0.3 and 1.7 pixels, respectively.

4.4. Body

Benchmark Datasets We use four benchmark datasets:

(1) Human3.6M [23] contains numerous 3D human poses

of 11 actors/actresses measured by motion capture system

with corresponding images from 4 cameras. (2) MPI-INF-

3DHP [41] is 3D human pose estimation dataset, which

contains both 3D and 2D pose labels as well as images

covering both indoor and outdoor scenes. We use its test

set containing 2,929 valid frames from 6 subjects. (3) UP-

3D [33] is a 3D body mesh dataset providing ∼9K pairs of

3D body reconstruction and the associated 2D images. We

use Human3.6M, MPI-INF-3DHP for body pose evaluation

and UP-3D for body mesh evaluation.

Monocular 3D Body Pose Prediction To validate HUMBI

body, we conduct a cross-data evaluation for the task of esti-

mating 3D human pose from a single view image. We use a

recent body pose detector [83]. We train and evaluate model

trained by each dataset and model trained by a combination

of HUMBI and each other dataset. By following the train-

ing protocol of [83], we use 2D landmark labels from MPII

dataset [5] for a weak supervision. The results are summa-
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Testing

Training
ObMan HUMBI ObMan+HUMBI

ObMan 3.84±2.6 6.1±4.1 3.5±2.4

HUMBI 10.6±11.3 6.5±8.4 4.8±5.8

Table 6: The mean error of 3D hand mesh prediction for cross-data

evaluation (unit: pixel).

Testing

Training
H36M MI3D HUMBI

H36M MI3D

+HUMBI +HUMBI

H36M 0.562 0.362 0.434 0.551 0.437

MI3D 0.317 0.377 0.354 0.375 0.425

HUMBI 0.248 0.267 0.409 0.372 0.377

Average 0.376 0.335 0.399 0.433 0.413

Table 7: Cross-data evaluation results of 3D body keypoint pre-

diction. Metric is AUC of PCK calculated over an error range of

0-150 mm.

Testing

Training
UP-3D HUMBI UP-3D+HUMBI

UP-3D 22.7±18.6 49.4±0.09 18.4±13.8

HUMBI 26.0±19.7 14.5±6.6 12.5±8.4

Table 8: The mean error of 3D body mesh prediction for cross-data

evaluation (unit: pixel).

rized in Table 7. We use area under PCK curve (AUC) in an

error range of 0-150 mm as the metric. It show that HUMBI

is more generalizable for predicting 3D body pose than Hu-

man3.6M and MPI-INF-3DHP (by a margin of 0.023 and

0.064 AUC). Moreover, HUMBI is complementary to each

other dataset and the performance of model trained by an-

other dataset alone is increased with HUMBI (by a margin

of 0.057 and 0.078 AUC respectively).

Monocular 3D Body Mesh Prediction We compare the

body mesh prediction accuracy using a recent CNN model

trained on (1) HUMBI, (2) UP-3D, and (3) HUMBI+UP-

3D. While we use [77] for the testing CNN model, recent

monocular body reconstruction methods [1–4, 9, 20, 30, 35,

46, 48, 54, 58] can be alternative to test the generalization

ability of HUMBI. The network decoder is modified to ac-

commodate the differentiable SMPL parameter prediction.

The reprojection error is used to supervise the network and

to evaluate testing performance. The cross-data evaluation

is summarized in Table 8. We observe that the network

trained with HUMBI shows weak performance because of

the lack of diversity of poses. However, it is highly comple-

mentary to other datasets as it provides various appearance

from 107 viewpoints as shown in Figure 7.

4.5. Garment

We conduct camera-ablation study to evaluate how the

number of cameras affect garment reconstruction quality.

We incrementally reduce the number of cameras and mea-

sure the reconstruction accuracy and density. The recon-

struction density is computed by the number of 3D points

produced by multiview stereo [59]. The reconstruction ac-

curacy metric is the closest point distance from the 3D gar-
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Figure 8: We conduct camera-ablation study to evaluate the ac-

curacy of the garment reconstruction in terms of the density (left)

and the accuracy (right).

ment surface reconstructed by shape-from-silhouette [34].

In both cases, the performance reaches to the optimal even

without 107 cameras as shown in Figure 8, ensuring that our

garment reconstruction is accurate (density: 90 cameras ≈
107 cameras; accuracy: 60 cameras ≈ 107 cameras). The

additional evaluations on the garment silhouette accuracy

can be found in the Appendix.

5. Discussion

We present HUMBI dataset that is designed to facilitate

high resolution pose- and view-specific appearance of hu-

man body expressions. Five elementary body expressions

(gaze, face, hand, body, and garment) are captured by a

dense camera array composed of 107 synchronized cam-

eras. The dataset includes diverse activities of 772 distinc-

tive subjects across gender, ethnicity, age, and physical con-

dition. We use a 3D mesh model to represent the expres-

sions where the view-dependent appearance is coordinated

by its canonical atlas. Our evaluation shows that HUMBI

outperforms existing datasets as modeling nearly exhaus-

tive views and can be complementary to such datasets.

HUMBI is the first-of-its-kind dataset that attempts to

span the general appearance of assorted people by push-

ing towards two extremes: views and subjects. This will

provide a new opportunity to build a versatile model that

generates photorealistic rendering for authentic telepres-

ence. However, the impact of HUMBI will not be limited

to appearance modeling, i.e., it can offer a novel multiview

benchmark dataset for a stronger and generalizable recon-

struction and recognition model specific to humans.
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