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Abstract

In order to remove the non-uniform blur of images cap-

tured from dynamic scenes, many deep learning based

methods design deep networks for large receptive fields and

strong fitting capabilities, or use multi-scale strategy to de-

blur image on different scales gradually. Restricted by the

fixed structures and parameters, these methods are always

huge in model size to handle complex blurs. In this pa-

per, we start from the deblurring deconvolution operation,

then design an effective and real-time deblurring network.

The main contributions are three folded, 1) we construct

a spatially variant deconvolution network using modulated

deformable convolutions, which can adjust receptive fields

adaptively according to the blur features. 2) our analysis

shows the sampling points of deformable convolution can

be used to approximate the blur kernel, which can be sim-

plified to bi-directional optical flows. So the position learn-

ing of sampling points can be supervised by bi-directional

optical flows. 3) we build a light-weighted backbone for

image restoration problem, which can balance the calcu-

lations and effectiveness well. Experimental results show

that the proposed method achieves state-of-the-art deblur-

ring performance, but with less parameters and shorter run-

ning time.

1. Introduction

Due to relative motion during exposure time, motion blur

always occurs when taking pictures. Many factors such as

camera shake, object motion and depth variation could re-

sult in blur artifacts. Blur artifacts downgrade the image

quality, which is harmful to the computer vision tasks such

as object detection, text recognition and object tracking be-

cause of the blurry structures of objects. Dynamic scene de-

blurring is to recover clear image from the observed blurry

image. The blurring in dynamic scenes can be modeled as
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Figure 1. The overview of the proposed method. The sampling

points of deformable convolution are used to approximate the lo-

cal blur kernel, and supervised by the bi-directional optical flows,

which can be easily obtained from the deblurring datasets. The

position loss is used to train the sampling points getting closer to

the optical flows.

non-uniform blur, which is usually formulate as:

b = Ks + n, (1)

where b, s and n represent the vectorized blurry image, clear

latent image, and additional noise respectively. K is the

non-uniform blur matrix, each row of which represents a lo-

cal blur kernel attached to sharp image to generate a blurry

pixel. The solution space of non-uniform blur is very large,

which causes it hard to solve the s and K with b.

To constraint the solution space of non-uniform blur,

some hand-crafted priors such as dark channel prior [22],

heavy-tailed gradient prior [24], hyper-Laplacian prior [16],

extreme channel prior [33], and etc., are introduced. How-

ever, the traditional deblurring process involves expensive

non-convex optimization, which is time and memory con-

suming. Once the priors are not suitable, artifacts such
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as ringing artifacts would appear. Kim et al. [9] design

a segment-based non-uniform debulr framework, in which

the blur kernel is shared within one segmentation. Some

works [10, 28, 6] approximate the blur kernel to be a local

linear kernel, and estimate the latent image and linear ker-

nel jointly. Li et al. [20] learn the natural image prior with

a convolution neural network, and use it as a regularization

term.

With the development of deep learning, many re-

searchers [21, 23, 27, 18, 29] try to build deblurring neural

network to deblur images or videos in an end-to-end man-

ner and achieve state-of-the-art performance. Without the

blur kernel estimation process, these methods directly gen-

erate clear images from blurry input images. However, ow-

ing to the complexities of dynamic scene deblurring, a large

number of convolution layers should be added into the de-

blurring network to ensure enough large receptive field for

handling severe motion blur situations. In addition, the de-

grees of blur vary among different blurry images but the

parameters and structures of deblurring network are fixed.

So the current deblurring networks contain amounts of pa-

rameters to deal with various blurry images, which causes

the networks large in size and massive in calculation.

In this paper, we propose a novel dynamic scene deblur-

ring network. We start from the deblurring deconvolution

operation and then try to model the deconvolution opera-

tion with stacked deformable convolutional layers. The de-

formable convolutional layers can automatically adjust the

distributions and weights of the sampling points based on

blur features contained in the blurry image. Therefore, the

entire network has the ability to automatically adjust the re-

ceptive fields and weights according to the blurry inputs.

What’s more, the deformable convolution layers can use op-

tical flows as the auxiliary supervising. Experiments show

that the proposed method achieves state-of-the-art deblur-

ring performance, but with less parameters and shorter run-

ning time. The overview of the proposed method is shown

in Figure 1.

In general, the main contributions of this paper are sum-

marized as below:

• We design a feature deconvolution module to approx-

imate the deblurring deconvolution at feature level us-

ing modulated deformable convolutions. The distribu-

tion of the sampling points of the deformable convo-

lution and the magnitude of the weights can be auto-

matically adjusted according to the direction and de-

gree of blur, which achieves the adaptation of receptive

fields and weights. Compared with the other deblur-

ring networks based on regular convolution, the pro-

posed deblurring network has less parameters and a

simpler structure.

• We introduce the bi-directional optical flows to guide

the learning of deformable convolutions, whose sam-

pling points can be used to approximate blur kernels.

Without directly using artificially synthesized optical-

image pairs, we calculate optical flows directly from

the deblurring dataset. Experiment shows that better

results can be achieved when using the optical flow

guided training.

• We design a light-weighted backbone for image

restoration problem. In order to reduce the loss of spa-

tial information, we only use downsampling operation

once and apply dilated convolutions with different di-

lation rates to ensure that the network’s receptive field

is unchanged. Since there is no reduction in spatial

resolution, it is not necessary to increase the number

of channels, so the convolutional layers have fewer pa-

rameters than networks which use multiple downsam-

pling operations.

2. Related Work

2.1. Deep Image Deblurring

With the development of deep learning and the emer-

gence of large numbers of datasets for deblurring prob-

lem, many researchers [21, 23, 29, 18, 19] have designed

end-to-end deblurring networks achieving excellent perfor-

mance. These deep learning based methods directly predict

the clear images from the blurry images without the need

for blur kernel estimation process, which makes them more

efficient than those with blur kernel estimations. Nah et

al. [21] propose a multiscale convolutional neural network

to remove blurring in dynamic scenes and conduct excel-

lent deblurring results. The blur is removed from the coarse

scale and then refined to the original scale. The networks

at each scale contain 40 convolutional layers and do not

share parameters across scales. So the total parameters of

the network are huge in number, which leads to an increase

in computations and inference time, and great difficulties to

train. In order to solve these problems, Tao et al. [29] use

an encoder-encoder structure with skip connections and pa-

rameter sharing at three scales, which can stablize the train-

ing process and achieve better deblurring performance with

impressive results. The network structure is simpler and the

number of parameters is smaller.

2.2. Deconvolutional Neural Network

Some methods [35, 32] try to model the deblurring prob-

lem as a deconvolution problem and design the networks

to approximate the deconvolution operations. Zhang et al.

[35] analyzed that deconvolution can be implemented by

using a spatial recurrent neural network (RNN). In order

to obtain large receptive fields and fuse features from dif-

ferent filtering directions, they use four RNNs and add a

3556



Feature
Extractor

Co
nv

Co
nv

PR
eL

U

PR
eL

U

Co
nv

offset_weight
field1

offset_weight
field2

offset1
weight1

offset2
weight2

3N 3N

Loss1Loss1

Deformable 
Conv1

Deformable 
Conv2

Co
nv

Tr
an

sp
os

e
Co

nv
PR

eL
U

Co
nv

Tr
an

sp
os

e
Co

nv
PR

eL
U

Global Skip Connect

Loss2Loss2

Figure 2. The overall architecture of the proposed deblurring network, which contains four components, i.e. feature extractor, neck, head

and global skip connection. The neck is composed of two modulated deformable convolutions, and the head is used to reconstruct the clear

image. The offsets and weights can be adjusted adaptively according to the blur features extracted from blurry image.

convolution layer after each RNN. The pre-trained VGG16

[26] sub-network is then used to predict the spatially variant

weights for the RNNs. However, the RNNs can not calcu-

late parallelly along the spatial dimension, so the inference

time of this method is still not reduced, and VGG16 is used

as the weight generation network, which increases the pa-

rameters and calculations of the network. Although the de-

convolution kernel can be approximated using large-kernel

convolution, a large amount of parameters are introduced.

Xu et al. [32] use separable convolutions to approximate

the deconvolution kernel, and then design a deconvolution

neural network for image deblurring. However, this method

can only remove uniform blurs, and it needs to train dif-

ferent network parameters for different blur kernels, which

restricts the application in dynamic scenes.

2.3. Deblurring with Optical Flow

Some dynamic scene deblurring methods [14, 1] use bi-

directional optical flows to approximate the blur kernel and

generate reliable deblurring results. Kim et al. [14] propose

a segmentation-free dynamic scene deblurring method, and

apply bi-directional optical flows calculated from the previ-

ous and next frames to approximate the blur kernel. This

assumption reduces the solution space and makes it easier

to solve. However, it is usually not true because the mo-

tions in dynamic scenes are very complex, and the blur ker-

nels usually have complex shapes rather than linear shapes.

Chen et al. [1] design a self-supervised learning framework

to fine-tune the existing deblurring networks and achieve

significant improvements. They use optical flow prediction

networks [3, 11] to obtain the bi-directional optical flows

which are used as local blur kernels, and then blur the re-

covered image. The loss is calculated by the supervision

of the original blurry picture. This technique improves the

performance of existing methods and makes the deblurring

results more faithful to the latent clear image.

3. Methodology

In this section, we introduce the architecture of the pro-

posed deblurring network in detail. The overall architecture

is illustrated in Figure 2. In addition, the feature deconvolu-

tion module, optical flow guided training and loss functions

used for training are described seperately.

3.1. Network Architecture

The deblurring network consists of four parts, i.e. back-

bone, neck, head and global skip connection. The back-

bone, also refered as feature extractor, takes blurry images

as input and extracts content features and blur features. The

neck is a feature deconvolution module which contains two

modulated deformable convolutions. The head is used to

upsample the feature maps from the neck and reconstruct

the RGB image. And with the help of global skip connec-

tion, the network only needs to learn the residual between

blurry image and clear image.

The Dilated Backbone. The backbone is used to ex-

tract the blur feature and encode the content feature from

the input blur image. The structure of the backbone is il-

lustrated in Figure 3. To decrease the difficulty of recon-

struction, we only use the downsampling operation once. In

order to ensure that there are large enough receptive fields

for deblurring, we use dilated convolutions with different
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dilation rates. The dilation rates are set to 1, 2 and 4 in the

network. Since there is no downsampling, the spatial res-

olution of feature maps are unchanged, so the number of

the output channels does not need to be increased, which

only needs to remain the same as that of the input channels.

At the same time, in order to make better use of the fea-

tures of different scales, a fusion module is introduced to

fuse the output feature maps of different layers, which can

also accelerate the training process benefited from the skip

connection. The feature maps after the fusion module are

divided into two parts as outputs of the backbone. One of

the outputs is the blur feature, which is used to generate the

offsets and weights for the deformable convolutions in the

neck. And the other is the content feature, which is used as

the input of the deformable convolution.

The Neck. The neck is a feature deconvolution mod-

ule, which is a blur-adaptive component and contains two

modulated deformable convolutions [37]. The blur feature

extracted by the backbone is used to generate offsets and

weights for the two deformable convolutions. The offsets

would be small when there are slight blur in the image, but

bigger when there are severe blur. Different from the model

[21, 29, 19] constructed by regular convolutions, the recep-

tive field of our network can be adaptively adjusted accord-

ing to the blurring degrees of the input images.

The Head. The head is used to reconstruct the RGB

image which has the same size with input image. There is

a downsampling operation in the backbone, so the resolu-

tion of the feature maps is half of that of the input images.

Therefore an upsampling operation should be added in the

neck to enlarge the spatial size of feature maps. Instead of

bilinear interpolation, we use transpose convolution to up-

sample the feature maps.

The Global Skip Connection. The global skip connec-

tion is usually applied in learning-based image restoration

tasks [13, 36, 23, 19]. Instead of restoring the image di-

rectly, the network only needs to learn the residual between

the blurred images and the ground truth, with the help of

global skip connection, which reduces the learning diffi-

culty significantly. Therefore, we add global skip connec-

tion in the deblurring network like [18, 19].

3.2. Feature Deconvolution Module

In this subsection, we start from a simple image decon-

volution equation, and then try to approximate it using de-

formable convolutions. The deblurring process of uniform

blur in Fourier domain can be described as

F [S] =
1

F [K]
· F [B], (2)

where F is the Fourier transformation, and S, B and K are

the sharp image, blurry image and blur kernel seperately.

The 1
F [K] is the inverse kernel for deconvolution, which
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Figure 3. The architecture of feature extractor. The 4 numbers in

each module indicate in channels, out channels, stride and dilation

rate seperately. The size of all convolution kernels is 3. The dashed

lines represent skip connections. The c© is concatenation along

channel dimension, and the +© is element-wise summation.

varies according to the blur degree. It means that different

blur images have different inverse kernels. Moreover, [35]

shows that the non-zero region of a inverse filter is larger

than that of the blur kernel, which means that a much larger

receptive field is needed to deconvolution. To approximate

the inverse filter, regular convolution layer is not efficient,

restricted by the regular sampling grids and fixed weights.

Conversely, the deformable convolution [2, 37] has flexible

sampling points, whose offsets can be learned from the in-

put feature and adjusted adaptively. Morever, the weights

can also be changed by multipling a mask. Based on above,

we use modulated deformable convolutions to approximate

the deconvolution operation. Due to the sparse sampling,

deformable convolutions are used at feature level instead of

image level in this paper. In addition, to enlarge the re-

ceptive field and make the module more interpretable, we

change the Equ. 2 to

F [S] =
1

F [K]2
· F [K] · F [B]. (3)

So the feature deconvolution module can be divided into

two parts, which are used to approximate the F [K] and
1

F [K]2 in spatial domain seperately. It is different from the

usage in [30], i.e. we do not stack deformable convolutions

in cascade to deblur gradually. Specifically, the deformable

sampling parameter of the second part is derived from that

of the first part, instead of output feature of the first part, as

shown in Figure 2. It should be noted that in this module,

we only use one deformable convolution to approximate the
1

F [K]2 in spatial domain, more deformable convolutions can

be added to get better approximation and better deblurring

performance. The prediction of offsets and masks for these

two deformable convolutions can be formulated as:

ow1 = Conv(x), (4)

ow2 = Conv(f(Conv(f(ow1)))), (5)
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Figure 4. Visual comparision of the optical flows. (a) and (c) are

two consecutive frames. (b) and (d) are the optical flows calculated

by Farnback [4] and DIS [17] respectively.

where Conv represents the regular convolution layer, f is

the activate function, which is Parametric ReLU (PReLU)

[8] in the proposed deblurring network. x is the blur feature

extracted by the backbone. ow1 and ow2 are the generated

offsets and weights, used for the two stacked deformable

convolutional layers.

3.3. Optical Flow Guided Training

According to the previous section, we need to constrain

the sampling points of the first deformable convolution to be

close to the distribution of the blur kernel. But usually the

datasets only contain blurry images and the corresponding

clear images, there is no blur kernel available. So we use

the same method as [14] to approximate the blur kernel with

optical flows of the current frame to the previous and next

frames, that is, the blur kernel can be simplified into bi-

directional optical flows. Therefore, it only needs to make

the spatial distribution of the deformable sampling points

close to the two optical flow strips. In order to obtain more

accurate dense optical flows, as shown in Figure 4, we use

the DIS algorithm [17] to calculate the optical flows, instead

of Farnback algorithm [4].

There are two methods to measure the matching de-

gree between the sampling points and the two optical line

segments here. The first way is to fit a two-dimensional

curve with the sampling points firstly, and then calculate

the matching error between the curve and the bi-directional

optical flows. However, it is difficult to fit a curve by using

two-dimensional point sets, so this method is very hard to

realize. Another way is to use the mean of the shortest dis-

tances from all sampling points to the bi-directional optical

flows, which is formulated as:

md =
1

n

n
∑

i=1

min(di1, di2), (6)

Algorithm 1 Algorithm for calculating the shortest distance

from sampling points to bi-directional optical flows.

Input:

The coordinate of the sampling point (x, y);
The parameters of the optical flow (u, v);

Output:

The shortest distance min dis;

1: Calculate the abscissa of foot point from the sampling

point to optical flow x0 = uvy+v2x

u2+v2 ;

2: if x0 ∈ [min(0, u),max(0, u)] then

3: min dis = ‖ux−vy‖√
u2+v2

;

4: else

5: d1 =
√

x2 + y2;

6: d2 =
√

(x− u)2 + (y − v)2;

7: min dis = min(d1, d2);
8: end if

9: return min dis;

where dij represents the shortest distance from the i-th point

to the j-th optical flow. n is the number of the sampling

points, which is 25 in our experiments. md is the mean

of the n shortest distances. The details of calculating the

shortest distance from sampling points to optical flows are

shown in Algorithm 1.

3.4. Loss Functions

The loss function used for training is composed of pixel-

wise loss, perceptual loss and position loss, which is formu-

lated as:

L = Lpixel + λ1 · Lpercep + λ2 · Lposition, (7)

where λ1 is set to 0.01, and λ2 is set to 0.0001 in our exper-

iments.

Pixel loss. Two classical loss functions used for pixel-

level are MAE and MSE loss, which are also referred as L1

and L2 loss respectively. The L2 loss has been used in many

deblurring problems [29, 34] achieving impressive results.

Therefore, we also use the L2 loss as the pixel-wise loss,

which can be formulated as:

Lpixel =
1

2Np

‖L− S‖
2
F , (8)

where S and L denote the ground truth clear image and the

model output respectively. Np is the number of elements of

S and L.

Perceptual loss. For generating deblurred images with

sharp structures, some methods [21, 23, 18] calculate loss

on semantic feature, such as Patch-GAN loss and perceptual

loss [12]. Each element in the semantic feature corresponds

to a local region of the input image, therefore this loss can

focus on restoring the general content and conducting to the
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Table 1. Comparison results on GOPRO testing dataset in terms of performance and efficiency

Method Sun et al. [28] DeepDeblur [21] Zhang et al. [35] SRN [29] DeblurGAN-v2 [19] Ours(A) Ours(B)

PSNR 24.64 29.08 29.19 30.10 29.55 29.57 29.81

SSIM 0.8429 0.9135 0.9306 0.9323 0.9340 0.9338 0.9368

Runtime 12.1 min 3.1 s 1.4 s 0.4 s 0.35 s 0.01 s 0.01 s

Model Size 54.1 MB 303.6 MB 37.1 MB 33.6 MB 15.0 MB 3.1 MB 3.1 MB

recovery of image structure. However, GAN [7] needs to al-

ternately train the discriminator and generator and carefully

trade off the training times of discriminator and generator.

Conversely, the perceptual loss is based on the pre-trained

VGG-Net, which requires no training, so the perceptual loss

is easier to use. Therefore, in this paper we use the percep-

tual loss as the content loss, which can be formulated as:

Lpercep =
1

2Nc

‖φi(L)− φi(S)‖
2
F , (9)

where φi represents the feature maps of the i-th layer of

VGG-16, which is set to 12 in our experiments, and Nc is

the number of elements of φi(L) and φi(S).
Position loss. To better train the deblurring network, we

add bi-directional optical flow for auxliary supervision. The

distributions of sampling points of the first deformable con-

volution layer should be close to the optical flows. There-

fore, the position loss is the mean value of the shortest dis-

tances from points to optical flows. In addition, to reduce

the impact of miscalculating optical flows and restriction on

model fitting capabilities, a margin is added to the loss, i.e.

only points with a distance greater than the margin are pe-

nalized. So the final position loss is formulated as:

Lposition =
1

n

n
∑

i=1

max(min(di1, di2),M), (10)

where n is the number of sampling points, and M represents

the margin value.

4. Experiments

In this section we make a comparision with state-of-the-

art image deblurring methods and carry out abalation exper-

iments to evaluate the effectiveness of the proposed optical

flow guided deep deblurring network. All the experiments

are conducted with an i7-6800K CPU and four NVIDIA

Geforce GTX 1080Ti GPUs. The models are implemented

with the Pytorch 1.1.0 Library.

4.1. Datasets

For training the proposed end-to-end deblurring net-

work, a large training dataset containing blurry and clear

Table 2. Results of abalation experiments

Dilated Backbone X X X

FD Module X X

OG Training X

PSNR 28.34 29.01 29.57 29.81

SSIM 0.9124 0.9237 0.9338 0.9368

image pairs should be created. A classical way to generate

the blur images is convolving the sharp images and gener-

ated blur kernels. But the scenes to be simulated are lim-

ited and still different from the real blur images captured by

camera. Another way is to avarage short-exposure frames

captured by high-speed cameras to similuate long-exposure

blurry images which are more realistic and have complex

blurs. For fair comparison, we use the GOPRO dataset pro-

posed by [21], which contains 3214 image pairs. Similarly

we use 2103 image pairs for training and 1111 image pairs

for testing here.

4.2. Experiment Setting

We use Xavier [5] to initialize the parameters and Adam

[15] optimizer to train the deblurring network. The β1,

β2 and ǫ are set to 0.9, 0.9 and 10−8 seperately. The

polynomial-decay strategy is used to decay the learning rate

from 10−3 to 10−6 at 2000 epochs, and the power of the

decay strategy is set to 0.9 in our experiments. The training

process takes about 44 hours. Experiments show that 2000

epochs are enough to converge the model. Each training

batch contains 32 blur-ground truth image patches. Every

patch is augmented by flipping, rotation, and permutation

of RGB channels, and then cropped to 256× 256 size.

4.3. Comparisons with Stateoftheart Methods

We evaluate the proposed deblurring network and make

comparisons with state-of-the-art deblurring methods [28,

21, 35, 29, 19] in terms of PSNR, SSIM [31], model size

and inference time for 720p images. The quantitative results

are shown in Table 1, where Ours(B) and Ours(A) represent

the network with and without optical flow guided training
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Figure 5. Visual comparisons on the GOPRO testing dataset. There are 5 blurry images from different scenes. From Left to Right: input

blurry images, results of Nah et al. [21], results of Tao et al. [29], and results of the proposed method.
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Figure 6. Visualization of the sampling points generated by the proposed deblurring network.

respectively. Our deblurring method achieves the best per-

formance among state-of-the-art methods, with the highest

SSIM value and the second highest PSNR value. Moreover,

the proposed network can deblur a 1280×720 image with

the fastest speed, nearly 0.01s per image, which is 40× and

35× faster than Tao et al. [29] and Kupyn et al. [19] respec-

tively. Overall, our method achieves the real-time deblur-

ring without performance degradation. In addition, the pro-

posed network owns the smallest model size, nearly 0.8M

parameters, which is 100× and 10× smaller compared with

Nah et al. [21] and Tao et al. [29] respectively. The vi-

sualization results are shown in Figure 5. Compared with

the deep learning based methods [21, 29], the restored im-

ages of our method are clearer and sharper at the edges.

The content of the deblurred image is more faithful, e.g. the

numbers of the license plate are deblurred perfectly, while

[21] and [29] fail to do that.

4.4. Ablation Experiments

We make ablation experiments to evaluate the effec-

tiveness of the proposed components, including the dilated

backbone, the feature deconvolution module (FD Module)

and the optical flow guided training (OG Training). The

results of ablation experiments are summarized in Table 2.

By setting all the dilation rates of backbone to 1 and re-

placing the neck with a residual block, we build a baseline

deblurring model, which achieves 28.34 dB on PSNR and

0.9124 on SSIM. When replacing the backbone with dilated

backbone, it achieves an increase of 0.67 dB on PSNR and

0.0113 on SSIM, which means the dilated backbone could

extract better features benefitting from the larger receptive

field. The effectiveness of FD Module can be evaluated by

comparing Column 3 and Column 4. It achieves better per-

formance benefitting from the adaptive adjustment of recep-

tive field and weights, which means deformable convolution

is more suitable for deblurring task than norm convolution.

When using optical flow guided training (Column 5), it gets

a better result thanks to the additional supervision and effi-

cient training.

4.5. Effectiveness of Feature Deconvolution Module

Figure 6 shows two example distributions of sampling

points used for the first deformable convolution of feature

deconvolution module. It can be seen from the visualiza-

tion results that the distributions of sampling points can be

adjusted adaptively according to the blur patterns contained

in the blurry input image. However, the deblurring meth-

ods with regular convolution are hard to do that restricted

by the fixed structures and parameters, which need to stack

more layers for larger receptive fields and stronger fitting

capabilities. In addition, the intensive degree of sampling

points can vary with blur degrees. Inspired by the observa-

tion, the distributions of the sampling points could be used

as discriminative blur detection features [25], i.e. the larger

variations of the distributions of the sampling points, the

blurrier the image regions. So the sub network for predict-

ing the sampling points in our deblurring network could be

used to detect blur regions when fine-tuned.

5. Conclusion

In this paper, we propose a novel spatially variant de-

convolutional neural network for dynamic scene deblurring.

The deblurring network is powered by two modulated de-

formable convolutions and a light-weighted feature extrac-

tor. For better training the network, we use bi-directional

optical flows as the auxilary supervision. Experimental re-

sults show that the proposed method achieves state-of-the-

art performance but has less parameters and shorter running

time compared with representative deep learning based de-

blurring methods.
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