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Abstract

Snapshot compressive imaging (SCI) aims to capture the

high-dimensional (usually 3D) images using a 2D sensor

(detector) in a single snapshot. Though enjoying the advan-

tages of low-bandwidth, low-power and low-cost, applying

SCI to large-scale problems (HD or UHD videos) in our

daily life is still challenging. The bottleneck lies in the recon-

struction algorithms; they are either too slow (iterative opti-

mization algorithms) or not flexible to the encoding process

(deep learning based end-to-end networks). In this paper,

we develop fast and flexible algorithms for SCI based on the

plug-and-play (PnP) framework. In addition to the widely

used PnP-ADMM method, we further propose the PnP-GAP

(generalized alternating projection) algorithm with a lower

computational workload and prove the global convergence

of PnP-GAP under the SCI hardware constraints. By em-

ploying deep denoising priors, we first time show that PnP

can recover a UHD color video (3840 × 1644 × 48 with

PNSR above 30dB) from a snapshot 2D measurement. Ex-

tensive results on both simulation and real datasets verify

the superiority of our proposed algorithm.

1. Introduction

Computational imaging [1, 31] constructively combines

optics, electronics and algorithms for optimized perfor-

mance [4, 6, 32] or to provide new abilities [5, 25, 35, 43]

to imaging systems. One important branch of compu-

tational imaging with promising applications is snapshot

compressive imaging (SCI) [23, 45], which utilized a two-

dimensional (2D) camera to capture 3D video or spectral

data. Different from conventional cameras, such imaging

systems adopt sampling on a set of consecutive images–

video frames (e.g., CACTI [23, 60]) or spectral channels

(e.g., CASSI [46])–in accordance with the sensing matrix

and integrating these sampled signals along time or spec-

trum to obtain the final compressed measurements. With

this technique, SCI systems [12, 15, 36, 42, 45, 46, 60] can

capture the high-speed motion [40, 41, 61, 62, 68, 70] and

high-resolution spectral information [28, 69, 37] but with

low memory, low bandwidth, low power and potentially low

cost. In this work, we focus on video SCI reconstruction.

In parallel to the hardware development, various algo-

rithms have been employed and developed for SCI recon-

struction. In addition to the widely used TwIST [2], Gaus-

sian Mixture Model (GMM) in [49, 50] based algorithms

model the pixels within a spatial-temporal patch by a GMM.

GAP-TV [53] adopts the idea of total variance minimiza-

tion under the generalized alternating projection (GAP) [21]

framework. Most recently, DeSCI proposed in [22] has led

to state-of-the-art results. However, the slow speed of De-

SCI precludes its real applications, especially to the HD

(1280× 720), FHD (1920× 1080) or UHD (3840× 1644 in

Fig. 1 and 3840× 2160 in Fig. 5) videos, which are getting

popular in our daily life. Recall that DeSCI needs more

than one hour to reconstruct a 256× 256× 8 video from a

snapshot measurement. GAP-TV, by contrast, as a fast algo-

rithm, cannot provide good reconstruction to be used in real

applications (in general, this needs the PSNR≥ 30dB). An

alternative solution is to train an end-to-end network [26, 34]

to reconstruct the videos for the SCI system. On one hand,

this approach can finish the task within seconds and by ap-

propriate design of multiple GPUs, an end-to-end sampling

and reconstruction framework can be built. On the other

hand, this method loses the robustness of the network since

whenever the sensing matrix (encoding process) changes, a

new network has to be re-trained. Moreover, it cannot be

readily used in adaptive sensing [70].

Therefore, it is desirable to devise an efficient and flexible

algorithm for SCI reconstruction, especially for large-scale

problems. This will pave the way of applying SCI in our

daily life. In order to solve the trilemma of speed, accuracy

and flexibility for SCI reconstruction, this paper makes the

following contributions:

• Inspired by the plug-and-play (PnP) alternating direction

method of multiplier (ADMM) [9] framework, we extend

PnP-ADMM to SCI and show that PnP-ADMM converges

to a fixed point by considering the hardware constraints

and the special structure of the sensing matrix [18] in SCI.
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Snapshot Bayer RGB/grayscale measurement GAP-TV (25.08 dB, 0.8475)
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Figure 1. Sensing process of video SCI (left) and the reconstruction results using the proposed PnP-FFDNet (bottom-right). The captured

image (middle-top) size is UHD (3840× 1644) and 48 frames are recovered from a snapshot measurement. GAP-TV (top-right) takes

180 mins and PnP-FFDNet takes 55 mins for the reconstruction. All other methods are too slow (more than 12 hours) to be used.

• We propose an efficient PnP-GAP algorithm by using var-

ious bounded denoisers (Fig. 2) into the GAP [21], which

has a lower computational workload than PnP-ADMM. In

addition to the fixed point convergence, we further prove

that, under proper assumptions, the solution of PnP-GAP

will converge to the true signal. To our best knowledge,

this is the first global convergence results for SCI and this

also holds under the additive white Gaussian noise.

• By integrating the deep image denoiser, e.g., the fast and

flexible FFDNet [74] into PnP-GAP, we show that a FHD

video (1920× 1080× 24) can be recovered from a snap-

shot measurement (Fig. 5) within 2 minutes with PSNR

close to 30dB using a single GPU plus a normal computer.

Compared with an end-to-end network [26], dramatic re-

sources have been saved (no re-training is required). This

further makes the UHD compression using SCI to be feasi-

ble (a 3840×1644×48 video is reconstructed with PSNR

above 30dB in Fig. 1). To our best knowledge, this is the

first time that SCI is used in these large-scale problems.

• We apply our developed PnP algorithms to extensive sim-

ulation and real datasets (captured by real SCI cameras)

to verify the efficiency and robustness of our proposed

algorithms. We show that the proposed algorithm can

obtain results on-par with DeSCI but with a significant

reduction of computational time.

The rest of this paper is organized as follows. Sec. 2 re-

views the mathematical model of video SCI. Sec. 3 develops

the PnP-ADMM under the SCI hardware constraints and

shows that PnP-ADMM converges to a fixed point. Sec. 4

develops the PnP-GAP algorithm and proves its global con-

vergence. Sec. 5 integrates various denoisers into to the PnP

framework for SCI reconstruction. Extensive results of both

(benchmark and large-scale) simulation and real data are

presented in Sec. 6 and Sec. 7 concludes the paper.
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Figure 2. Trade-off of quality and speed of various plug-and-play

denoising algorithms for SCI reconstruction.

Related Work SCI systems have been developed to cap-

ture 3D spectral images [8, 37, 69], videos [15, 33, 23, 25,

36, 40, 41, 43, 60, 67], high dynamic range [52], depth [24,

58, 66] and polarization [44] images, etc. From the algorithm

side, in addition to sparsity [55, 65, 57, 59, 63, 54, 75, 71, 72]

based algorithms, GMM [49, 50, 56] and GAP-TV [53] have

been proposed. As mentioned above, DeSCI [22] has led to

state-of-the-art results.Inspired by deep learning on image

restoration [73], researchers have started using deep learn-

ing in computational imaging [16, 19, 20, 30, 39, 29, 64].

Some networks have been proposed for SCI reconstruc-

tion [26, 28, 34, 51]. Different from these methods, in

this work, we integrate various denoisers into PnP frame-

work [9, 38] for SCI reconstruction, thus to provide efficient

and flexible algorithms for SCI. Our PnP algorithms can not

only provide excellent results but also are robust to different

coding process and thus can be used in adaptive sensing.
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2. Mathematical Model of SCI

As depicted in Fig. 1, in the video SCI system (e.g.,

CACTI) [23], consider that a B-frame video X ∈
R

nx×ny×B is modulated and compressed by B sensing ma-

trices (masks) C ∈ R
nx×ny×B , and the measurement frame

Y ∈ R
nx×ny can be expressed as [23, 60]

Y =
∑B

b=1 Cb ⊙Xb +Z, (1)

where Z ∈ R
nx×ny denotes the noise; Cb = C(:, :, b) and

Xb = X(:, :, b) ∈ R
nx×ny represent the b-th sensing matrix

(mask) and the corresponding video frame, respectively; ⊙
denotes the Hadamard (element-wise) product. Mathemati-

cally, the measurement in (1) can be expressed by

y = Hx+ z, (2)

where y = Vec(Y ) ∈ R
nxny and z = Vec(Z) ∈ R

nxny .

Correspondingly, the video signal x ∈ R
nxnyB is

x = Vec(X) = [Vec(X1)
⊤, ...,Vec(XB)

⊤]⊤. (3)

Unlike traditional compressive sensing [7, 11], the sensing

matrix H ∈ R
nxny×nxnyB in video SCI is sparse and is a

concatenation of diagonal matrices

H = [D1, ...,DB ]. (4)

where Db = diag(Vec(Cb)) ∈ R
n×n with n = nxny , for

b = 1, . . . B. Consequently, the sampling rate here is equal

to 1/B. It has been proved recently in [17, 18] that the

reconstruction error of SCI is bounded even when B > 1.

In the color video case, as shown in Figs. 1, 5 and 7,

the raw data captured by the generally used Bayer pattern

sensors have “RGGB” channels. Since the mask is imposed

on each pixel, the generated measurement can be treated as a

grayscale image as in Fig. 6 and when it is shown in color, the

demosaicing procedure cannot generate the right color due to

mask modulation (Fig. 5). Therefore, during reconstruction,

we first recover each of these four channels independently

and then perform demosaicing in the reconstructed videos.

The final demosaiced RGB video is the desired signal [60].

3. Plug-and-Play ADMM for SCI

The inversion problem of SCI can be modeled as

x̂ = argmin
x

f(x) + λg(x), (5)

where f(x) can be seen as the loss of the forward imaging

model, i.e., ‖y−Hx‖22 and g(x) is a prior being used. This

prior is usually playing the role of a regularizer.

3.1. Review the PlugandPlay ADMM in [9]

Via using the ADMM framework [3], by introducing an

auxiliary parameter v, the unconstrained optimization in

Eq. (5) can be converted into

(x̂, v̂) = argmin
x,v

f(x) + λg(v), subject to x = v. (6)

This minimization can be solved by the following sequence

of sub-problems

x(k+1) = argminx f(x) + ρ
2‖x− (v(k) − 1

ρ
u(k))‖22,

(7)

v(k+1) = argminv λg(v) +
ρ
2‖v − (x(k) + 1

ρ
u(k))‖22,

(8)

u(k+1) = u(k) + ρ(x(k+1) − v(k+1)), (9)

where the superscript (k) denotes the iteration number.

While in SCI and other inversion problems, f(x) is usu-

ally a quadratic form and there are various solutions to

Eq. (7). In PnP-ADMM, the solution of Eq. (8) is replaced

by an off-the-shelf denoising algorithm, to yield

v(k+1) = Dσ(x
(k) + 1

ρ
u(k)). (10)

where Dσ denotes the denoiser being used with σ being the

standard deviation of the assumed additive white Gaussian

noise. In [9], the authors proposed to update the ρ in each

iteration by ρk+1 = γkρk with γk ≥ 1 and setting σk =
√

λ/ρk for the denoiser. In this manner, the author defined

the bounded denoiser and proved the fixed point convergence

of the PnP-ADMM.

Definition 1. (Bounded Denoiser [9]): A bounded denoiser

with a parameter σ is a function Dσ : Rn → R
n such that

for any input x ∈ R
n,

1
n
‖Dσ(x)− x‖22 ≤ σ2C, (11)

for some universal constant C independent of n and σ.

With this definition (constraint on the denoiser) and the

assumption of f : [0, 1]n → R having bounded gradient,

which is for any x ∈ [0, 1]n, there exists L < ∞ such that

‖∇f(x)‖2/
√
n ≤ L, the authors of [9] have proved that:

the iterates of the PnP-ADMM demonstrates a fixed-point

convergence. That is, there exists (x∗,v∗,u∗) such that

‖x(k)−x∗‖2 → 0, ‖v(k)−v∗‖2 → 0, and ‖u(k)−u∗‖2 →
0 as k → ∞.

3.2. PnPADMM for SCI

In SCI, with the model stated in Eq. (2), x ∈ R
nB , and

we consider the loss function f(x) as

f(x) = 1
2‖y −Hx‖22. (12)

Consider all the pixel values are normalized into [0, 1].
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Lemma 1. In SCI, the function f(x) = 1
2‖y −Hx‖22 has

bounded gradients, i.e. ‖∇f(x)‖2 ≤ B‖x‖2.

Proof. The full proof is in the Supplementary Material (SM).

Here, we show the key steps. The gradient of f(x) is

∇f(x) = H⊤Hx−H⊤y, (13)

where H is a block diagonal matrix of size n × nB as

defined in Eq. (4). H⊤y is non-negative due to the fact

that both the measurement y and the mask are non-negative

in nature, and H⊤Hx is the weighted sum of the x and

‖H⊤Hx‖2 ≤ BCmax‖x‖2, where Cmax is the maximum

value in the sensing matrix. Usually, the sensing matrix is

normalized to [0, 1] and this leads to Cmax = 1 and therefore

‖H⊤Hx‖2 ≤ B‖x‖2.

Furthermore, if the mask element Di,j is drawn from a

binary distribution with entries {0,1} with a probability of

p1 ∈ (0, 1) being 1, then ‖H⊤Hx‖2 ≤ p1B‖x‖2 with a

high probability; usually, p1 = 0.5 and thus ‖H⊤Hx‖2 ≤
0.5B‖x‖2. ‖H⊤Hx‖2 ≤ Bσ2‖x‖2 σ=1

= B‖x‖2 In the

following, we only consider the non-negative mask being

normalized to [0, 1] in practical systems.

Recall that in (4), {Di}Bi=1 is a diagonal matrix and we

denote its diagonal elements by

Di = diag(Di,1, . . . , Di,n). (14)

Thereby, in SCI, HH⊤ is diagonal matrix, i.e.

R = HH⊤ = diag(R1, . . . , Rn), (15)

where Rj =
∑B

b=1 D
2
i,j , ∀j = 1, . . . , n. We define

Rmax
def
= max(R1, . . . , Rn) = λmax(HH⊤), (16)

Rmin
def
= min(R1, . . . , Rn) = λmin(HH⊤), (17)

where λmin(·) and λmax(·) represent the minimum and max-

imum eigenvalues of the ensured matrix.

Assumption 1. We assume that {Rj}nj=1 > 0. This means

for each spatial location j, the B-frame modulation masks

at this location have at least one non-zero entries. We further

assume Rmax > Rmin.

This assumption makes senses in hardware as we expect

at least one out of the B frames is captured for each pixel

during the sensing process. Lemma 1 along with the bounded

denoiser in Definition 1 give us the following Corollary.

Corollary 1. Consider the sensing model of SCI in (2) and

further assume the elements in the sensing matrix satisfying

Assumption 1. Given {H,y}, x is solved iteratively via

PnP-ADMM with bounded denoiser, then x(k) and θ(k) will

converge to a fixed point.

Proof. See SM.

4. Plug-and-Play GAP for SCI

In this section, following the GAP algorithm [21] and the

above conditions on PnP-ADMM, we propose PnP-GAP for

SCI, which as mentioned before, has a lower computational

workload (and thus faster) than PnP-ADMM.

Algorithm 1 Plug-and-Play GAP

Require: H , y.

1: Initial v(0), λ0, ξ < 1.

2: while Not Converge do

3: Update x by Eq. (19).

4: Update v by denoiser v(k+1) = Dσk
(x(k+1)).

5: if ∆k+1 ≥ η∆k then

6: λk+1 = ξλk,

7: else

8: λk+1 = λk.

9: end if

10: end while

4.1. Algorithm

Different from the ADMM in Eq. (6), GAP solves SCI

by the following problem

(x̂, v̂) = argmin
x,v

1

2
‖x−v‖22+λg(v), s.t. y = Hx. (18)

Similarly to ADMM, the minimizer in Eq. (18) is solved

by a sequence of (now 2) subproblems and we again let k
denotes the iteration number.

• Solving x: given v, x(k+1)) is updated via an Euclidean

projection of v(k) on the linear manifold M : y = Hx,

x(k+1) = v(k) +H⊤(HH⊤)−1(y −Hv(k)), (19)

where as defined in (15), (HH⊤)−1 is fortunately a di-

agonal matrix and this has been observed and used in a

number of SCI inversion problems.

• Solving v: given x, updating v can be seen as an denois-

ing problem and

v(k+1) = Dσ(x
(k+1)). (20)

Here, various denoiser can be used with σ =
√
λ.

We can see that in each iteration, the only parameter to

be tuned is λ and we thus set λk+1 = ξkλk with ξk ≤ 1.

Inspired by the PnP-ADMM, we update λ by the following

two rules:

a) Monotone update by setting λk+1 = ξλk, with ξ < 1.

b) Adaptive update by considering the relative residue:

∆k+1 = 1√
nB

(

‖x(k+1) − x(k)‖2 + ‖v(k+1) − v(k)‖2
)

.

For any η ∈ [0, 1) and let ξ < 1 be a constant, λk is

conditionally updated according to the following settings:
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i) If ∆k+1 ≥ η∆k, then λk+1 = ξλk.

ii) If ∆k+1 < η∆k, then λk+1 = λk.

With this adaptive updating of λk, the full PnP-GAP algo-

rithm for SCI is exhibited in Algorithm 1.

4.2. Fixedpoint Convergence

In the following, we first prove the fixed point conver-

gence of PnP-GAP and then prove the global convergence

in the next subsection. From Eq. (19), we have

Hx(k+1) = Hv(k) +HH⊤(HH⊤)−1(y −Hv(k))

= Hv(k) + y −Hv(k) (21)

= y. (22)

Similarly, y = Hx(k) and this is the key property of GAP

and the main difference between GAP and ADMM.

From (19), we have

x(k+1)−x(k) = v(k)−x(k)+H⊤(HH⊤)−1(y−Hv(k)).

Following this,

‖x(k+1) − x(k)‖22
=‖v(k) +H⊤(HH⊤)−1(y −Hv(k))− x(k)‖22 (23)

=‖(I −H⊤(HH⊤)−1H)(v(k) − x(k))‖22 (24)

=‖v(k) − x(k)‖22 − ‖R− 1

2H(v(k) − x(k))‖22 (25)

≤
(

1− Rmin

Rmax

)

‖v(k) − x(k)‖22, (26)

where the last two equations following the results of Lemmas

1 and 2 in the SM. This leads to the convergence result below.

Theorem 1. Consider the sensing model of SCI in (2) and

further assume the element in the sensing matrix satisfying

Assumption 1. Given {H,y}, x is solved iteratively via

PnP-GAP with bounded denoisers, then x(k) and v(k) will

converge to a fixed point.

Proof. The full proof is in the SM and it follows Eq. (26)

and one key result is

‖θ(k+1) − θ(k)‖22 ≤ 7nBCλ0ξ
k−1, (27)

where θ(k) = (x(k),v(k)). The other steps follow the proof

of Corollary 1.

Remark 1. The above convergence result of PnP-GAP also

fits the noisy measurement. In fact, the proof is independent

of the noise. This is because the update equation of x(k)

always satisfying y = Hx(k). Consider the noisy mea-

surement, i.e., y = Hx∗ + z, where z ∈ R
n denotes the

measurement noise. Though hereby the measurement y is dif-

ferent from the noise free case, we still enforce y = Hx(k)

in each iteration.

It is worth noting that we have proved the fixed point

convergence but x(k) may not converge to the true signal

x∗. We show that this global convergence can be proved for

PnP-GAP below while it is challenging for PnP-ADMM.

4.3. Global Convergence of PlugandPlay GAP
We first make the following assumption.

Assumption 2. There is only a single true signal x∗ satisfy-

ing the measurement model y = Hx∗ in SCI.

We understand that in real cases, there might be more

than one signal satisfying y = Hx and this forward model

might be an (linear) approximation of the physical imaging

system. By using this assumption, we have the following

global convergence result of PnP-GAP.

Theorem 2. [Global convergence of PnP-GAP] Consider

the sensing model of SCI in (2) and further assume the ele-

ment in the sensing matrix satisfying Assumption 1. Consider

the true signal y = Hx∗. Given {H,y}, x̂ is solved itera-

tively via PnP-GAP with bounded denoisers. For a constant

Cg > 0 and 0 < ϕ < 1

‖x(k+1) − x∗‖2 ≤
√

1− Rmin

Rmax

‖x(k) − x∗‖2 + Cgϕ
k. (28)

Proof. Let us start from (19); we have

x(k+1) − x∗ = v(k) − x∗ +H⊤(HH⊤)−1(y −Hv(k))

= v(k) − x∗ +H⊤(HH⊤)−1H(x∗ − v(k)). (29)

Following the derivation in (25), we have

‖x(k+1) − x∗‖22 = ‖v(k) − x∗‖22 − ‖R− 1

2H(v(k) − x∗)‖22
≤

(

1− Rmin

Rmax

)

‖v(k) − x∗‖22. (30)

This is

‖x(k+1) − x∗‖2 ≤
√

1− Rmin

Rmax

‖v(k) − x∗‖2 (31)

≤
√

1− Rmin

Rmax

(

‖v(k) − x(k)‖2 + ‖x(k) − x∗‖2
)

(32)

≤
√

1− Rmin

Rmax

‖x(k) − x∗‖2 +
√

nBCσk−1(1− Rmin

Rmax

)

(33)

=
√

1− Rmin

Rmax

‖x(k) − x∗‖2 + λ0

√

nBC(1− Rmin

Rmax

)ξ
k−1

4 ,

(34)

where Eqs. (33)-(34) are from the proof of Theorem 1 in

the SM. Note that since
√

1− Rmin

Rmax

< 1 and ξ < 1 and

therefore, when k → ∞,

λ0

√

nBC(1− Rmin

Rmax

)ξ
k−1

4 → 0. (35)

In (28), we have defined

Cg = λ0

√

nBC(1− Rmin

Rmax

)ξ−
1

4 , ϕ = ξ
1

4 . (36)

The desired global convergence results follows.

Note that we have assumed Rmin < Rmax in Assump-

tion 1. Otherwise, Theorem 2 leads to ‖x(k+1) − x∗‖2 = 0.
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Theorem 3. [Stable convergence of PnP-GAP] Consider

the same conditions in Theorem 2 but now the noisy mea-

surement y = Hx∗ + z and ‖z‖2 ≤ ǫ. Given {H,y}, x̂

is solved iteratively via PnP-GAP with bounded denoisers.

For a constant Cg > 0 and 0 < ϕ < 1

‖x(k+1)−x∗‖2 ≤
√

1− Rmin

Rmax

‖x(k)−x∗‖2+Cgϕ
k+ ǫ√

Rmin

.

Proof. Different from (29), where y = Hx∗ was used, now

we have (full details in the SM)

x(k+1) − x∗ =[I −H⊤(HH⊤)−1H](x∗ − v(k))

+H⊤(HH⊤)−1z. (37)

Taking ℓ2-norm on both sides and using the results of (30)

with some derivations,

‖x(k+1) − x∗‖22 ≤ (1− Rmin

Rmax

)‖v(k) − x∗‖22 + 1
Rmin

‖z‖22.

Using the result of (34) and
√
a+ b ≤ √

a+
√
b,

‖x(k+1) − x∗‖2 ≤
√

1− Rmin

Rmax

‖x(k) − x∗‖2

+ λ0

√

nBC(1− Rmin

Rmax

)ξ
k−1

4 + ǫ√
Rmin

. (38)

The final result follows.

It is worth noting that by assuming WNNM being a

bounded denoiser, DeSCI [22], which is GAP-WNNM, is a

special case of our PnP-GAP.

4.4. PnPADMM vs. PnPGAP

Comparing PnP-GAP in Eqs (19)-(20) and PnP-ADMM

in Eqs (7)-(9), we can see that PnP-GAP only has two sub-

problems (rather than three as in PnP-ADMM) and thus the

computation is faster. It was pointed out in [22] that in the

noise-free case, ADMM and GAP perform the same and this

has been mathematically proved. However, in the noisy case,

ADMM usually performs better since it considered noise in

the model and below we give a geometrical explanation.

As shown in Fig. 3, where we used a two-dimensional

sparse signal as an example, we can see that since GAP

imposes y = Hx̂, the solution of GAP x̂ is always on the

dash-green line (due to noise, this line might be deviated

from the solid green line where the true single lies on). How-

ever, the solution of ADMM does not have this constraint but

to minimize ‖y−Hx‖22, which can be in the dash-red circle

or the yellow-dash circle depending on the initialization. In

the noise-free case, both GAP and ADMM will have a large

chance to converge to the true signal x∗. However, in the

noisy case, the Euclidean distance between GAP solution

and the true signal (‖x̂ − x∗‖2) might be larger than that

of ADMM. Again, the final solution of ADMM depends on

the initialization and it is not guaranteed to be more accurate

than that of GAP.

Figure 3. Demonstration of the solution of ADMM (within the dash-

red circle or dash-yellow circle depending on the initialization) and

GAP (x̂) under the noisy case. The difference is that the solution

of GAP always lies on y = Hx̂.

5. Integrate Various Denoisers into PnP for

SCI Reconstruction

It can be seen from Eq. (28) in Theorem 2 that the re-

construction error term depends on Cgϕ
k, and from (35),

we observe that while {n,B,Rmin, Rmax} are fixed, and

{λ0, ξ} are pre-set or tuned, only C depends on the bounded

denoising algorithm. In other words, a better denoiser with

a smaller C can provide a reconstruction result closer to

the true signal. Various denoising algorithms exist for dif-

ferent tasks based on speed and quality. Usually, a faster

denoiser e.g., TV, is very efficient, but cannot provide high-

quality results. The middle class algorithms e.g., BM3D [10]

can provide decent results with a longer running time. More

advanced denoising algorithm, e.g., WNNM [14, 13] can

provide better results [22], but even slower. Another line

of emerging denoising approaches is based on deep learn-

ing [48, 73], which can provide decent results within a short

time after training, but they are usually not robust to noise

levels and in high noisy cases, the results are not good. Dif-

ferent from conventional denoising problems, in SCI recon-

struction, the noise level in each iteration is usually from

large to small and the dynamic range can from 150 to 1, con-

sidering the pixel values within {0, 1, . . . , 255}. Fortunately,

FFDNet [74] has provided us a fast and flexible solution

under various noise levels.

By integrating these denoising algorithms into PnP-

GAP/ADMM, we can have different algorithms (Table 1

and Fig. 2) with different results. It is worth noting that

DeSCI can be seen as PnP-WNNM, and its best results are

achieved by exploiting the correlation across different video

frames. On the other hand, most existing deep denoising

priors are still based on images. Therefore, it is expected that

the results of PnP-GAP/ADMM-FFDNet are not as good

as DeSCI. We anticipate that with the advances of deep de-

noising priors, better video denoising method will boost the

our PnP-based SCI reconstruction results. In addition, these

different denoisers can be used in parallel, i.e., one after

each other in one GAP/ADMM iteration or used sequen-

tially, i.e., the first K1 iterations using FFDNet and the next

K2 iterations using WNNM to achieve better results.
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Table 1. The average results of PSNR in dB (left entry in each cell) and SSIM (right entry in each cell) and run time per measurement/shot in

minutes by different algorithms on 6 benchmark datasets.
Algorithm Kobe Traffic Runner Drop Crash Aerial Average Run time (min)

GAP-TV 26.46, 0.8848 20.89, 0.7148 28.52, 0.9092 34.63, 0.9704 24.82, 0.8383 25.05, 0.8281 26.73, 0.8576 0.07

DeSCI (GAP-WNNM) 33.25, 0.9518 28.71, 0.9250 38.48, 0.9693 43.10, 0.9925 27.04, 0.9094 25.33, 0.8603 32.65, 0.9347 103.0

PnP-VBM4D 30.60, 0.9260 26.60, 0.8958 30.10, 0.9271 26.58, 0.8777 25.30, 0.8502 26.89, 0.8521 27.68, 0.8882 7.9

PnP-FFDNet 30.50, 0.9256 24.18, 0.8279 32.15, 0.9332 40.70, 0.9892 25.42, 0.8493 25.27, 0.8291 29.70, 0.8924 0.05 (GPU)

PnP-WNNM-TV 33.00, 0.9520 26.76, 0.9035 38.00, 0.9690 43.27, 0.9927 26.25, 0.8972 25.53, 0.8595 32.14, 0.9290 40.8

PnP-WNNM-VBM4D 33.08, 0.9537 28.05, 0.9191 33.73, 0.9632 28.82, 0.9289 26.56, 0.8874 27.74, 0.8852 29.66, 0.9229 25.0

PnP-WNNM-FFDNet 32.54, 0.9511 26.00, 0.8861 36.31, 0.9664 43.45, 0.9930 26.21, 0.8930 25.83, 0.8618 31.72, 0.9252 17.9

PnP-FFDNetDeSCI (GAP-WNNM)Ground truth

Kobe
#4

GAP-TV PnP-WNNM-FFDNet

Traffic
#6

Runner
#8

Drop
#3

Crash
#25

Aerial
#12

Figure 4. Reconstructed frames of PnP-GAP algorithms (GAP-TV,

PnP-FFDNet, DeSCI (GAP-WNNM), PnP-WNNM-FFDNet) on

six simulated benchmark video SCI datasets.

6. Results

We applied the proposed PnP algorithms to both simu-

lation [22, 26] and real datasets captured by the SCI cam-

eras [23, 60]. Conventional denoising algorithms include

TV [53], VBM4D [27] and WNNM [14] are used. For the

deep learning based denoiser, we have tried various algo-

rithms and found that FFDNet [74] provides the best results.

Simulation: Benchmark Data We follow the simulation

setup in [22] using the six datasets, i.e., Kobe, Traffic,

Runner, Drop, crash, and aerial [26], where

B = 8 video frames are compressed into a single mea-

surement. Table 1 summarizes the PSNR and SSIM [47]

results of these 6 benchmark data using various denois-

ing algorithms, where DeSCI can be categorized as GAP-

WNNM, and PnP-WNNM-FFDNet used 50 iterations FFD-

Net and then 60 iterations WNNM, similar for GAP-WNNM-

VBM4D. It can be observed that: i) By using GPU, PnP-

FFDNet is now the fastest algorithm1; it is even faster than

GAP-TV, meanwhile providing about 3dB higher PSNR than

GAP-TV. Therefore, PnP-FFDNet can be used as an efficient

baseline in SCI reconstruction. Since the average PSNR is

close to 30dB, it is applicable in real cases. This will be

further verified in the following subsection on large-scale

datasets. ii) DeSCI still provides the best results on average;

however, by combing other algorithms with WNNM, com-

parable results (e.g. PnP-WNNM-FFDNet) can be achieved

by only using 1/6 computational time. Fig. 4 plots selected

frames of the six datasets using different algorithms. It can

be seen that though GAP-WNNM still leads to best results,

the difference between PnP-FFDNet and DeSCI is very small

and in most cases, they are close to each other.

Simulation: Large-scale Data We hereby show the re-

sults of large-scale data results in Fig. 5, where all videos

(in SM) are reconstructed from a snapshot with sizes from

1920× 1080× 24 to 3840× 1644× 48. It is worth noting

that only GAP-TV and PnP-FFDNet can be used as all other

algorithms are too slow (more than 10 hours) to run2. In

general, PnP-FFDNet provides more than 4dB higher PSNR

than GAP-TV. Please pay attention to the details recovered

by PnP-FFDNet. These results along with the high speed

can lead to real applications of SCI in our daily life videos.

Real Data Lastly, we apply the proposed PnP framework

to real data captured by SCI cameras to verify the robustness

of the algorithms. Figs. 6-7 show the results of different com-

pression ratios and different sizes. It can be observed that in

most cases, PnP-FFDNet can provide comparable or even

better (chopper wheel) results than DeSCI but again

with a significant saving on computational time. The run-

ning time of these data using different algorithms is shown in

Table 2, where we can see that PnP-FFDNet provides results

around 12 seconds even for a 512 × 512 × 22 large-scale

video.

1Only a regular GPU is needed to run FFDNet and since FFDNet is

performed in a frame-wise manner, we do not need a large amount of CPU

or GPU RAM (no more than 2GB here) compared to other video denoisers

using parallization (even with parallelization, other algorithms listed here

are unlikely to outperform PnP-FFDNet in terms of speed).
2These large-scale datasets are of different sizes and different compres-

sion rates. From the speed perspective, it might be able to train (big and

deep) networks for each of them. But this will need a significant amount

of computational resources (GPUs with large memory) and training data

and time. By contrast, our PnP-FFDNet provides a good trade-off of speed,

accuracy and flexibility, since we don’t need to re-train the model.
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#17/24 21.27 dB, 0.8019 29.67 dB, 0.9368

Ground truth GAP-TVSnapshot measurement PnP-FFDNet

Messi color (1920×1080×24)

#35/40 26.21 dB, 0.7521 30.05 dB, 0.8924Hummingbird color (1920×1080×40)

Swinger color (3840×2160×20) #16/20 25.45 dB, 0.8543 30.43 dB, 0.9181

Football color (3840×1644×48) #36/48 25.45 dB, 0.8454 32.60 dB, 0.9260

Figure 5. Reconstructed frames of PnP-GAP algorithms (GAP-TV and PnP-FFDNet) on four simulated large-scale video SCI datasets.
DeSCI PnP-FFDNetGAP-TV

#2

#5

#11

PnP-WNNM-FFDNet

Coded frame
(256×256×14)

Figure 6. Real data: chopper wheel (256× 256× 14).
#3 #6 #9 #12 #15 #18 #21

#3 #6 #9 #12 #15 #18 #21

#3 #6 #9 #12 #15 #18 #21

#3 #6 #9 #12 #15 #18 #21

#3 #6 #9 #12 #15 #18 #21

Coded frame
(512×512×22)

(a) GAP-wavelet [Yuan X. et al. CVPR'14]

(b) GAP-TV

(c) DeSCI

(d) PnP-FFDNet

(e) PnP-WNNM-FFDNet

(a)

(b)

(c)

(d)

(e)

Figure 7. Real data: hammer color video SCI (512× 512× 22).

Table 2. Running time (second) of real data using different algo-

rithms. Visual results of labs and UCF are shown in the SM.

Real dataset Pixel resolution GAP-TV DeSCI PnP-FFDNet PnP-WNNM-FFDNet

chopperwheel 256× 256× 14 11.6 3185.8 2.7 1754.7

labs 484× 248× 10 36.9 6471.3 4.5 3226.5

hammer color 512× 512× 22 94.5 4791.0 12.6 1619.4

UCF 1100× 850× 10 300.8 2938.8* 12.5 1504.5*

* WNNM is performed in a frame-wise manner for large-scale datasets.

7. Conclusions
We proposed plug-and-play algorithms for the reconstruc-

tion of snapshot compressive video imaging systems. By

integrating deep denoisers into the PnP framework, we not

only get excellent results on both simulation and real datasets,

but also provide reconstruction in a short time with sufficient

flexibility. Convergence results of PnP-GAP are proved and

we first time show that SCI can be used in large-scale (HD,

FHD and UHD) daily life videos. This paves the way of

practical applications of SCI.

Regarding the future work, one direction is to train a

better video (rather than image) denoising network and ap-

ply it to the proposed PnP framework to further improve

the reconstruction results. The other direction is to build a

real large-scale video SCI system to be used in advanced

cameras [4].
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