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Abstract

Snapshot compressive imaging (SCI) aims to capture the

high-dimensional (usually 3D) images using a 2D sensor

(detector) in a single snapshot. Though enjoying the advan-

tages of low-bandwidth, low-power and low-cost, applying

SCI to large-scale problems (HD or UHD videos) in our

daily life is still challenging. The bottleneck lies in the recon-

struction algorithms; they are either too slow (iterative opti-

mization algorithms) or not flexible to the encoding process

(deep learning based end-to-end networks). In this paper,

we develop fast and flexible algorithms for SCI based on the

plug-and-play (PnP) framework. In addition to the widely

used PnP-ADMM method, we further propose the PnP-GAP

(generalized alternating projection) algorithm with a lower

computational workload and prove the global convergence

of PnP-GAP under the SCI hardware constraints. By em-

ploying deep denoising priors, we first time show that PnP

can recover a UHD color video (3840 × 1644 × 48 with

PNSR above 30dB) from a snapshot 2D measurement. Ex-

tensive results on both simulation and real datasets verify

the superiority of our proposed algorithm.

1. Introduction

Computational imaging [1, 31] constructively combines

optics, electronics and algorithms for optimized perfor-

mance [4, 6, 32] or to provide new abilities [5, 25, 35, 43]

to imaging systems. One important branch of compu-

tational imaging with promising applications is snapshot

compressive imaging (SCI) [23, 45], which utilized a two-

dimensional (2D) camera to capture 3D video or spectral

data. Different from conventional cameras, such imaging

systems adopt sampling on a set of consecutive images–

video frames (e.g., CACTI [23, 60]) or spectral channels

(e.g., CASSI [46])–in accordance with the sensing matrix

and integrating these sampled signals along time or spec-

trum to obtain the final compressed measurements. With

this technique, SCI systems [12, 15, 36, 42, 45, 46, 60] can

capture the high-speed motion [40, 41, 61, 62, 68, 70] and

high-resolution spectral information [28, 69, 37] but with

low memory, low bandwidth, low power and potentially low

cost. In this work, we focus on video SCI reconstruction.

In parallel to the hardware development, various algo-

rithms have been employed and developed for SCI recon-

struction. In addition to the widely used TwIST [2], Gaus-

sian Mixture Model (GMM) in [49, 50] based algorithms

model the pixels within a spatial-temporal patch by a GMM.

GAP-TV [53] adopts the idea of total variance minimiza-

tion under the generalized alternating projection (GAP) [21]

framework. Most recently, DeSCI proposed in [22] has led

to state-of-the-art results. However, the slow speed of De-

SCI precludes its real applications, especially to the HD

(1280× 720), FHD (1920× 1080) or UHD (3840× 1644 in

Fig. 1 and 3840× 2160 in Fig. 5) videos, which are getting

popular in our daily life. Recall that DeSCI needs more

than one hour to reconstruct a 256× 256× 8 video from a

snapshot measurement. GAP-TV, by contrast, as a fast algo-

rithm, cannot provide good reconstruction to be used in real

applications (in general, this needs the PSNR≥ 30dB). An

alternative solution is to train an end-to-end network [26, 34]

to reconstruct the videos for the SCI system. On one hand,

this approach can finish the task within seconds and by ap-

propriate design of multiple GPUs, an end-to-end sampling

and reconstruction framework can be built. On the other

hand, this method loses the robustness of the network since

whenever the sensing matrix (encoding process) changes, a

new network has to be re-trained. Moreover, it cannot be

readily used in adaptive sensing [70].

Therefore, it is desirable to devise an efficient and flexible

algorithm for SCI reconstruction, especially for large-scale

problems. This will pave the way of applying SCI in our

daily life. In order to solve the trilemma of speed, accuracy

and flexibility for SCI reconstruction, this paper makes the

following contributions:

• Inspired by the plug-and-play (PnP) alternating direction

method of multiplier (ADMM) [9] framework, we extend

PnP-ADMM to SCI and show that PnP-ADMM converges

to a fixed point by considering the hardware constraints

and the special structure of the sensing matrix [18] in SCI.
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Figure 1. Sensing process of video SCI (left) and the reconstruction results using the proposed PnP-FFDNet (bottom-right). The captured

image (middle-top) size is UHD (3840 × 1644 ) and 48 frames are recovered from a snapshot measurement. GAP-TV (top-right) takes

180 mins and PnP-FFDNet takes 55 mins for the reconstruction. All other methods are too slow (more than 12 hours) to be used.

• We propose an efficient PnP-GAP algorithm by using var-

ious bounded denoisers (Fig. 2) into the GAP [21], which

has a lower computational workload than PnP-ADMM. In

addition to the fixed point convergence, we further prove

that, under proper assumptions, the solution of PnP-GAP

will converge to the true signal. To our best knowledge,

this is the first global convergence results for SCI and this

also holds under the additive white Gaussian noise.

• By integrating the deep image denoiser, e.g., the fast and

flexible FFDNet [74] into PnP-GAP, we show that a FHD

video (1920× 1080× 24) can be recovered from a snap-

shot measurement (Fig. 5) within 2 minutes with PSNR

close to 30dB using a single GPU plus a normal computer.

Compared with an end-to-end network [26], dramatic re-

sources have been saved (no re-training is required). This

further makes the UHD compression using SCI to be feasi-

ble (a 3840×1644×48 video is reconstructed with PSNR

above 30dB in Fig. 1). To our best knowledge, this is the

first time that SCI is used in these large-scale problems.

• We apply our developed PnP algorithms to extensive sim-

ulation and real datasets (captured by real SCI cameras)

to verify the efficiency and robustness of our proposed

algorithms. We show that the proposed algorithm can

obtain results on-par with DeSCI but with a significant

reduction of computational time.

The rest of this paper is organized as follows. Sec. 2 re-

views the mathematical model of video SCI. Sec. 3 develops

the PnP-ADMM under the SCI hardware constraints and

shows that PnP-ADMM converges to a fixed point. Sec. 4

develops the PnP-GAP algorithm and proves its global con-

vergence. Sec. 5 integrates various denoisers into to the PnP

framework for SCI reconstruction. Extensive results of both

(benchmark and large-scale) simulation and real data are

presented in Sec. 6 and Sec. 7 concludes the paper.
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Figure 2. Trade-off of quality and speed of various plug-and-play

denoising algorithms for SCI reconstruction.

Related Work SCI systems have been developed to cap-

ture 3D spectral images [8, 37, 69], videos [15, 33, 23, 25,

36, 40, 41, 43, 60, 67], high dynamic range [52], depth [24,

58, 66] and polarization [44] images, etc. From the algorithm

side, in addition to sparsity [55, 65, 57, 59, 63, 54, 75, 71, 72]

based algorithms, GMM [49, 50, 56] and GAP-TV [53] have

been proposed. As mentioned above, DeSCI [22] has led to

state-of-the-art results.Inspired by deep learning on image

restoration [73], researchers have started using deep learn-

ing in computational imaging [16, 19, 20, 30, 39, 29, 64].

Some networks have been proposed for SCI reconstruc-

tion [26, 28, 34, 51]. Different from these methods, in

this work, we integrate various denoisers into PnP frame-

work [9, 38] for SCI reconstruction, thus to provide efficient

and flexible algorithms for SCI. Our PnP algorithms can not

only provide excellent results but also are robust to different

coding process and thus can be used in adaptive sensing.
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