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Abstract

Visual perception entails solving a wide set of tasks, e.g.,

object detection, depth estimation, etc. The predictions made

for multiple tasks from the same image are not independent,

and therefore, are expected to be ‘consistent’. We propose a

broadly applicable and fully computational method for aug-

menting learning with Cross-Task Consistency.1 The pro-

posed formulation is based on inference-path invariance

over a graph of arbitrary tasks. We observe that learning

with cross-task consistency leads to more accurate predic-

tions and better generalization to out-of-distribution inputs.

This framework also leads to an informative unsupervised

quantity, called Consistency Energy, based on measuring

the intrinsic consistency of the system. Consistency En-

ergy correlates well with the supervised error (r=0.67),

thus it can be employed as an unsupervised confidence

metric as well as for detection of out-of-distribution inputs

(ROC-AUC=0.95). The evaluations are performed on multi-

ple datasets, including Taskonomy, Replica, CocoDoom, and

ApolloScape, and they benchmark cross-task consistency

versus various baselines including conventional multi-task

learning, cycle consistency, and analytical consistency.

1. Introduction

What is consistency: suppose an object detector detects a
ball in a particular region of an image, while a depth estima-
tor returns a flat surface for the same region. This presents
an issue – at least one of them has to be wrong, because they
are inconsistent. More concretely, the first prediction domain
(objects) and the second prediction domain (depth) are not
independent and consequently enforce some constraints on
each other, often referred to as consistency constraints.

Why is it important to incorporate consistency in learn-
ing: first, desired learning tasks are usually predictions of
different aspects of one underlying reality (the scene that
underlies an image). Hence inconsistency among predictions

1Abbreviated X-TC, standing for Cross-Task Consistency.
*Equal.
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Figure 1: Cross-Task Consistent Learning. The predictions made
for different tasks out of one image are expected to be consistent, as the
underlying scene is the same. This is exemplified by a challenging query
and four sample predictions out of it. We propose a general method for
learning utilizing data-driven cross-task consistency constraints. The lower
and upper rows show the results of the baseline (independent learning) and
learning with consistency, which yields higher quality and more consistent
predictions. Red boxes provide magnifications. [Best seen on screen]

implies contradiction and is inherently undesirable. Second,
consistency constraints are informative and can be used to
better fit the data or lower the sample complexity. Also,
they may reduce the tendency of neural networks to learn
“surface statistics” (superficial cues) [18], by enforcing con-
straints rooted in different physical or geometric rules. This
is empirically supported by the improved generalization of
models when trained with consistency constraints (Sec. 5).

How can we design a learning system that makes consis-
tent predictions: this paper proposes a method which, given
an arbitrary dictionary of tasks, augments the learning ob-
jective with explicit constraints for cross-task consistency.
The constraints are learned from data rather than apriori
given relationships.2 This makes the method applicable to
any pairs of tasks as long as they are not statistically inde-
pendent; even if their analytical relationship is unknown,

hard to program, or non-differentiable. The primary con-
cept behind the method is ‘inference-path invariance’. That

2For instance, it is not necessary to encode that surface normals are the
3D derivative of depth or occlusion edges are discontinuities in depth.
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is, the result of inferring an output domain from an input
domain should be the same, regardless of the intermediate
domains mediating the inference (e.g., RGB�normals and
RGB�depth�normals and RGB�shading�normals are ex-
pected to yield the same normal results). When inference
paths with the same endpoints, but different intermediate
domains, yield similar results, this implies the intermediate
domain predictions did not conflict as far as the output was
concerned. We apply this concept over paths in a graph of
tasks, where the nodes and edges are prediction domains
and neural network mappings between them, respectively
(Fig. 2(d)). Satisfying this invariance constraint over all

paths in the graph ensures the predictions for all domains are
in global cross-task agreement.3

To make the associated large optimization job manage-
able, we reduce the problem to a ‘separable’ one, devise a
tractable training schedule, and use a ‘perceptual loss’ based
formulation. The last enables mitigating residual errors in
networks and potential ill-posed/one-to-many mappings be-
tween domains (Sec. 3).

Interactive visualizations, trained models, code, and a live
demo are available at http://consistency.epfl.ch/.

2. Related Work

The concept of consistency and methods for enforcing it
are related to various topics, including structured prediction,
graphical models [22], functional maps [30], and certain
topics in vector calculus and differential topology [10]. We
review the most relevant ones in context of computer vision.

Utilizing consistency: Various consistency constraints
have been commonly found beneficial across different fields,
e.g., in language as ‘back-translation’ [2, 1, 25, 7] or in
vision over the temporal domain [41, 6], 3D geometry [9, 32,
8, 13, 49, 46, 15, 44, 51, 48, 23, 5], and in recognition and
(conditional/unconditional) image translation [12, 28, 17, 50,
14, 4]. In computer vision, consistency has been extensively
utilized in the cycle form and often between two or few
domains [50, 14]. In contrast, we consider consistency in
the more general form of arbitrary paths with varied-lengths
over a large task set, rather than the special cases of short
cyclic paths. Also, the proposed approach needs no prior

explicit knowledge about task relationships [32, 23, 44, 51].
Multi-task learning: In the most conventional form,

multi-task learning predicts multiple output domains out
of a shared encoder/representation for an input. It has
been speculated that the predictions of a multi-task net-
work may be automatically cross-task consistent as the rep-
resentation from which the predictions are made are shared.
This has been observed to not be necessarily true in several

3inference-path invariance was inspired by Conservative Vector Fields

in vector calculus and physics that are (at a high level) fields in which
integration along different paths yield the same results, as long as their

endpoints are the same [10]. Many key concepts in physics are ‘conserva-
tive’, e.g., gravitational force: the work done against gravity when moving
between two points is independent of the path taken.
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Figure 2: Enforcing Cross-Task Consistency: (a) shows the typical
multitask setup where predictions X�Y1 and X�Y2 are trained without
a notation of consistency. (b) depicts the elementary triangle consistency

constraint where the prediction X�Y1 is enforced to be consistent with
X�Y2 using a function that relates Y1 to Y2 (i.e. Y1�Y2). (c) shows how
the triangle unit from (b) can be an element of a larger system of domains.
Finally, (d) illustrates the generalized case where in the larger system of
domains, consistency can be enforced using invariance along arbitrary paths,
as long as their endpoints are the same (here the blue and green paths). This
is the general concept behind inference-path invariance. The triangle in (b)
is the smallest unit of such paths.

works [21, 47, 43, 38], as consistency is not directly enforced
during training. We also make the same observation (see
visuals here) and quantify it (see Fig. 9(a)), which signifies
the need for explicit augmentation of consistency in learning.

Transfer learning predicts the output of a target task
given another task’s solution as a source. The predictions
made using transfer learning are sometimes assumed to be
cross-task consistent, which is often found to not be the
case [45, 36], as transfer learning does not have a specific
mechanism to impose consistency by default. Unlike ba-
sic multi-task learning and transfer learning, the proposed
method includes explicit mechanisms for learning with gen-
eral data-driven consistency constraints.

Uncertainty metrics: Among the existing approaches
to measuring prediction uncertainty, the proposed Consis-
tency Energy (Sec. 4) is most related to Ensemble Averag-
ing [24], with the key difference that the estimations in our
ensemble are from different cues/paths, rather than retrain-
ing/reevaluating the same network with different random ini-
tializations or parameters. Using multiple cues is expected to
make the ensemble more effective at capturing uncertainty.

3. Method
We define the problem as follows: suppose X denotes

the query domain (e.g., RGB images) and Y={Y1,..., Yn}
is the set of n desired prediction domains (e.g. normals,
depth, objects, etc). An individual datapoint from domains
(X , Y1,..., Yn) is denoted by (x, y1,..., yn). The goal is to
learn functions that map the query domain onto the predic-
tion domains, i.e. FX={fXYj

|Yj∈Y} where fXYj
(x) out-

puts yj given x. We also define FY={fYiYj
|Yi, Yj∈Y, i 6=j},

which is the set of ‘cross-task’ functions that map the predic-
tion domains onto each other; we use them in the consistency
constraints. For now assume FY is given apriori and frozen;
in Sec. 3.3 we discuss all functions fs are neural networks
in this paper, and we learn FY just like FX .

3.1. Triangle: The Elementary Consistency Unit

A common way of training neural networks in FX , e.g.
fXY1

(x), is to find parameters of fXY1
that minimize a loss

of the form |fXY1
(x)-y1| using a common distance function
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Figure 3: Impact of disregarding cross-task consistency in learning, illustrated using surface normals domain. Each subfigure shows the results of
predicting surface normals out of the prediction of an intermediate domain; using the notation X�Y1�Y2, here X is RGB image, Y2 is surface normals, and
each column represents a different Y1. The upper row demonstrates the normals are noisy and dissimilar when cross-task consistency is not incorporated in
learning of X�Y1 networks. Whereas enforcing consistency when learning X�Y1 results in more consistent and better normals (the lower row). We will
show this causes the predictions for the intermediate domains themselves to be more accurate and consistent. More examples available in supplementary
material. The Consistency Energy (Sec. 4) captures the variance among predictions in each row.

as |.|, e.g. ℓ1 norm. This standard independent learning of
fXYi

s satisfies various desirable properties, including cross-
task consistency, if given infinite amount of data, but not
under the practical finite data regime. This is shown in Fig. 3
(upper). Thus we introduce additional constraints to guide
the training toward cross-task consistency. We define the loss
for predicting domain Y1 from X while enforcing consistency

with domain Y2 as a directed triangle depicted in Fig. 2(b):

Ltriangle

XY1Y2,|fXY1
(x)-y1|+|fY1Y2

◦fXY1
(x)-fXY2

(x)|+|fXY2
(x)-y2|.

(1)
The first and last terms are the standard direct losses for train-
ing fXY1

and fXY2
. The middle term is the consistency term

which enforces predicting Y2 out of the predicted Y1 yields
the same result as directly predicting Y2 out of X4. Thus
learning to predict Y1 and Y2 are not independent anymore.

The triangle loss 1 is the smallest unit of enforcing cross-
task consistency. Below we make two improving modifica-
tions on it via function ‘separability’ and ‘perceptual losses’.

3.1.1 Separability of Optimization Parameters

The loss Ltriangle

XY1Y2
involves simultaneous training of two net-

works fXY1 and fXY2 , thus it is resource demanding. We
show Ltriangle

XY1Y2
can be reduced to a ‘separable’ function [39]

resulting in two terms that can be optimized independently.
From triangle inequality we can derive:

|fY1Y2◦fXY1(x)-fXY2(x)|≤|fY1Y2◦fXY1(x)-y2|+|fXY2(x)-y2|,

which after substitution in Eq. 1 yields:

Ltriangle

XY1Y2
≤|fXY1

(x)-y1|+|fY1Y2
◦fXY1

(x)-y2|+2|fXY2
(x)-y2|.

(2)
The upper bound for Ltriangle

XY1Y2
in inequality 2 can be opti-

mized in lieu of Ltriangle

XY1Y2
itself, as they both have the same

minimizer.5 The terms of this bound include either fXY1

4Operator ◦ denotes function composition: g◦h(x),g(h(x)).
5Both sides of inequality 2 are ≥0 and =0 for the minimizer

fXY1 (x)=y1 & fXY2 (x)=y2.

or fXY2
, but not both, hence we now have a loss separable

into functions of fXY1
or fXY2

, and they can be optimized
independently. The part pertinent to the network fXY1

is:

Lseparate

XY1Y2,|fXY1(x)− y1|+ |fY1Y2◦fXY1(x)− y2|, (3)

named separate, as we reduced the closed triangle objective

X

Y1
△Y2

in Eq. 1 to two equivalent separate path objectives
X�Y1�Y2 and X�Y2. The first term of Eq. 3 enforces the
general correctness of predicting Y1, and the second term
enforces its consistency with Y2 domain.

3.1.2 Reconfiguration into a “Perceptual Loss”

Training fXY1 using the loss Lseparate

XY1Y2
requires a train-

ing dataset with multi domain annotations for one input:
(x, y1, y2). It also relies on availability of a perfect function
fY1Y2 for mapping Y1 onto Y2; i.e. it demands y2=fY1Y2(y1).
We show how these two requirements can be reduced.

Again, from triangle inequality we can derive:

|fY1Y2
◦fXY1

(x)− y2|≤|fY1Y2
◦fXY1

(x)− fY1Y2
(y1)|+

|fY1Y2
(y1)− y2|, (4)

which after substitution in Eq. 3 yields:

Lseparate

XY1Y2
≤|fXY1(x)− y1|+ |fY1Y2◦fXY1(x)− fY1Y2(y1)|+

|fY1Y2
(y1)− y2|. (5)

Similar to the discussion for inequality 2, the upper bound
in inequality 5 can be optimized in lieu of Lseparate

XY1Y2
as both

have the same minimizer.6 As the last term is a constant w.r.t.
fXY1

, the final loss for training fXY1
is:

Lperceptual

XY1Y2,|fXY1(x)−y1|+|fY1Y2◦fXY1(x)−fY1Y2(y1)|. (6)

6Both sides of inequality 5 are ≥0 and =0 for the minimizer
fXY1 (x)=y1. The term |fY1Y2 (y1) − y2| is a constant and ∼0, as it
is exactly the training objective of fY1Y2 . The non-zero residual should
be ignored and assumed 0 as the non-zero part is irrelevant to fXY1 , but
imperfections of fY1Y2 .
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Figure 4: Learning with and without cross-task consistency shown for a sample query. Using the notation X�Y1�Y , here X is RGB image, Y1 is
surface normals, and five domains in Y are reshading, 3D curvature, texture edges (Sobel filter), depth, and occlusion edges.
Top row shows the results of standard training of X�Y1. After convergence of training, the predicted normals (Y1) are projected onto other domains (Y )
which reveals various inaccuracies. This demonstrates such cross-task projections Y1�Y can provide additional cues to training X�Y1.
Middle row shows the results of consistent training of X�Y1 by leveraging Y1�Y in the loss. The predicted normals are notably improved, especially in
hard to predict fine-grained details (zoom into the yellow markers. Best seen on screen).
Bottom row provides the ground truth. See video examples at visualizations webpage.

This term Lperceptual

XY1Y2
no longer includes y2, hence it admits pair

training data (x, y1) rather than triplets (x, y1, y2). Compar-
ing Lperceptual

XY1Y2
and Lseparate

XY1Y2
shows the modification boiled down

to replacing y2 with fY1Y2
(y1). This makes intuitive sense

too, as y2 is the match of y1 in the Y2 domain.
Ill-posed tasks and imperfect networks: If fY1Y2

is
a noisy estimator, then fY1Y2

(y1)=y2+noise rather than
fY1Y2

(y1)=y2. Using a noisy fY1Y2
in Lseparate

XY1Y2
corrupts

the training of fXY1
since the second loss term does not

reach 0 if fXY1
(x) correctly outputs y1. That is in con-

trast to Lperceptual

XY1Y2
where both terms have the same global min-

imum and are always 0 if fXY1(x) outputs y1 – even when
fY1Y2(y1)=y2+noise. This is crucial since neural networks
are almost never perfect estimators, e.g. due to lacking an
optimal training process for them or potential ill-posedness
of the task y1�y2. Further discussion and experiments are
available in supplementary material.

Perceptual Loss: The process that led to Eq. 6 can be
generally seen as using the loss |g◦f(x)−g(y)| instead of
|f(x)−y|. The latter compares f(x) and y in their explicit
space, while the former compares them via the lens of func-
tion g. This is often referred to as “perceptual loss” in super-
resolution and style transfer literature [19]–where two im-
ages are compared in the representation space of a network
pretrained on ImageNet, rather than in pixel space. Similarly,
the consistency constraint between the domains Y1 and Y2
in Eq. 6 (second term) can be viewed as judging the predic-
tion fXY1

(x) against y1 via the lens of the network fY1Y2
;

here fY1Y2
is a “perceptual loss” for training fXY1

. How-
ever, unlike the ImageNet-based perceptual loss [19], this
function has the specific and interpretable job of enforcing
consistency with another task. We also use multiple fY1Yi

s

(a) (b) (c) (d)

f 

Y1Y2
(y 1) f 

Y1Y3
(y 1)

f 

Y1Y2
(y 1)

f 

Y1Yn
(y 1)

…

x

y 1

y 2

x y 1 y 2 x y 1x y 1

Figure 5: Schematic summary of derived losses for fXY1 .(a): Ltriangle

XY1Y2

(Eq.1). (b): Lseparate

XY1Y2
(Eq.3). (c): Lperceptual

XY1Y2
(Eq.6). (d): Lperceptual

XY1Y
(Eq.7).

simultaneously which enforces consistency of predicting Y1
against multiple other domains (Sections 3.2 and 3.3).

3.2. Consistency of fXY1
with ‘Multiple’ Domains

The derived Lperceptual

XY1Y2
loss augments learning of fXY1

with
a consistency constraint against one domain Y2. Straightfor-
ward extension of the same derivation to enforcing consis-
tency of fXY1

against multiple other domains (i.e. when fXY1

is part of multiple simultaneous triangles) yields:

Lperceptual

XY1Y ,|Y |×|fXY1
(x)-y1|+

∑

Yi∈Y

|fY1Yi
◦fXY1

(x)-fY1Yi
(y1)|, (7)

where Y is the set of domains with which fXY1
must be con-

sistent, and |Y | is the cardinality of Y . Notice that Lperceptual

XY1Y2
is

a special case of Lperceptual

XY1Y
where Y={Y2}. Fig. 5 summarizes

the derivation of losses for fXY1
.

Fig. 4 shows qualitative results of learning fXY1
with and

without cross-task consistency for a sample query.

3.3. Beyond Triangles: Globally Consistent Graphs

The discussion so far has provided losses for the cross-
task consistent training of one function fXY1

with elementary
triangle based units. We also assumed the functions FY were
given apriori. The more general multi-task setup is: given a
large set of domains, we are interested in learning functions
that map the domains onto each other in a globally cross-task
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consistent manner. This objective can be formulated using a
graph G=(D,F) with nodes representing all of the domains
D=(X ∪ Y) and edges being neural networks between them
F=(FX ∪ FY); see Fig.2(c).

Extension to Arbitrary Paths: The transition from three
domains to a large graph G enables forming more general
consistency constraints using arbitrary-paths. That is, two
paths with same endpoint should yield the same results –
an example is shown in Fig.2(d). The triangle constraint
in Fig.2(b,c) is a special and elementary case of the more
general constraint in Fig.2(d), if paths with lengths 1 and
2 are picked for the green and blue paths. Extending the
derivations done for a triangle in Sec. 3.1 to paths yields:

Lperceptual

XY1Y2...Yk
= |fXY1

(x)−y1|+

|fYk−1Yk
◦...◦fY1Y2◦fXY1(x)−fYk−1Yk

◦...◦fY1Y2(y1)|, (8)

which is the loss for training fXY1
using the arbitrary consis-

tency path X�Y1�Y2...�Yk with length k (full derivation
provided in supplementary material). Notice that Eq. 6 is
a special case of Eq. 8 if k=2. Equation 8 is particularly
useful for incomplete graphs; if the function Y1�Yk is miss-
ing, consistency between domains Y1 and Yk can still be
enforced via transitivity through other domains using Eq. 8.

Also, extending Eq. 8 to multiple simultaneous paths (as
in Eq. 7) by summing the path constraints is straightforward.

Global Consistency Objective: We define reaching
global cross-task consistency for graph G as satisfying
the consistency constraint for all feasible paths in G. We
can write the global consistency objective for G as LG =∑

p∈P Lperceptual

p , where p represents a path and P is the set of
all feasible paths in G.

Optimizing the objective LG directly is intractable as it
would require simultaneous training of all networks in F
with a massive number of consistency paths7. In Alg.1 we de-
vise a straightforward training schedule for an approximate
optimization of LG . This problem is similar to inference in
graphical models, where one is interested in marginal distri-
bution of unobserved nodes given some observed nodes by
passing “messages” between them through the graph until
convergence. As exact inference is usually intractable for
unconstrained graphs, often an approximate message passing
algorithm with various heuristics is used.

Algorithm 1 selects one network fij∈F to be trained,
selects consistency path(s) p∈P for it, and trains fij with
p for a fixed number of steps using loss 8 (or its multi path
version if multiple paths selected). This is repeated until all
networks in F satisfy a convergence criterion.

A number of choices for the selection criterion in Select-

Network and SelectPath is possible, including round-robin
and random selection. While we did not observe a significant
difference in the final results, we achieved the best results

7For example, a complete G with n nodes includes n(n− 1) networks

and
∑

L

k=2

(

n

k+1

)

(k + 1)! feasible paths, with path length capped at L.

Algorithm 1: Globally Cross-Task Consistent Learning of Networks F

Result: Trained edges F of graph G
1 Train each f∈F independently. ⊲ initialization by standard direct training.
2 for k ← 2 to L do
3 while LossConvergence(F) not met do
4 fij←SelectNetwork(F) ⊲ selects target network to be trained.
5 p←SelectPath(fij , k,P) ⊲ selects a feasible consistency path

for fij with maximum length k from P .

6 optimize Lperceptual

ijp
⊲ trainsfij using path constraint p in loss 8.

7 end

8 end

using maximal violation criterion: at each step select the
network and path with the largest loss8. Also, Alg.1 starts
from shorter paths and progressively opens up to longer ones
(up to length L) only after shorter paths have converged.
This is based on the observation that the value of short and
long paths in terms of enforcing cross-task consistency over-
lap, while shorter paths are computationally cheaper8. For
the same reason, all of the networks are initialized by train-
ing using the standard direct loss (Op.1 in Alg.1) before
progressively adding consistency terms.

Finally, Alg.1 does not distinguish between Fx and Fx

and can be used to train them all in the same pool. This
means the selected path p may include networks not fully
converged yet. This is not an issue in practice, because, first,
all networks are pre-trained with their direct loss (Op.1 in
Alg.1) thus they are not wildly far from their convergence
point. Second, the perceptual loss formulation makes train-
ing fij robust to imperfections in functions in p (Sec. 3.1.2).
However, as practical applications primarily care about Fx,
rather than Fy, one can first train Fy to convergence using
Alg.1, then start the training of Fx with well trained and
converged networks Fy . We do the latter in our experiments.

Please see supplementary material for how to normalize
and balance the direct and consistency loss terms, as they be-
long to different domains with distinct numerical properties.

4. Consistency Energy

We quantify the amount of cross-task consistency in the
system using an energy-based quantity [26] called Consis-

tency Energy. For a single query x and domain Yk, the
consistency energy is defined to be the standardized average
of pairwise inconsistencies:

Energy
Yk
(x) , 1

|Y|−1

∑

Yi∈Y,i 6=k

|fYiYk
◦fXYi

(x)−fXYk
(x)|−µi

σi
, (9)

where µi and σi are the average and standard deviation of
|fYiYk

◦fXYi
(x)−fXYk

(x)| over the dataset. Eq. 9 can be
computed per-pixel or per-image by average over its pixels.
Intuitively, the energy can be thought of as the amount of
variance in predictions in the lower row of Fig. 3 – the higher
the variance, the higher the inconsistency, and the higher the
energy. The consistency energy is an intrinsic quantity of
the system and needs no ground truth or supervision.

8See supplementary material for an experimental comparison.
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Figure 6: Qualitative results of predicting multiple domains along with the pixel-wise Consistency Energy. The top queries are from the Taskonomy
dataset’s test set. The results of networks trained with consistency are more accurate, especially in fine-grained regions (zoom into the yellow markers), and
more correlated across different tasks. The bottom images are external queries (no ground truth available) demonstrating the generalization and robustness of
consistency networks to external data. Comparing the energy against a prediction domain (e.g. normals) shows that energy often correlates with error. More
examples are provided in the project page, and a live demo for user uploaded images is available at the demo page. External Queries: Bedroom in Arles, Van
Gogh (1888); Cotton Mill Girl, Lewis Hine (1908); Chernobyl Pripyat Abandoned School (c. 2009). [best seen on screen]

In Sec. 5.3, we show this quantity turns out to be quite
informative as it can indicate the reliability of predictions
(useful as a confidence/uncertainty metric) or a shift in the in-
put domain (useful for domain adaptation). This is based on
the fact that if the query is from the same data distribution as
the training and is unchallenging, all inference paths of a sys-
tem trained with consistency path constraints work well and
yield similar results (as they were trained to); whereas under
a distribution shift or for a challenging query, different paths
break in different ways resulting in dissimilar predictions. In
other words, usually correct predictions are consistent while
mistakes are inconsistent. (Plots 9(b), 9(c), 9(d).)

5. Experiments

The evaluations are organized to demonstrate the pro-
posed approach yields predictions that are I. more consistent

(Sec.5.1), II. more accurate (Sec.5.2), and III. more gener-

alizable to out-of-training-distribution data (Sec.5.4). We
also IV. quantitatively analyze the Consistency Energy and
report its utilities (Sec.5.3).

Datasets: We used the following datasets in the evaluations:

Taskonomy [45]: We adopted Taskonomy as our main training
dataset. It includes 4 million real images of indoor scenes with
multi-task annotations for each image. The experiments were
performed using the following 10 domains from the dataset: RGB

images, surface normals, principal curvature, depth (zbuffer),

reshading, 3D (occlusion) edges, 2D (Sobel) texture edges, 3D

keypoints, 2D keypoints, semantic segmentation. The tasks were
selected to cover 2D, 3D, and semantic domains and have sensor-
based/semantic ground truth. We report results on the test set.

Replica[40] has high resolution 3D ground truth and enables
more reliable evaluations of fine-grained details. We test on 1227
images from Replica (no training), besides Taskonomy test data.

CocoDoom [27] contains synthetic images from the Doom video
game. We use it as one of the out-of-training-distribution datasets.

ApolloScape [16] contains real images of outdoor driving scenes.
We use it as another out-of-training-distribution dataset.

NYU [37]: We also evaluated on NYUv2. The findings are similar
to those on Taskonomy and Replica (in supplementary material).

Architecture & Training Details: We used a UNet [34]
backbone architecture. All networks in FX and FY have
a similar architecture. The networks have 6 down and 6
up sampling blocks and were trained using AMSGrad [33]
and Group Norm [42] with learning rate 3×10−5, weight
decay 2×10−6, and batch size 32. Input and output images
were linearly scaled to the range [0, 1] and resized down to
256× 256. We used ℓ1 as the norm in all losses and set the
max path length L=3.

Baselines: The main baseline categories are described be-
low. To prevent confounding factors, our method and all
baselines were implemented using the same UNet network

when feasible and were re-trained on Taskonomy dataset.

Baseline UNet (standard independent learning) is the main
baseline. It is identical to consistency models in all senses, except
being trained with only the direct loss and no consistency terms.

Multi-task learning: A network with one shared encoder and
multiple decoders each dedicated to a task, similar to [21].

Cycle-based consistency, e.g.[50], is a way of enforcing consis-
tency requiring a bijection between domains. This baseline is the
special case of the triangle in Fig.2(b) by setting fXY2=identity.

Baseline perceptual loss network uses frozen random (Gaussian
weight) networks as FY , rather than training them to be cross-
task functions. This baseline would show if the improvements
were owed to the priors in the architecture of constraint networks,
rather than them executing cross-task consistency constraints.

GAN-based image translation: We used Pix2Pix [17].

Blind guess:A query-agnostic statistically informed guess com-
puted from data for each domain (visuls in supplementary). It
shows what can be learned from general dataset regularities. [45]
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Query Sensor Ground Truth Multi-Task Network Cycle-Based Consistency Baseline Perceptual Loss Baseline (L1 UNet) GeoNet X-Task ConsistencyTaskonomy

Figure 7: Learning with cross-task consistency vs various baselines compared over surface normals. Queries are from Taskonomy dataset (top) or
external data (bottom). More examples are provided in project page, and a live demo for user uploaded images is available at demo page. [best seen on screen]

Method

Setup Replica Dataset Taskonomy Dataset
Normals Depth reShading Normals Depth reShading Semantic Segm.

Perceptual Err. Direct Perceptual Err. Direct Perceptual Err. Direct Perceptual Err. Direct Perceptual Err. Direct Perceptual Err. Direct Direct
Depth reShade ℓ1 Err. Norm. reShade ℓ1 Err. Norm. Depth ℓ1 Err. Depth reShade Curv. Edge(2D) ℓ1 Err. Norm. reShade Curv. Edge(2D) ℓ1 Err. Norm. Depth Curv. Edge(2D) ℓ1 Err. X-Entropy (↓)

Blind Guess 4.75 33.31 16.02 22.23 19.94 4.81 15.74 5.14 16.45 7.39 38.11 3.91 12.05 17.77 22.37 27.27 7.96 12.77 7.07 19.96 7.14 3.53 12.62 24.85
Taskonomy Networks 3.73 11.07 6.55 18.06 15.39 3.72 8.70 3.85 11.43 7.19 22.68 3.68 10.70 7.54 18.82 20.83 6.65 14.10 4.55 11.72 4.69 3.54 11.19 16.58

Multi-Task 5.58 22.11 6.03 15.30 16.14 2.44 7.24 3.36 10.32 8.78 27.32 3.65 10.16 7.07 17.18 19.55 7.54 13.67 2.81 9.19 3.54 3.56 10.75 11.61
GeoNet (original) 6.23 19.34 7.48 13.88 14.03 4.01 × × × 7.71 27.35 3.32 9.09 9.58 15.44 18.73 4.03 10.78 4.07 × × × × × ×

Cycle Consistency 5.65 22.39 7.13 8.81 30.33 3.84 10.26 8.68
Baseline Perceptual Loss 4.88 15.34 4.99 8.59 23.98 3.41 10.01 6.17

Pix2Pix 4.52 19.03 7.70 8.12 26.23 3.83 10.33 9.40
Baseline UNet (ℓ1 ) 4.69 13.15 4.96 10.47 12.99 1.99 6.90 2.74 9.55 8.17 20.94 3.41 9.98 5.95 13.62 15.68 7.31 12.61 2.27 9.58 3.38 3.78 10.85 10.45 0.246
GeoNet (updated) 4.62 12.79 4.70 10.47 12.75 1.83 × × × 8.18 20.84 3.40 9.99 5.91 13.77 15.76 7.52 12.67 2.26 × × × × × ×

X-Task Consistency 2.07 9.99 4.80 7.01 11.21 1.63 5.50 1.96 9.22 4.32 12.15 3.29 9.50 6.08 9.46 12.66 3.61 9.82 2.29 7.13 2.51 3.28 9.38 10.52 0.237

0.25% Data: Baseline 5.65 21.76 7.61 8.86 26.91 3.78 10.31 8.17

0.25% Data: Consistency 2.41 12.26 7.28 5.07 15.96 3.74 9.93 9.19

Table 1: Quantitative Evaluation of Cross-Task Consistent Learning vs Baselines. Results are reported on Replica and Taskonomy Datasets for four
prediction tasks (normals, depth, reshading, pixel-wise semantic labeling) using ‘Direct’ and ‘Perceptual’ error metrics. The Perceptual metrics evaluate the
target prediction in another domain (e.g., the leftmost column evaluates the depth inferred out of the predicted normals). Bold marks the best-performing
method. If more than one value is bold, their performances were statistically indistinguishable from the best, according to 2-sample paired t-test α = 0.01.
Learning with consistency led to improvements with large margins in most columns. (In all tables, ℓ norm values are multiplied by 100 for readability.
Methods that cannot be run for a given target are denoted by ‘×’.)

GeoNet [32] is a task-specific consistency method analytically
curated for depth and normals. This baseline shows how closely
the task-specific consistency methods based on known analytical
relationships perform vs the proposed generic data-driven method.
The “original” and “updated” variants represent original authors’
released networks and our re-implemented and re-trained version.

5.1. Consistency of Predictions

Fig.9(a) (blue) shows the amount of inconsistency in test
set predictions (Consistency Energy) successfully decreases
over the course of training. The convergence point of the
network trained with consistency is well below baseline in-
dependent learning (orange) and multi-task learning (green)–
which shows consistency among predictions does not natu-

rally emerge in either case without explicit constraining.

5.2. Accuracy of Predictions

Figures 6 and 7 compare the prediction results of net-
works trained with cross-task consistency against the base-
lines in different domains. The improvements are consider-
able particularly around the difficult fine-grained details.

Quantitative evaluations are provided in Tab. 1 for Replica
dataset and Taskonomy datasets on depth, normal, reshad-
ing, and pixel-wise semantic prediction tasks. Learning with
consistency led to large improvements in most of the setups.
As most of the pixels in an image belong to easy to predict
regions governed by the room layout (e.g. ceiling, walls), the

standard pixel-wise error metrics (e.g. ℓ1) are dominated by
them and consequently insensitive to fine-grained changes.
Thus, besides standard Direct metrics, we report Perceptual

error metric (e.g. normal�curvature) that evaluate the same
prediction, but with a non-uniform attention to pixel proper-
ties.9 Each perceptual error provides a different angle, and
the optimal results would have a low error for all metrics.

Tab. 1 also includes evaluation of the networks when
trained with little data (0.25% subset of Taskonomy dataset),
which shows the consistency constraints are useful under
low-data regime as well.

We adopted normals as the canonical task for more exten-
sive evaluations, due to its practical value and abundance of
baselines. The conclusions remained the same regardless.

5.3. Utilities of Consistency Energy

Below we quantitatively analyze the Consistency Energy.
The energy is shown (per-pixel) for sample queries in Fig. 6.

Consistency Energy as a Confidence Metric: The
plot 9(b) shows the energy of predictions has a strong posi-
tive correlation with the error computed using ground truth
(Pearson corr. 0.67). This suggests the energy can be adopted
for confidence quantification and handling uncertainty. This
experiment was done on Taskonomy test set.

9For example, evaluation of normals via the normal�curvature metric
is akin to paying more attention to where normals change, hence reducing
the domination of flat regions, such as walls, in the numbers.
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Figure 8: Error with Increasing (Smooth) Domain Shift.

The network trained with consistency is more robust to the shift.

Error (Post-Adaption) Error (Pre-Adaptation)
Novel Domain # images Consistency Baseline Consistency Baseline
Gaussian blur

(Taskonomy)

128 17.4 (+14.7%) 20.4
46.2 (+12.8%) 53.0

16 22.3 (+8.6%) 24.4

CocoDoom
128 18.5 (+19.2%) 22.9

54.3 (+15.8%) 64.5
16 27.1 (+24.5%) 35.9

ApolloScape 8 40.5 (+11.9%) 46.0 55.8 (+5.5%) 59.1

Table 2: Domain generalization and adaptation on CocoDoom, ApolloScape, and
Taskonomy blur data. Networks trained with consistency show better generalization to new
domains and a faster adaptation with little data. (relative improvement in parentheses)
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Figure 9: Analyses of Consistency Energy.

Consistency Energy as a Domain Shift Detector:

Plot 9(c) shows the energy distribution of in-distribution
(Taskonomy) and out-of-distribution datasets (ApolloScape,
CocoDoom). Out-of-distribution datapoints have notably
higher energy values, which suggests that energy can be
used to detect anomalous samples or domain shifts. Us-
ing the per-image energy value to detect out-of-distribution
images achieved ROC-AUC=0.95; the out-of-distribution
detection method OC-NN [3] scored 0.51.

Plot 9(d) shows the same concept as 9(c) (energy vs do-
main shift), but when the shift away from the training data
is smooth. The shift was done by applying a progressively
stronger Gaussian blur with kernel size 6 on Taskonomy
test images. The plot also shows the error computed using
ground truth which has a pattern similar to the energy.

We find the reported utilities noteworthy as handling un-
certainty, domains shifts, and measuring prediction confi-
dence in neutral networks are open topics of research [29, 11]
with critical values in, e.g. active learning [35], real-world
decision making [20], and robotics [31].

5.4. Generalization & Adaptation to New Domains

To study: I. how well the networks generalize to new
domains without any adaptation and quantify their resilience,
and II. how efficiently they can adapt to a new domain given
a few training examples by fine-tuning, we test the networks
trained on Taskonomy dataset on various new domains.

In interest of space, we defer the details to the supplemen-
tary and provide the results in Fig. 8 and Tab. 2. Networks
trained with consistency generally show higher resilience

w.r.t. domain shifts and better adaptation with little data.

Supplementary Material: We defer additional discussions
and experiments, particularly analyzing different aspects of
the optimization, stability analysis of the experimental trends,
and proving qualitative results at scale to the supplementary
material and the project page.

6. Conclusion and Limitations
We presented a general and data-driven framework for

augmenting standard learning with cross-task consistency.
The evaluations showed learning with cross-task consistency
fits the data better yielding more accurate predictions and
leads to models with improved generalization. The Consis-
tency Energy was found to be an informative intrinsic quan-
tity with utilities toward confidence estimation and domain
shift detection. We briefly discuss some of the limitations:
Path Ensembles: we used the various inference paths only
as a way of enforcing consistency. Aggregation of multiple

(comparably weak) inference paths into a single strong esti-
mator (e.g. in a manner similar to boosting) is a promising
direction that this paper did not address.
Categorical/Low-Dimensional Tasks: We primarily exper-
imented with pixel-wise tasks. Classification tasks, and
generally tasks with low-dimensional outputs, will be inter-
ested to experiment with, especially given the more severely
ill-posed cross-task relationships they induce.
Unlabeled/Unpaired Data: The current framework re-
quires labeled training data. Extending the concept to unla-
beled/unpaired data, e.g. as in [50], remains open.
Optimization Limits: The improvements gained by incor-
porating consistency are bounded by the success of the avail-
able optimization techniques, as addition of consistency con-
strains at times makes the optimization job harder. Also,
implementing cross-task functions using neural networks
makes them subject to certain output artifacts similar to
those seen in image synthesis with neural networks.
Adversarial Robustness: Lastly, if learning with cross-task
consistency indeed reduces the tendency of neural networks
to learn surface statistics [18] (Sec. 1), studying its implica-
tions in defenses against adversarial attacks will be valuable.
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Kar. This work was supported by ONR MURI (N00014-14-
1-0671), an Amazon AWS Machine Learning Award, Google
Cloud, and TRI. Toyota Research Institute (“TRI”) provided
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