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Abstract

Visible light tomography is a promising and increasingly

popular technique for fluid imaging. However, the use of a

sparse number of viewpoints in the capturing setups makes

the reconstruction of fluid flows very challenging. In this

paper, we present a state-of-the-art 4D tomographic recon-

struction framework that integrates several regularizers into

a multi-scale matrix free optimization algorithm. In addition

to existing regularizers, we propose two new regularizers for

improved results: a regularizer based on view interpolation

of projected images and a regularizer to encourage reprojec-

tion consistency. We demonstrate our method with extensive

experiments on both simulated and real data.

1. Introduction

Capturing fluid flows is a challenging reconstruction prob-

lem that is of great interest in computer vision and many sci-

entific fields, e.g. for retrieving the fluid properties (e.g. tem-

perature, species concentration, density and velocity) [43],

validating simulation results [14, 40] or allowing flow editing

and re-simulation [20].

A number of fluid imaging methods have been developed

to tackle the different usage scenarios (we provide a brief lit-

erature review in the next section). Among those techniques,

visible light tomography is the most used in computer vi-

sion and also finds frequent use in scientific imaging appli-

cations. In visible light tomography, simultaneous video

sequences of the fluid are acquired from different angles,

using either monochromatic or color cameras. From those

videos tomographic reconstruction algorithms can be ap-

plied to reconstruct a sequence of 3D volumes, representing

the densities of the fluid at different times. Some proposed

approaches reconstruct the volumes at each time frame in-

dependently of each other, while others jointly optimize all

frames in a single time-dependent reconstruction [20, 13, 14].

This second approach allows the introduction of temporal

priors that improve the reconstruction quality. However, re-

constructing complex three-dimensional fluid flows using

visible-light tomography remains a difficult task for several

reasons: First, many phenomena like absorption, scattering,

SART [18] [36] [53] Ours GT SART [18] [36] [53] Ours GT
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Figure 1: With sparse view videos as input (yellow box), To-

moFluid generates three types of results: Novel view images for

each time frame (green box) in the first row, physical-based tem-

porally coherent density volumes and velocity fields (illustrated

with streamlines) in the last row. Comparison between ground truth

(GT) and different approaches is shown in the middle.

refraction, occlusion impact the captured data. Second, the

involved setups are often sophisticated and require a difficult

calibration step. Finally, the data acquired is typically very

sparse with few cameras capturing the fluid flow. Indeed,

usually the cameras are placed relatively close to the fluid,

which limits the number of cameras that can be used. Also,

many real-world fluid experiments in scientific imaging take

place inside special containers, and it is difficult or impossi-

ble to add many optical access windows to these containers

without affecting the fluid flow. Finally, many fluid phenom-

ena of interest are quite fast, which necessitates the use of

high-speed or ultra high-speed cameras that add a significant

expense to the setup (e.g. $80k or more per camera). For

these reasons, it is often only feasible to use 2 or 3 cameras

for an experiment. This leads to an under-constrained re-

construction problem that heavily relies on the use of good

regularizers to produce satisfactory results.
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As shown in Figure 1, our work aims to reconstruct a

4D sequence of fluid flow from a sparse set of captured

videos of this fluid. Our proposed approach is based on

three primary observations. (1) In visible-light tomography,

we often use very narrow fields of view, so that the camera

geometry is almost orthographic, and thus the projection at

180° is significantly similar to the mirrored projection at 0°.

(2) Although different points in the volume move differently

in the image plane according to the camera parallax, the

apparent motion of each point in the images is smooth with

changes in viewing angle. (3) Furthermore, each pixel in

one of the projection images corresponds to a line integral

of the volume densities along a ray, and since the volume

densities are the same in all views, this suggests that views

can be interpolated with optimal transport-type methods.

In practice, however, we found that direct interpolation of

intensity images produces superior results (see supplemental

material for more details).

Based on these observations, we propose an approach

that can reconstruct high quality fluid flows from a limited

number of input views (two or three). In particular, the main

contributions of our work are:

• We built an effective framework for the reconstruction

of fluid flows captured by a sparse set of high speed

cameras. This framework provides both the 4D density

field of the fluid and its deformation field.

• We propose a new regularizer based on view-

interpolation and a reprojection consistency constraint

that we incorporate in our framework.

• We extensively validate our method using both simu-

lated and real experimental data from a range of differ-

ent application scenarios.

2. Related Work

Dynamic Fluid Capture To characterize fluid flows, sev-

eral modalities have been used to measure either 3D scalar-

fields (e.g. temperature, species concentration and density)

or 3D vector fields (e.g. velocity and vorticity) [43]. Planar

Laser Induced Fluorescence (PLIF) [11], for example, mea-

sures the concentration of a fluorescent dye in fluid flows. A

3D extension of this technique has also been proposed [46].

To capture the 3D density field of the fluid several scan-

ning approaches have been developed like laser line scan-

ning [25, 17] or compressive structured light scanning [22].

However, the characterization of fluid flows requires the

retrieval of the 3D velocity vector field. In the literature,

two families of techniques have been used to measure the

velocity field of a fluid: the tracer-based approaches and

the tracer-free methods. The first family of methods con-

sists of introducing tracers (particles, dye, etc.) in the fluid,

then the velocity of the fluid is retrieved by tracking these

tracers. Particle Image Velocimetry (PIV) and its differ-

ent variants, such as tomographic PIV [15], synthetic aper-

ture PIV [6], structured-light PIV [48, 47, 1] and plenoptic

PIV [16, 41] are widely used in different fields to character-

ize fluid flows. For tracer-free approaches like Background

Oriented Schlieren tomography (BOS) [19, 4], the phase

change due refractive index differences in the fluid to track

the flow. Most of these approaches retrieve only either the

density field of the fluid or the velocity field. Moreover, they

are specific to a given family of fluid. By using visible light

tomography, we propose to jointly retrieve the density and

the velocity fields of a large family of fluids.

Visible-light tomography In computer vision and graph-

ics, most methods for fluid imaging are based on a tomo-

graphic reconstruction. This approach consists of retrieving

a 3D density field representing the state of the fluid at a

given time, from a set of 2D captured images (projections).

In contrast to the medical field where computed tomography

is based on X-ray scanning, visible-light is used to scan the

fluids. Therefore, visible-light tomography methods were

proposed to reconstruct 3D flames [24, 29], to image gas

flows using Schlieren tomography [5] or to capture turbulent

fluid mixtures using emission tomography [21]. The main

shortcoming of visible light tomography for imaging fluids

is the small number of vie points / projection images due to

constraints in the hardware setup (e.g. cost of the cameras

and space limitations). Usually less than 16 projections are

used in the reconstruction, while in X-ray tomography hun-

dreds or even thousands of projections can be used. This

problem is commonly called the sparse-view tomography

reconstruction problem, and it is heavily ill-posed – often

the number of unknowns (voxels) exceeds the number of

knowns (pixels) by one or two orders of magnitude.

Sparse-view reconstruction In medical X-ray CT appli-

cations, sparse-view scanning has been introduced to reduce

radiation dose and shorten the acquisition time. Several

techniques were proposed to improve the quality of the re-

construction. These methods are based on compressed sens-

ing [38, 8], total variation based regularization [32, 31, 2],

dictionary learning [9, 10, 33] or deep learning [23, 30, 37].

In the medical field, the deep learning approaches outperform

the other methods, thanks to the large amount of available

training data and the limited space of reconstructed shapes.

However, it is very challenging to apply learning approaches

to 4D fluid applications, because of the lack of training data

and the diversity of flows. In addition, the memory consump-

tion and time for training are also potentially serious issues.

Finally, it is very hard to train one network to reconstruct a

wide range of datasets in different application scenarios as

presented in our work.

The sparse-view problem occurs also for dynamic X-ray
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reconstructions, since it is impossible to take a large number

of projections representing the same state of the scanned ob-

ject. Zang et al. [52, 53, 50] proposed to jointly reconstruct

the density and the deformation fields, by incorporating some

spatial and temporal priors on these two fields. These ap-

proaches provide accurate reconstructions for the scanned

objects. Nevertheless, the proposed scanning strategy to

improve the reconstruction cannot be applied easily to high-

speed fluid imaging setups, where the cameras have a fixed

position and orientation.

Some attempts to improve the results of sparse tomo-

graphic reconstruction have been also proposed in the fluid

imaging field. Gregson et al. [20] introduced a physically-

based prior to reconstruct incompressible (i.e. divergence-

free) flows. Okabe et al. [36] reconstructed a smoke vol-

ume from a sparse set of projections, by transferring the

appearance information from the captured projections to

novel viewing angles. This statistics-based approach (i.e.

histogram matching and normalization) provides a plausible

visualization of the smoke. However, there is no guarantee

that the retrieved results correspond to the captured smoke.

Eckert et al. [13] pushed the limit of the sparse tomogra-

phy problem by introducing a single-view reconstruction

approach for plumes. They compensate the lack of infor-

mation by using physics-based and geometric priors. To

improve the reconstruction of plumes, they added in [14]

an inflow estimation module that only applies in very spe-

cific settings, and they used 5 viewing angles instead of one.

While these methods result in plausible reconstruction for

graphics, the overall accuracy and agreement with ground

truth measurements is relatively poor and insufficient for

scientific or engineering purposes.

3. Optimization Framework

System Overview We propose a novel dynamic recon-

struction framework called TomoFluid. In this framework,

several regularizers are introduced to constrain the solution

space and achieve unprecedented reconstruction quality for

fluid imaging. In the following section, we first present the

camera model and pre-processing step of the input videos

captured from optical cameras. Then we formulate the data-

fitting term that involves the input videos. Next, the synthetic

view regularizer, which is one of our key technical contri-

butions will be explained in detail. This regularizer consists

of using new estimated views to constrain the reconstructed

volumes. The view estimation is done using an interpola-

tion from existing videos. In addition, since only 2 or 3

views are available in our setting, we propose a visual hull

regularizer to tackle this highly under-determined inverse

problem. Finally, other regularizers, such as smoothness con-

straint, temporal coherence prior, density consistency prior,

as well as a physically plausible regularizer used commonly

for the incompressible flow estimation (i.e. divergence-free

constraint) will be explained.

3.1. Framework Details

3.1.1 Camera Model

For a tomographic reconstruction, the fluid, represented by

a sequence of discretized density fields x = (xt)1≤t≤T ,

is captured simultaneously by N cameras. Ideally, these

cameras have to cover a 180° angular range around the fluid.

At each time step t with 1 ≤ t ≤ T , the ith camera (1 ≤
i ≤ N ) corresponding to the angle φi = (i − 1)/N · 180°,

captures the projection image fi,t given by:

fi,t = Kixt + ni (1)

where Ki and ni are respectively the projection matrix

(Radon transform operator) and the noise distribution corre-

sponding to the ith camera.

To retrieve the 3D volume sequence x from the captured

videos, using the classical tomography reconstruction, we

have to optimize the following loss function:

LRecon =

T∑

t=1

N∑

i=1

‖Kixt − fi,t‖
2

2
(2)

In our case, however, only few cameras are used to cap-

ture the fluid flow. Thus, at each time step t, only a sparse

set of projection images f1,t . . . fM,t is known, for M < N .

This results in a sparse sampling in the frequency domain,

according to the Fourier Slice Theorem [28]. Strong reg-

ularization is then needed to overcome this issue. For the

following, we denote M as the set of viewing angles corre-

sponding to the captured projections. Then, fi,t (φi ∈ M)

are the known projection images, and fj,t (φj ∈ N − M)

are the unknown ones that we would like to estimate.

3.1.2 Data-fitting Term

We define our data-fitting term as the contribution of the M
known views in the loss function given in Equation (2). This

term can be written as follows:

Ldata =
T∑

t=1

∑

i|φi∈M

‖Kixt − fi,t‖
2

2
(3)

3.1.3 Novel View Regularizer

The aim of introducing this regularizer is to take into account

the contribution of the N −M non-captured projections, in

order to improve the reconstruction quality. To achieve this

goal, we first estimate the novel views from the captured

ones, as described below.
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Figure 2: Overview of the architecture of our framework.

Flow-based warping: To estimate the novel views from

the known orthographic view geometry, we interpolate the

missing projections (i.e. novel views) fj,t from its two neigh-

boring captured projections fi,t and fk,t, given φi < φj <
φk. Notice that: φj /∈ M and φi, φk ∈ M.

We first compute the optical flow vi→k from the acquired

image pair fi,t and fk,t. A multi-scale scheme is utilized to

tackle the large deformation [35]. Different weight settings

are given to the horizontal and vertical directions, since the

deformation occurs primly in the direction perpendicular to

the rotation axis of our setting. Based on the angle indexing

ratio s = (j− i)/(k− i), we obtain two intermediate images

f̃i,t and f̃k,t by warping fi,t and fk,t, respectively:

f̃i,t =warp(fi,t, svi→k) (4)

f̃k,t =warp(fk,t,−(1− s)vi→k) (5)

Morphing-based view interpolation: The missing pro-

jection fj,t is interpolated using the warped images f̃i,t and

f̃k,t, as follows:

fj,t = (1− s)f̃i,t + sf̃k,t (6)

which is very similar to a morphing process. At this step, all

the N − M missing projections are interpolated from the

captured images.

Loss function: The loss function of the proposed synthetic

view constraint is given in Equation (7). The accuracy of the

projection estimation module depends highly on the angular

distance to the captured projections (please refer to Sec-

tion 4 for detail). We translate this point in the optimization

framework, by introducing a confidence estimation weight

(0 < ωj < 1) in the term Lnovel. The closer the angles are

to the captured projections, the higher is the confidence in

the estimation. For these closer angles the weight will be

set close to 1. For the other angles, the weight will decrease

gradually.

Lnovel =

T∑

t=1

∑

j|φj /∈M

ωj ‖Kjxt − fj,t‖
2

2
(7)

Analysis: Our main goal in introducing the morphing-

based interpolation is to regularize the missing projections in

an energy consistent manner w.r.t. their neighboring captured

projections. As mentioned in Section 1, the volume densi-

ties are the same in all views. Thus intuitively, an optimal-

transport based interpolation is the approach to use for esti-

mating the missing views from the captured ones. However,

in practice, the proposed flow based warping operations out-

perform optimal-transport based methods (see supplemen-

tary for the experiments). In another perspective, considering

the huge number of missing projections and interpolation

operation involved, we anticipate our morphing method to

be simple and efficient, especially in our 4D application sce-

nario where hundreds of time frames are involved, making

this extra time cost subtle for the full tomography reconstruc-

tion. Figure 3 shows a comparison between state-of-the-art

optical flow with morphing [39], appearance transfer view

interpolation [36], and ours, which is quantitatively the best

and the fastest.

3.1.4 Reprojection Consistency Constraint

In our optimization framework, we introduce a reprojec-

tion consistency term (Lreprojection), which is a variation of

image-based visual hulls [34, 5, 13] and implemented in a

simpler and more efficient way. However, in the referenced

approaches the constraint is constructed only using the cap-

tured projections. In our work, we also generate silhouette

masks corresponding to the missing views in the novel view

interpolation step. These masks are then also involved in

the computation of the visual hull from our reprojection

consistency prior.

1873



5.58s (CPU) 6.64s (GPU) 29.16s (CPU) 0 1

GT Ours [39] [36] Ours (ℓ1) [39] (ℓ1) [36] (ℓ1)

Figure 3: Flow-based warping comparison at 22° (morphed from

0° and 45°). Our simple yet efficient approach achieves satisfactory

result compared to state-of-the-art optical flow [39] and appearance

transfer [36] methods with the shortest time, where GT denotes

ground truth.

As highlighted in Figure 2, for each time frame, we first

create the silhouette images for the captured projections.

Then, using these 2D projections and their silhouette images,

the TV-regularized [18] method is applied to reconstruct a

smooth volume due to lack of input information and artifact

removal. A forward rendering operation is then applied on

the initial volume to retrieve the object shape at different

angles, corresponding to the estimated projections. These ob-

tained silhouettes, combined with the masks of interpolated

projections, correspond to the final results of reprojection

consistency constraints for the estimated views. Though the

mask from forward rendering is more conservative than that

from the view interpolation step, in practice, by combining

these two, a smooth visual hull in both spatial and temporal

domain can be obtained.

In the forward rendering step, for each voxel at each

angle φi, a ray will be generated between this voxel and the

camera. The loss Lreprojection is defined as follows: For each

intersection point of the generated ray and the projection

images, if both the voxel value of the volume and the mask

value of the interpolated projection is non-zero, then we set

the pixel as 1, otherwise the value 0 will be given.

3.1.5 Other Regularizers

Lsmooth(α, β, γ) =

T∑

t=1

[
α ‖∇Sxt‖1 + β ‖∇Txt‖

2

2

]

+ γ

T−1∑

t=1

∑

d=x,y,z

‖∇Sut,d‖1 (8)

Smoothness constraint: The fourth term that we intro-

duce in our objective function is a smoothness prior that

we apply both on the density volume of the fluid and the

flow field: Lsmooth. In this prior we incorporate a spatial com-

ponent with an L1-norm on both fields (x and u) and a

temporal component with an L2-norm only on the density

volume. Indeed, the fluid flow is smoother according to the

Algorithm 1 TomoFluid algorithm

1: for t from 1 to T do

2: fj,t = ViewSynthesis(fi,t) // interpolation

3: xt = Tomography(fi,t)
4: mt = ReProjection(xt)
5: end for

6: repeat

7: for t from 1 to T do

8: x
∗
t = argmin

xt

Ldata + Lsmooth(α, β, 0) + δ · Lof

9: +Lnovel, w.r.t Lreprojection(mt) > 0
10: u

∗
t = argmin

ut

Lsmooth(0, 0, γ) + δ · Lof

11: +ζ · Lincompressible

12: end for

13: until Converge

temporal dimension than the spatial dimension, where some

discontinuities should be allowed.

where: ∇S and ∇T represent the spatial and temporal

gradient operators. α, β and γ are respectively the weights

of the spatial and temporal smoothness prior of the density

volume and the spatial smoothness on the flow field.

Density consistency prior: The next prior that we add to

our loss function is a density consistency over time. This

term can be seen as a 3D version of the brightness constancy

prior in the optical flow [27]. It ensures that the retrieved

density volume in successive time steps should be consistent

with a warping using the estimated flow field between these

time steps. This assumption is generally valid for most fluid

experiments, so long as diffusion happens at a time scale

much slower than the camera frame rate. Note that this term

involves both the density volume and the flow fields.

Lof =

T−1∑

t=1

‖∇Txt +∇Sxt · ut‖1 (9)

Divergence-free prior: In the fluid simulation and imag-

ing community, it is common to constrain the divergence of

the flow to be equal to zero for incompressible fluid flows.

This is simply the result of the mass-conservation assumption

for the fluid. When the captured fluid flow can be assumed

as incompressible, we incorporate the divergence-free prior

(Lincompressible) to our loss function.

Lincompressible =

T−1∑

t=1

DIV(ut) (10)

3.1.6 Optimization Details

By combining all the terms described previously, our loss

function is given by:
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(x∗,u∗) = argmin
x,u

Ldata + Lnovel (11)

+ Lsmooth + δ · Lof + ζ · Lincompressible

where δ and ζ correspond respectively to the weights of

spatial smoothness of the density volume, the density consis-

tency and the divergence-free priors.

To solve the joint optimization problem in Equation (11),

we split it into two sub-problems that we solve separately

in an iterative and alternative fashion. Consequently, we get

the scheme highlighted respectively in line 8 and line 10

of Algorithm 1. We apply the primal-dual Chambolle Pock

algorithm [7] to efficiently tackle the involved discontinuities

in the L1-terms in each sub-problem.

x-problem: The first sub-problem aims to reconstruct

the density volume of the captured fluid. It involves the

data-fitting term, the novel view regularizer, the reprojection

consistency prior, the spatial and temporal regularizers of the

density field (two first components of Lsmooth) and the den-

sity consistency prior. We follow the work [51] and use the

PSART algorithm as solver to tackle the proximal operators

of Ldata and Lnovel efficiently in a matrix-free manner.

u-problem: The second sub-problem is the flow field esti-

mation. The corresponding objective function encompasses

the spatial smoothness of the flow field (last term in Lsmooth),

the density consistency prior and the divergence-free con-

straint. A multi-scale strategy [35] is applied to enable large

deformations between the flow field volumes.

4. Results and Discussion

Baselines: In the following, we compare our approach to

four baseline reconstruction techniques. The first baseline

is an iterative tomographic reconstruction method named

Simultaneous Algebraic Reconstruction Technique (SART)

[3, 49], since it produces reasonably high-quality results

while still being applicable to arbitrary camera models and

application scenarios in practice [21, 26, 51]. The second

baseline is the Bregman algorithm of Goldstein and Osher

for TV-regularized denoising (Getreuer) [18]. The appear-

ance transfer based method (Okabe et al.) for fluid modeling

proposed by [36] is compared as the third baseline. The last

baseline (Zang et al.) reconstructs fast deforming object

with internal structure by X-ray CT scanner via a so called

warp-and-project strategy proposed in [53]. Since the prob-

lem we are tackling is highly underdetermined, improved

results are achieved for each method by constraining the

reconstruction to the visual hull [29] of each data.

Parameters: The framework is implemented in C++ and

it is parallelized using OpenMP. The experiments are con-

Table 1: PSNR/SSIM measurements for each approach. The value

is averaged projection images over all 92 time frames at several

degree (note as °). For each approach, average measurements for

all generated projections (Avg. Proj.) and all reconstructed volumes

(Avg. Vol.) are also presented. Refer to supplementary for more

numerical analysis.

Method 05◦ 15◦ 25◦ 35◦ Avg. Proj. Avg. Vol.

SART 32.16/.872 27.55/.846 26.02/.852 28.25/.896 29.43/.868 25.54/.505

Getreuer 32.40/.879 27.58/.856 26.03/.857 28.33/.897 29.56/.876 25.58/.512

Okabe 29.80/.871 26.82/.832 25.96/.807 27.89/.829 28.23/.843 25.24/.467

Zang 32.69/.923 28.59/.895 27.15/.883 28.74/.903 29.81/.905 25.76/.538

Ours 36.55/.978 30.09/.936 28.80/.923 31.17/.946 32.36/.950 27.72/.671

ducted on a computer with 512 GB RAM and a dual-core

3.00GHZ Intel Xeon 2687W processor. In novel view syn-

thesis stage, we estimate the flow with typical vertical and

horizontal smoothness parameters of 1 and 10 respectively,

performed at 8 different image pyramid scales. Additional

details for parameters are provided in the supplement.

SART Getreuer [18] Okabe et al. [36] Zang et al. [53] Ours Ground Truth
t
=

2
6

t
=

6
0

Figure 4: Projection images comparison for different methods.

4.1. Synthetic results

We first validate our algorithm on the synthetic fluid flow

data, generated from Mantaflow [42]. In this experiment, as

shown in Figure 4 and Table 1, a comprehensive evaluation

is conducted between our method and the baselines. A time

sequence of 100 fluid volumes is generated with a size of

100×150×100 for each volume. For each time step, 180 or-

thogonal projection images, uniformly distributed over 180°,

are then generated. The 100 volumes and 18000 projection

images act as ground truth data. To simulate the real capture

environment, three images at respectively 0°, 45°, and 90°

for each time step are used as input for all methods.

The values of PSNR and SSIM, for both projections and

volumes, are shown in Table 1 for all compared methods.

We can observe that for all methods, the quality of projec-

tions is higher when they are closer to the real captured

angles (i.e. 0°, 45°, or 90°). On the other hand, the compar-

ison for the angles 25° and 65° yield the lowest values of
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PSNR and SSIM (see the supplementary table). As shown

in Figure 4, although a sharper boundary can be visually

observed comparing to SART, Getreuer and Zang et al.,

the appearance transfer based method Okabe et al. fails to

achieve a better numerical result than other methods. As

mentioned in their paper, Okabe et al. mainly focus on

how to apply this statistics based method to obtain a bet-

ter visualization results instead of numerical analysis. In

contrast, Zang et al. achieves the best results among all the

baseline methods, mainly due to their effective spatial and

temporal priors. They failed, however, to obtain good recon-

structions at the novel estimated views in this sparse view

setting, and significant blurring can be observed, as shown

in Figure 4. Finally, our method (Ours) achieves best results

for projections at any angle and reconstructed volumes, in

terms of both PSNR/SSIM evaluation in Table 1 as well

as for the qualitative comparison in Figure 4. In Table 1,

the PSNR/SSIM results at several views are presented, and

the averaged values of PSNR/SSIM for all projections and

volumes are also evaluated.

4.2. Real world results

4D Soot Imaging of the turbulent flame: The setup

for capturing the combustion process is done using a non-

premixed turbulent jet flame with ethylene fuel at a Reynolds

(Re) number of 2,600 and 10,400. As shown in Figure 5, the

high speed videos were collected from three Photron SA-Z

cameras placed at 0° (Camera 1), 45° (Camera 2), and 90°

(Camera 3). For a qualitative evaluation for the reconstruc-

tion methods, we applied planar laser induced incandescence

(LII) at 117° (ICCD) with a frequency doubled Quanta-Ray

Pro-Series pulsed Nd:YAG laser at 10 Hz. A projection im-

age from the 2,600 Re is shown in Figure 5(b). The normal-

ized LII image, and reconstructed slices from our method

(Ours) and Zang et al. [53] method at 117° are shown re-

spectively in Figure 5(c-e) indicating sharper results with

reasonably finer soot structures that can be observed from

our method.

Camera 1

Camera 2Camera 3

ICCD

LED Fresnel Lenses

Diffusers

Burner

Extinction imaging setup Data LII Ours [53]

Figure 5: Extinction imaging and planar laser induced incandes-

cence setup (LII), where one soot raw image from the video cap-

tured by camera 1 is shown. We compare normalized LII image

taken at 117° (ground truth) with the same slice reconstructed by

our method and Zang et al. [53].

Volume reconstructions using our method at 4 time steps

can be seen in the top row of Figure 6. A comparison between

each of the baseline methods and our method can be observed

in the bottom of Figure 6 with each from split between

baseline methods on the left and our method on the right.

Figure 7 shows a further comprehensive comparison between

our approach and the-state-of-the-art method [53], in terms

of the projection images, the volume slices, and dynamic

volumes at different angles and time frames. From all of

these metrics, the unprecedented reconstruction quality from

our method can be observed.

t = 01 t = 28 t = 48 t = 78

SART Getreuer [18] Zang et al. [53] SAD [21]

Figure 6: Reconstructed results for a highly turbulent flame. First

row: Reconstructed results from our method for different time

frames and viewing angles. Second row: A comparison of the

baseline approach/Our approach (split left/right respectively) for

volume slice. The baseline methods on the left side are: Plain

SART reconstruction, Getreuer [18], Zang et al. [53], and sum-

of-absolute-differences (SAD) [21] regularized reconstruction.

4D Imaging of a Mixing Fluid Process: The second appli-

cation we performed is the imaging of a mixing fluid process

with two high speed cameras. The experimental setup is

shown in Figure 8. There are two cameras placed respec-

tively at 0° and 90°. The light source is generated from the

bottom of the glass tank with the help of reflector. The results

from our method with different time frames and rotated an-

gles are presented in Figure 8(c). Additional volumetric slice

comparison for two different time steps between Ours and

Zang et al. [53] is also performed in Figure 8(d). Although

only two videos are available in this setting, a significant im-

provement in terms of reconstruction quality can be noticed

from Ours.

4D Imaging of a Fuel Injection Process: In the final ap-

plication, we tried to model the process of fuel injection for

spray plume data. The setup for the experiments is illustrated

in Figure 9(a). The details of this experiment are described

in [12]. The light source is generated from a pulsed-driven
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Figure 7: Reconstruction results for soot data, acquired using setup

in Figure 5. (a) Single view comparison (at 25°). (b) Volume com-

parison (sliced). (c) Volume comparison (rotated).

(a) (b) (c) (d)

Camera 1

Camera 2Syringe

Light Source

Figure 8: (a) The set up for capturing fluid images with two views.

(b) One captured image from the setup (c) Our reconstruction at

different time frames and viewing angles. (d) Slice comparison

between Zang et al. [53] and our method for two different time

frames.

white LED. A Photron SA-X2 high-speed camera was em-

ployed at 40 kfps to capture the extinction. The size of the

captured image is 552×512. The injector was rotated at 0°,

40°, and 90°, respectively. At each view angle, the averaged

image of three repeats was used for the 3D reconstruction.

Note that this experiment is highly repeatable, if the same

initial conditions are applied. Figure 9(b) shows two images

captured at different time frames from 0 degree with the

ambient gas pressure as 4kPa (left), and their flow field visu-

alization estimated (right) from our TomoFluid framework

(illuminated with streamlines). In Figure 9, from left to right,

we compare respectively the reconstruction results with the

sophisticated visible-light tomography method that regular-

ized with the sum-of-absolute-differences (SAD) prior [21],

state-of-the-art dynamic tomographic reconstruction method

(Zang et al.), and Ours. The first row illustrates the volume

slice comparison, while the second row shows the volume

reconstruction for one time frame. We can observe that there

are obvious discontinuity between different time frames for

SAD regularized method [21], since only a spatial prior is

applied for this approach. In contrast, with both spatial and

temporal priors, better results can be noticed when Zang

et al. [53] is used. Finally, with a combination of powerful

regularizers for view interpolation, reprojection consistency,

spatial and temporal smoothness, and jointly optimization

framework, our method provides more details of the spray.

High speed camera Engineering diffuser

Injector tip
Collimating lens

LED

(a) (b)

(c)

Figure 9: (a) The set up for capturing spray images. (b) Captured

images at two time frames (left) and estimated flow field illustrated

with streamlines. (c) Reconstruction results for SAD regularized

method [21], Zang et al. [53], and Ours. First and second row of

(c) represents respectively reconstructed slice and the volume.

5. Conclusion and Future work

We presented TomoFluid, a framework for the fluid re-

construction from sparse view videos. Although our work

mainly focuses on dynamic fluid imaging, the presented

methods could potentially be useful for various tasks such as

X-ray tomography reconstruction with flow-based view inter-

polation, or fluid re-simulation with an estimated flow field

between successive volumes. One limitation of our work is

that the introduced novel view regularizer lacks a thorough

physical interpretation, although we have demonstrated that

it works very well in practice. Nonetheless we believe that

for the future there lies much promise in exploring physically

motivated view interpolation methods to achieve even better

reconstruction results for sparse view tomography problems.

Other future directions include combining phase contrast

techniques [5, 44, 45] to handle transparent phenomena,

such as gas flows.
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