
Bundle Pooling for Polygonal Architecture Segmentation Problem

Huayi Zeng1 Kevin Joseph2 Adam Vest3 Yasutaka Furukawa2

1Washington University in St. Louis 2Simon Fraser University 3Nike

Figure 1. Complex house structures can be parsed as a combination of simple primitives. Our system turns a photograph of a residential

house (top left) into an assembly of simple polygonal primitives (top middle), while a standard detection system produces only axis-aligned

bounding boxes (bottom middle). The polygonal representation enables applications such as photo-realistic virtual remodeling (bottom

left), surface normal estimation (top right) or pop-up 3D billboards (bottom right).

Abstract

This paper introduces a polygonal architecture segmen-

tation problem, proposes bundle-pooling modules for line

structure reasoning, and demonstrates a virtual remodeling

application that produces production quality results. Given

a photograph of a house with a few vanishing point candi-

dates, we decompose the house into a set of architectural

components, each of which is represented as a simple ge-

ometric primitive. A bundle-pooling module pools convo-

lutional features along a bundle of line segments (e.g., a

family of vanishing lines) and fuses the bundle of features

to determine polygonal boundaries or assign a correspond-

ing vanishing point. Qualitative and quantitative evalua-

tions demonstrate significant improvements over the exist-

ing techniques based on our metric and benchmark dataset.

We will share the code for further research.

1. Introduction

Houses are comprised of architectural components such

as walls, windows, and roofs. Human vision effortlessly

perceives a structure as a combination of simple polygonal

shapes such as triangles, quadrilaterals, or trapezoids (See

Fig. 1). This representation allows for easy human post-

processing as well as virtual remodeling applications such

as replacing wall materials or adding a new window.

Image segmentation has seen breakthroughs in recent

years thanks to the emergence of deep neural networks

(DNNs). A state-of-the-art technique, Mask R-CNN [13],

can detect object instances and produce pixel-wise segmen-

tation masks for each instance. However, it fails to delineate

the boundaries precisely or represent the shape as a compact

polygon, which is critical for high-end graphics applications

such as virtual remodeling [1]. The task of extracting com-

pact polygonal segments is a trivial task for human percep-

tion but remains difficult for computer vision.

Towards robust polygonal image segmentation, this pa-

per proposes a new polygonal architecture segmentation

problem. The input is a photograph of a house and a number

of vanishing point candidates. The task is to decompose the

house into architectural components (i.e., a wall, a window,

a door, a garage, or a roof), each of which is represented as

a simple geometric primitive (i.e., a triangle, a quadrilateral,

a pentagon, or a trapezoid).

We tackle the problem by proposing a family of novel

neural modules that analyze a bundle of lines. Specifically,

the paper proposes three bundle pooling (BP) modules, each

of which (1) considers a bundle of line segments; 2) pools

convolutional features along the bundle; and (3) fuses the

bundle of pooled features to determine polygonal bound-

aries or assign a corresponding vanishing point. For in-

stance, given a bounding box containing a window, we con-

sider a bundle of vanishing lines for each vanishing point

and infer its polygonal boundaries.

We introduce a new dataset including the ground-truth

architectural polygon segmentation, and a metric for evalu-

ations. The qualitative and quantitative evaluations demon-

1750



strate the effectiveness of our approach, significantly out-

performing the current state-of-the-art. We also present an

automated virtual remodeling application.

In summary, the contributions of the paper are three-fold:

(Technical) Bundle pooling modules that effectively ana-

lyze line structure; (Benchmark) A new polygonal architec-

ture segmentation problem with ground-truth annotations;

and (System) A fully automated virtual remodeling system

producing production-quality results.

2. Related Work

Segmentation: Instance segmentation has been an active

area of research. Proposal-based techniques such as Mask

R-CNN [13] have been a popular approach with great suc-

cess. Proposal-free approaches via metric learning are also

emerging [15]. However, these methods produce a segment

as a group of pixels without vector-graphics structure. Our

goal is to extract architectural components as compact poly-

gon primitives, following the building perspectives.

Facade Parsing: Facade parsing has a long history in com-

puter vision [25, 24]. A popular approach is to first iden-

tify the dominant building facade, rectify the image, then

parse components in the rectified domain, following a shape

grammar. Nishida et al. turns a single image of a building

with multiple facade orientations into a CAD quality 3D

model [27]. They also first identify dominant facades and

process rectified images one by one. A shape grammar was

also proven effective for architectural modeling from sensor

images [31]. However, shape grammars need to be simple

and are not scalable to more complex domains such as our

problem, where non rectangular architectural components

are arranged in more cluttered ways.

Architectural modeling: The origin of piece-wise smooth

scene modeling dates back to the 90’s in the stereo set-

ting [29, 4]. With the emergence of efficient discrete op-

timization techniques [5], the second wave of piece-wise

smooth reconstruction research [10, 11] surged after the

millennium. These methods effectively detect components,

but in a form of pixels with imprecise boundaries.

Wire-frame parsing seeks to directly model component

boundaries as a set of line segments from a single image.

The state-of-the-art approach jointly trains a corner detector

and a connection classifier end-to-end [33]. 3D wire-frame

reconstruction reconstructs wire-frame models with depth

information [34]. However, reconstructed wire-frames tend

to be fragmented with many missed connections: a poor

system as a segmentation method for photography applica-

tions.

Instead, there are approaches producing closed polygons

from segments. For example, polygons could be directly

predicted by recurrent neural network (RNN) [6, 2, 20].

However, they are not designed to exploit structure priors

(i.e., vanishing geometry and primitive types), which is the

key to our problem.

Room layout estimation has been an active area of re-

search, which produces a complete architectural wire-frame

of an indoor scene [9, 14]. More recently, CNNs enable

robust solutions [36, 18]. Although these methods exploit

highly constrained layout structure, they often assume a

rectangular room, which is much simpler than our setting.

Floorplan reconstruction seeks to infer a planar graph

of an arbitrary topology with a complete room segmenta-

tion [23, 7]. The problem relies heavily on principal di-

rections. Our algorithm also relies on vanishing geometry

but handles surfaces not aligned with principal directions,

which is almost always the case for roofs.

Vanishing Point Detection: Vanishing points (VPs) are

crucial for architectural scene parsing. Line segment ex-

traction and RANSAC is the classical approach for VP de-

tection [3]. Neural network based approaches are proposed

more recently, such as CNN with inverse gnomic projec-

tion by Kluger et al. [16] or conic convolution by Zhou et

al. [32]. Our problem needs to assign a VP to each archi-

tectural component. We rely on an existing technique [3]

for the detection, while focusing on the VP assignment via

a novel bundle-pooling module.

3. Polygonal Architecture Segmentation Prob-

lem

We propose an architectural segmentation problem. The

section explains the problem, the dataset, and the metrics.

3.1. Problem Definition

Residential buildings consist of architectural compo-

nents that exhibit strong structural regularities. The input

is a photograph of a house and a set of vanishing point

candidates. The task is to decompose a house into a set

of architectural components such as walls, windows, doors,

garages, or roofs, each of which is a simple geometric prim-

itive (i.e., a triangle, a rectangle, a pentagon, or a trapezoid)

and adheres to the given perspectives (See left column of

Fig. 3). Each polygonal boundary must point to one of the

vanishing points, except for (1) the top two triangle edges;

(2) the top two pentagon edges; and (3) the left and right

trapezoid edges, which are highlighted in red or blue at the

left of Fig. 3.

3.2. Annotations

We need 3 annotations for each architectural component

in an image: 1) Geometric primitive (either triangle, rect-

angle, pentagon, or trapezoid), 2) Architectural type (either

wall, window, door, garage, or roof ), and 3) Correspond-

ing Vanishing Points (VP) from the pre-computed VP set.

Bounding boxes are computed from the primitive shapes.

751



Figure 2. Our system consists of two DNNs. The first DNN is a variant of Faster RCNN, detecting architectural components with a few

attributes such as the primitive type. The second DNN uses a combination of 3 bundle pooling modules (shown by Green, Blue and Red

arrows resp.) to segment an architectural component as a polygon primitive.

Drawing polygons required educated guesses due to

prevalent occlusions (e.g., cars, trees, bushes, or self-

occlusions). For simplicity, we assume that all the roof seg-

ments are trapezoids and trapezoids appear only for roofs.

We excluded exceptions from our dataset, which are less

than 5% of the cases and can be safely ignored.

For VP assignment, we first generate four VPs contain-

ing the principle directions of the house. While a sophisti-

cated technique exists [32], we take a simple approach: Ex-

tracting line segments by LSD [12] and enumerating four

VP candidates by RANSAC [3]. Though most houses con-

tain only one or two principle directions, we keep four can-

didates to make sure that the ground-truth are in the set. We

use a heuristic to assign a VP to each component, followed

by manual verification.

3.3. Dataset

Our dataset consists of 5, 039 high resolution pho-

tographs of residential building exteriors for real com-

mercial applications, offered by a home design company

Renoworks [1] 1. We split the annotated dataset into 4647
images for training, and 392 images for testing. We also

collected 60 un-annotated images from completely differ-

ent sources via Google search.

3.4. Evaluation Metrics

We use mean Average Precision (meanAP) to evalu-

ate the system effectiveness, based on Intersection over

Union (IoU) or Object Keypoint Similarity (OKS). IoU is

computed between ground-truth shape and predicted shape,

1https://www.renoworks.com/

while OKS is the distance-based similarity between the cor-

responding vertices. Both range in [0, 1] to show the match

quality from the poorest to perfect. True positive will only

be counted when IoU (or OKS) is higher than a threshold

with one ground-truth of same architectural type. In particu-

lar, we use the implementation provided by MSCOCO [21]

to compare both IoU meanAP and OKS meanAP.

4. System Overview

Our system consists of two DNNs (See Fig. 2). The first

DNN is a variant of Faster RCNN architecture [28]. Besides

detecting bounding boxes of architectural components, this

network classifies an architectural type (i.e., wall, window,

door, garage, or roof ), and a primitive type (i.e., triangle,

quadrilateral, pentagon, or trapezoid). The network archi-

tecture and training is standard and the details are referred

to the supplementary document.

For each detected component, the second DNN uses

the combination of three bundle pooling modules to assign

the horizontal VP and estimate polygon boundaries (See

Fig. 3). First, vanishing-line bundle pooling (V-BP) deter-

mines the horizontal VP and estimates the top and bottom

polygon boundaries except for pentagons, which require

three horizontal boundaries (green in Fig. 3). For quadri-

laterals, V-BP with the vertical VP determines the left and

right boundaries. For triangles and pentagons, V-BP with

the vertical VP determines the vertical boundaries (i.e., left,

middle, and right), then fan bundle pooling (F-BP) refines

the beveled edges (highlighted in red in Fig. 3). Lastly for

trapezoids, bipartite bundle pooling (B-BP) determines the

left and right boundaries (blue in Fig. 3).

752



Figure 3. Three bundle pooling modules determine the polygonal segmentation boundaries. Vanishing-line bundle pooling (V-BP), fan

bundle pooling (F-BP), and bipartite bundle pooling (B-BP) are highlighted in green, red, and blue, respectively. The line colors at the left

of the figure indicates which bundle pooling modules estimate which lines.

5. Bundle Pooling

This section explains the details of the three bundle pool-

ing modules and a post-processing step.

5.1. Vanishingline Bundle Pooling (VBP)

V-BP estimates polygonal structures aligned with a given

vanishing point (See Fig. 3). V-BP takes a bounding box of

an architectural component, its primitive type, and one van-

ishing point as the input. We first determine the range of

vanishing lines that intersect with the bounding box, then

evenly split the angular range into K(= 40) lines. For each

such vanishing line, we determine pixels along the line in-

side the bounding box by Bresenham’s algorithm. We ex-

tract the corresponding feature vector of size L(= 384)
from P2 feature map 2 at each pixel from our Faster RCNN

variant. Since lines may have different number of pixels,

we aggregate vectors by both max and mean operations, and

concatenate them into a 2L-dimensional line-feature vector.

Boundary Classification: Borrowing an idea from non-

local networks [30], we aggregate line-features across K
vanishing lines into a global bundle-feature, again by max

and mean poolings. We concatenate the global bundle-

feature back to each line-feature, making its dimension 4L.

2P2 are feature map from the finest level defined in Feature Pyramid

Network [22], which is a part of our Faster RCNN variant. It encodes

sufficient rich semantics. We changed default feature length from 256 to

384.

Lastly, we use a multi-layer perceptron (MLP) for each line-

feature and a softmax function across the K line-features to

produce the probability distribution of the boundary loca-

tion. We use a standard cross-entropy loss. In our imple-

mentation, V-BP always classifies three boundaries (left to

right or top to bottom) and shares weights across different

primitive types. Lastly, an order loss is used on the output of

multiple MLPs so that the order of the boundaries are con-

sistent (e.g., the top border must not go below the middle or

the bottom borders). We formulate it as a simple L0 norm,

computing the number of violating pairwise orders.

Vanishing Point Assignment: Given one of candidate VPs,

we use V-BP module again to generate L line-features of

length 4K, which are concatenated and passed through 2

layers of MLP to regress the confidence of the VP. Softmax

is used to take confidence values from all the VP candidates

with a cross entropy at the end. This allows our system to

accept any number of VP candidates. At test time, we apply

V-BP to all the VP candidates, and pick the result with the

highest confidence.

5.2. Fan Bundle Pooling (FBP)

While the intersections of vertical and horizontal bound-

aries could determine the triangle and pentagon shapes (See

the left of Fig. 3), their beveled edges are often imprecise

due to the occlusions near the “shoulder” vertices such as

trees. We fix the top vertex and consider an angular range

753



of ±20 degrees around the current estimate. We split the

angular range into 40 lines evenly to create a bundle. F-BP

is only used for the boundary classification, and we add the

same feature pooling, MLP, and loss functions as in V-BP.

5.3. Bipartite Bundle Pooling (BBP)

Trapezoid is the most challenging shape, whose left and

right boundaries can have arbitrary directions. Without loss

of generality, suppose we seek to infer the right bound-

ary. We take the top-right corner of the bounding box, and

evenly sample 11 points at the top border of the bound-

ing box in the range of 1/2W (outside) to −2/3W (inside)

from the bounding box corner. W is the width of the bound-

ing box. Similarly, we sample 11 points around the bottom

right bounding box corner.

We form an 11x11 complete bipartite graph, and use its

edges to form a bundle. We use B-BP only for the bound-

ary classifier with the same architecture except for the order

loss, which is not used due to the complexity. To improve

the localization accuracy, we apply B-BP in two levels hi-

erarchically. More specifically, given the polygon boundary

from the first B-BP, we consider a range of ±1/8W along

the top and the bottom borders of the bounding box away

from the current estimate. We evenly sample 13 points,

form a bundle of a bipartite graph, and conduct the bound-

ary classification.

5.4. PostProcessing

For large architectural components, line sampling in V-

BP is not fine enough to achieve pixel-level accuracy. For-

tunately, the remaining displacements are small and we per-

form a local exhaustive search to refine the boundaries by

V-BP. More precisely, we first compute edge-maps by uti-

lizing the VPs as in a prior work [10], then search for the

location with the maximum sum of edge-maps in the range

of ±12 pixels around the current estimate (See Fig. 4). 3

Figure 4. Edge-maps refine the polygon boundaries from V-BP.

6. Experimental results

We have implemented the proposed system in python

and PyTorch, and used a NVIDIA 1080 ti 11GB for the ex-

periments. The DNN training takes roughly 48 hours.

3To avoid misleading edges, we set edge-maps to be 0 inside the win-

dow segments.

6.1. Polygonal segmentation accuracy

Figure 5 shows our polygonal segmentation results with

quantitative evaluations in Table 1. The figure and the table

also compares against the following three baselines:

Keypoint: Our primitives have 3 to 5 corners. We modify

the Keypoint head from Facebook’s MaskRCNN code [26]

to predict 5 Keypoints for every bounding box. Knowing

the primitive type, we pick the appropriate number of esti-

mated Keypoints to form the polygonal shape. For example,

we use the first three Keypoints to form a triangle primitive.

Homo + Axis Pooling: Facade parsing literature offers so-

phisticated axis-aligned recognition techniques. We also

compare the recognition quality when shapes are rectified.

For each house, we apply homography to generate a recti-

fied image for each dominant facade orientation. 4 We then

apply bundle-pooling module along coordinate axes on the

rectified images. Polygons are transformed back to the orig-

inal image by the inverse homography.

LineSweeping: Mask R-CNN produces decent component

segmentation. We simply find a polygon whose boundary

overlaps with the segmentation boundary the most. More

precisely, given a primitive type and a bounding box, we

have a heuristic to determine the range of lines for each

boundary, then exhaustively search for the optimal line that

pass through the most number of segmentation boundaries.

Please see the supplementary document for the details.

Table 1 measures the IoU meanAP and OKS meanAP

(See Sect.3.4), while Figure 5 provides qualitative eval-

uations. Only the most difficult architectural types (i.e.,

walls and roofs) are visualized to avoid clutter. Our bun-

dle pooling consistently outperforms the others except for

a few metrics, in which LineSweeping has small perfor-

mance gains. From qualitative evaluations, we found that

LineSweeping is less accurate at the intersections of walls,

as the wall boundary is often not distinguishable. Another

observation is that the homography rectification is not effec-

tive, especially for side walls or small components, where

image distortions make it difficult for CNNs to extract re-

liable image information. As expected, Keypoint performs

the worst, which does not utilize the vanishing geometry.

Table 2 verifies that pooling and processing as a bun-

dle improves performance, as opposed to pooling and re-

gressing the confidence of a line independently. More

specifically, we change how we pool features in a bundle:

Min/Max pooling for a line-feature and a global pooling

for a bundle-feature. The table shows that the configura-

tion with all the feature poolings consistently improve the

performance. Another observation is that the roof is the

4For metric-accurate homography, we need a focal length. With an im-

age with 2 VPs, we assume their orthogonality and calculate focal length.

For an image with 1 VP, we assume a default vertical field-of-view of 60

degrees and calculated.

754



Figure 5. Polygon segmentation results. Only walls and roofs are shown to avoid clutter as they are the most challenging components. Axis

Pooling does not work on roofs, because not all the VPs are known. LineSweeping results also visualize Mask R-CNN segments.

Table 1. Polygon segmentation accuracy: (IoU mAP / OKS mAP) and (IoU meanAR / OKS meanAR). Segments whose IoU/OKS above

Thred with one ground-truth of same architectural type is positive. Thred=0.5:0.95 is the average mAP for IoU/OKS from 0.5 to 0.95 with

a step size of 0.05.

AP Thred=0.50:0.95 AP Thred=0.50 AP Thred=0.75 AR Thred=0.50:0.95

Homography+AxisPooling 39.1 / 34.0 68.1 / 63.9 42.4 / 32.4 50.7 / 24.7

Keypoint 34.0 / 15.9 63.9 / 35.9 32.4 / 12.8 42.1 / 25.2

Mask+LineSweeping 55.5 / 41.8 80.4 / 63.3 63.2 / 44.6 64.5 / 51.0

Ours 56.4 / 45.1 80.5 / 65.3 63.1 / 46.8 66.1 / 55.4

most difficult architectural type as expected. Their shapes

have more variations and we do not have the vanishing

point for the the left and the right boundaries. We noticed

that door/window/garage IoUs are lower than expected, as

they are usually precise in our visualizations. This is partly

due to the inconsistencies in the annotations (e.g., to in-

clude/exclude frames or to annotate half/full window).

6.2. VP Assignment

Table 3 compares the VP assignment accuracy against a

standard RANSAC based method: (1) Use OpenCV LSD

software to extract line segments and discard those that lie

outside the bounding box; (2) For each VP candidate, count

the number of line segments that pass through with an angu-

lar tolerance of 5 degrees; and (3) Picking the VP with the

highest count. We also vary our pooling operations for an

ablation study. The table shows that our approach consis-

tently outperforms RANSAC based approach with a large

margin across all the categories (See Fig 6 for examples).

Within our approach, max pooling alone is significantly

worse than other pooling operations as expected, because

we would like to accumulate all the pixel information as in

the voting principle.

755



Table 2. Polygon segmentation accuracy: (Average Keypoint Distance / IoU) with different feature pooling strategies. We either turn on

or off Mean/Max pooling in generating a line-feature, and a global pooling in generating a bundle-feature. We show absolute keypoint

distance here to avoid effects from manual chosen scale factor in OKS.

Mean Max Global Wall Door Window Garage Roof All

x 29.7 / 0.73 10.9 / 0.87 8.4 / 0.76 10.0 / 0.80 67.2 / 0.50 25.2 / 0.73

x 21.6 / 0.78 9.0 / 0.89 7.3 / 0.78 7.1/ 0.82 57.8 / 0.55 20.1 / 0.76

x x 18.8 / 0.80 6.3 / 0.91 7.4 / 0.78 7.0 / 0.82 50.3 / 0.61 18.0 / 0.78

x x x 15.3 / 0.82 5.1 / 0.92 6.2 / 0.80 6.4 / 0.84 45.9 / 0.66 15.8 / 0.81

Table 3. VP Assignment Accuracy. The left (resp. right) number shows cases where the input is a set of 2 (resp. 4) VP candidates.

Method

Test Set One-Facade Two-Frontal Two-Facade All

Wall Roof Wall Roof Wall Roof Wall Roof

RANSAC 94.0 / 87.8 94.0 / 89.8 83.3 / 76.1 73.0 / 73.0 87.4 / 81.9 74.5 / 72.7 89.9 / 83.7 85.8 / 83.3

Ours

Mean 99.7 / 99.7 100.0 / 100.0 91.3 / 91.3 89.2 / 89.2 94.0 / 94.0 87.3 / 87.3 96.3 / 96.3 95.4 / 95.4

Max 99.1 / 99.1 94.6 / 94.6 71.0 / 71.0 78.4 / 78.4 76.4 / 76.4 67.3 / 67.3 86.9 / 86.9 85.6 / 85.6

Mean + Max 100.0 / 100.0 100.0 / 100.0 94.9 / 92.8 94.6 / 91.2 93.4 / 92.9 87.3 / 87.3 97.1 / 96.5 96.2 / 95.8

Figure 6. Instances in which our Bundle Pooling modules choose

the correct VP from candidates, while RANSAC assignment does

not.

6.3. Failure Cases

The proposed system is far from perfect with the follow-

ing two major failure modes. First, near-frontal shots with

two facade orientations exhibit small side walls with severe

foreshortening effects. Mask R-CNN misses such compo-

nents, and our algorithm is not able to recover from missed

detections. 15% of the images suffer from this failure mode.

Second, roof structures are generally very challenging, be-

cause adjacent roof components have similar texture/color,

and exhibit unusual shapes without vanishing geometry as

a guide.

6.4. Applications

Polygonal segmentation representation allows interest-

ing applications. We demonstrate virtual remodeling and

pop-up 3D billboards, which are combinations of standard

techniques and refer system details to the supplementary

document.

Virtual Remodeling: From an architectural asset database,

also offered by a home design company Renoworks, we

choose a new asset or material texture for each component.

We apply homography to transfer the texture onto the im-

age domain, and use the spectral matting algorithm [19] to

composite an image. The tri-map is generated by (1) treat-

ing pixels inside the polygon as foreground pixels, and (2)

using DeepLab v2 [8] to segment occluders (e.g., cars and

greens) as background pixels. After obtaining the matte,

we replace the foreground pixels inside the polygon with

the new texture.

Figure 7 compares our results with Cycle-GAN [35] by

assuming a scenario where we desire to transfer textures be-

tween LIGHT color and DARK colors. We manually col-

lect 433 LIGHT and DARK wall images, and train Cycle-

GAN, which surprisingly works well and re-colors wall tex-

ture properly. However, Cycle-GAN is unaware of building

structure or vanishing geometry, introducing various arti-

facts in close-ups. Furthermore, a user is not able to control

what new material or asset to insert, which is a critical dis-

advantage for a real-estate application, but possible by our

system.

Pop-up 3D Billboards: Polygonal representation allows

3D pop-up models (See Fig.8). Kushal et al. [17] proposed a

method to estimate surface normals of 2D polygonal shapes.

We merge polygon boundaries within 15 pixels and use their

method to estimate surface normals, while VPs are used to

estimate camera intrinsics. After setting the depth of one

vertex to a unit depth, we are able to recover depths of all

the vertices and produce a 3D house model.

756



Figure 7. Virtual house remodeling application.

Figure 8. Pop-up 3D billboards application.

7. Conclusion

This paper introduces a polygonal architecture segmen-

tation problem, and proposes a family of bundle-pooling

modules which effectively assigns vanishing points and de-

termines polygonal shapes for architectural components.

Qualitative and quantitative evaluations demonstrate con-

sistent improvements over the existing techniques based on

our metric and benchmark. We also demonstrate virtual re-

modeling applications producing compelling results at the

production quality. One of the limitations of our current ap-

proach is that architectural components are segmented in-

dependently. Simultaneous segmentation of architectural

components with inter-component consistency is one of our

future works. We will share our code for further research.

8. Acknowledgement

This research is partially supported by by National Sci-

ence Foundation under grant IIS 1618685, NSERC Dis-

covery Grants, NSERC Discovery Grants Accelerator Sup-

plements, and DND/NSERC Discovery Grant Supplement.

We thank Homayoon Farrahi and Nader Hamekasi at

Renoworks [1] for their contributions on data collection.

References

[1] Renoworks. https://www.renoworks.com/. 1, 3, 8

757



[2] David Acuna, Huan Ling, Amlan Kar, and Sanja Fidler. Ef-

ficient interactive annotation of segmentation datasets with

polygon-rnn++. pages 859–868, 06 2018. 2

[3] J.-C Bazin and Marc Pollefeys. 3-line ransac for orthogonal

vanishing point detection. pages 4282–4287, 10 2012. 2, 3

[4] Stan Birchfield and Carlo Tomasi. Multiway cut for stereo

and motion with slanted surfaces. In Proceedings of the sev-

enth IEEE international conference on computer vision, vol-

ume 1, pages 489–495. IEEE, 1999. 2

[5] Yuri Boykov, Olga Veksler, and Ramin Zabih. Fast approxi-

mate energy minimization via graph cuts. IEEE Transactions

on pattern analysis and machine intelligence, 23(11):1222–

1239, 2001. 2

[6] L. Castrejón, K. Kundu, R. Urtasun, and S. Fidler. Anno-

tating object instances with a polygon-rnn. In 2017 IEEE

Conference on Computer Vision and Pattern Recognition

(CVPR), pages 4485–4493, 2017. 2

[7] Jiacheng Chen, Chen Liu, Jiaye Wu, and Yasutaka Fu-

rukawa. Floor-sp: Inverse cad for floorplans by sequen-

tial room-wise shortest path. 2019 IEEE/CVF International

Conference on Computer Vision (ICCV), pages 2661–2670,

2019. 2

[8] L. Chen, G. Papandreou, I. Kokkinos, K. Murphy, and A. L.

Yuille. Deeplab: Semantic image segmentation with deep

convolutional nets, atrous convolution, and fully connected

crfs. IEEE Transactions on Pattern Analysis and Machine

Intelligence, 40(4):834–848, April 2018. 7

[9] Alex Flint, Christopher Mei, David Murray, and Ian Reid.

A dynamic programming approach to reconstructing build-

ing interiors. In European Conference on Computer Vision,

pages 394–407. Springer, 2010. 2

[10] Yasutaka Furukawa, Brian Curless, S.M. Seitz, and R.

Szeliski. Manhattan-world stereo. 2012 IEEE Conference

on Computer Vision and Pattern Recognition, 0:1422–1429,

06 2009. 2, 5

[11] David Gallup, Jan-Michael Frahm, and Marc Pollefeys.

Piecewise planar and non-planar stereo for urban scene re-

construction. In 2010 IEEE Computer Society Conference

on Computer Vision and Pattern Recognition, pages 1418–

1425. IEEE, 2010. 2

[12] Rafael Gioi, Jeremie Jakubowicz, Jean-Michel Morel, and

Gregory Randall. Lsd: A fast line segment detector with a

false detection control. IEEE transactions on pattern analy-

sis and machine intelligence, 32:722–32, 04 2010. 3

[13] Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross B.

Girshick. Mask r-cnn. 2017 IEEE International Conference

on Computer Vision (ICCV), pages 2980–2988, 2017. 1, 2

[14] Varsha Hedau, Derek Hoiem, and David Forsyth. Recover-

ing the spatial layout of cluttered rooms. In 2009 IEEE 12th

international conference on computer vision, pages 1849–

1856. IEEE, 2009. 2

[15] Yen-Chang Hsu, Zheng Xu, Zsolt Kira, and Jiawei Huang.

Learning to cluster for proposal-free instance segmentation.

CoRR, abs/1803.06459, 2018. 2

[16] Florian Kluger, Hanno Ackermann, Michael Ying Yang,

and Bodo Rosenhahn. Deep learning for vanishing point

detection using an inverse gnomonic projection. CoRR,

abs/1707.02427, 2017. 2

[17] A. Kushal and S. M. Seitz. Single view reconstruction of

piecewise swept surfaces. In 2013 International Conference

on 3D Vision - 3DV 2013, pages 239–246, June 2013. 7

[18] Chen-Yu Lee, Vijay Badrinarayanan, Tomasz Malisiewicz,

and Andrew Rabinovich. Roomnet: End-to-end room layout

estimation. In Proceedings of the IEEE International Con-

ference on Computer Vision, pages 4865–4874, 2017. 2

[19] Anat Levin, Alex Rav-Acha, and Dani Lischinski. Spec-

tral matting. IEEE Trans. Pattern Anal. Mach. Intell.,

30(10):1699–1712, Oct. 2008. 7

[20] Zuoyue Li, Jan D. Wegner, and Aurélien Lucchi. Topologi-

cal map extraction from overhead images. 2019 IEEE/CVF

International Conference on Computer Vision (ICCV), pages

1715–1724, 2018. 2

[21] Tsung-Yi Lin, Michael Maire, Serge J. Belongie, Lubomir D.

Bourdev, Ross B. Girshick, James Hays, Pietro Perona, Deva

Ramanan, Piotr Dollár, and C. Lawrence Zitnick. Microsoft

COCO: common objects in context. CoRR, abs/1405.0312,

2014. 3

[22] Tsung-Yi Lin, Piotr Dollar, Ross Girshick, Kaiming He,

Bharath Hariharan, and Serge Belongie. Feature pyramid

networks for object detection. In The IEEE Conference

on Computer Vision and Pattern Recognition (CVPR), July

2017. 4

[23] Chen Liu, Jiajun Wu, Pushmeet Kohli, and Yasutaka Fu-

rukawa. Raster-to-vector: Revisiting floorplan transforma-

tion. 2017 IEEE International Conference on Computer Vi-

sion (ICCV), pages 2214–2222, 2017. 2

[24] Hantang Liu, Jialiang Zhang, Jianke Zhu, and Steven Hoi.

Deepfacade: A deep learning approach to facade parsing.

pages 2301–2307, 08 2017. 2

[25] Anelo Martinović, Markus Mathias, Julien Weissenberg, and

Luc Van Gool. A three-layered approach to facade pars-

ing. In Andrew Fitzgibbon, Svetlana Lazebnik, Pietro Per-

ona, Yoichi Sato, and Cordelia Schmid, editors, Computer

Vision – ECCV 2012, pages 416–429, Berlin, Heidelberg,

2012. Springer Berlin Heidelberg. 2

[26] Francisco Massa and Ross Girshick. maskrcnn-benchmark:

Fast, modular reference implementation of Instance Seg-

mentation and Object Detection algorithms in PyTorch.

https://github.com/facebookresearch/

maskrcnn-benchmark, 2018. 5

[27] Gen Nishida, Adrien Bousseau, and Daniel G Aliaga. Proce-

dural modeling of a building from a single image. In Com-

puter Graphics Forum, volume 37, pages 415–429. Wiley

Online Library, 2018. 2

[28] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun.

Faster r-cnn: Towards real-time object detection with region

proposal networks. IEEE Trans. Pattern Anal. Mach. Intell.,

39(6):1137–1149, June 2017. 3

[29] John YA Wang and Edward H Adelson. Representing mov-

ing images with layers. IEEE Transactions on Image Pro-

cessing, 3(5):625–638, 1994. 2

[30] Xiaolong Wang, Ross Girshick, Abhinav Gupta, and Kaim-

ing He. Non-local neural networks. In Proceedings of the

IEEE Conference on Computer Vision and Pattern Recogni-

tion, pages 7794–7803, 2018. 4

758



[31] Huayi Zeng, Jiaye Wu, and Yasutaka Furukawa. Neural pro-

cedural reconstruction for residential buildings. In Vitto-

rio Ferrari, Martial Hebert, Cristian Sminchisescu, and Yair

Weiss, editors, Computer Vision – ECCV 2018, pages 759–

775, Cham, 2018. Springer International Publishing. 2

[32] Yichao Zhou, Haozhi Qi, Jingwei Huang, and Yi Ma.

Neurvps: Neural vanishing point scanning via conic convo-

lution. In NeurIPS, 2019. 2, 3

[33] Yichao Zhou, Haozhi Qi, and Yi Ma. End-to-end wireframe

parsing. In ICCV 2019, 2019. 2

[34] Yichao Zhou, Haozhi Qi, Yuexiang Zhai, Qi Sun, Zhili Chen,

Li-Yi Wei, and Yi Ma. Learning to reconstruct 3d manhattan

wireframes from a single image. In International Conference

on Computer Vision, 2019. 2

[35] Jun-Yan Zhu, Taesung Park, Phillip Isola, and Alexei A

Efros. Unpaired image-to-image translation using cycle-

consistent adversarial networks. In Computer Vision (ICCV),

2017 IEEE International Conference on, 2017. 7

[36] Chuhang Zou, Alex Colburn, Qi Shan, and Derek Hoiem.

Layoutnet: Reconstructing the 3d room layout from a sin-

gle rgb image. In Proceedings of the IEEE Conference

on Computer Vision and Pattern Recognition, pages 2051–

2059, 2018. 2

759


