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Abstract

We address the problem of video grounding from nat-

ural language queries. The key challenge in this task is

that one training video might only contain a few annotated

starting/ending frames that can be used as positive exam-

ples for model training. Most conventional approaches di-

rectly train a binary classifier using such imbalance data,

thus achieving inferior results. The key idea of this paper

is to use the distances between the frame within the ground

truth and the starting (ending) frame as dense supervisions

to improve the video grounding accuracy. Specifically, we

design a novel dense regression network (DRN) to regress

the distances from each frame to the starting (ending) frame

of the video segment described by the query. We also pro-

pose a simple but effective IoU regression head module to

explicitly consider the localization quality of the grounding

results (i.e., the IoU between the predicted location and the

ground truth). Experimental results show that our approach

significantly outperforms state-of-the-arts on three datasets

(i.e., Charades-STA, ActivityNet-Captions, and TACoS).

1. Introduction

Video grounding is an important yet challenging task in

computer vision, which requires the machine to watch a

video and localize the starting and ending time of the tar-

get video segment that corresponds to the given query, as

shown in Figure 1. This task has drawn increasing attention

over the past few years due to its vast potential applications

in video understanding [38, 3, 45, 44, 6], video retrieval

[42, 8], and human-computer interaction [35, 20, 50], etc.

The task, however, is very challenging due to several

reasons: 1) It is nontrivial to build connections between

∗This work was done when Runhao Zeng was a research intern at Peng

Cheng Laboratory, Shenzhen, China.
†Corresponding author

Query: A man reaches 

out and then pets

the fish.  

Video:

Start time: 13.7s End time: 24.5s

Annotated starting frame Annotated ending frame

Figure 1. An illustrative example of the video grounding task.

Given a video and a query in natural language, the video grounding

task aims to identify the starting time and the ending time of the

video segment described by the query. One key challenge of this

task is how to leverage dense supervision upon sparsely annotated

starting and ending frames only.

the query and complex video contents; 2) Localizing ac-

tions of interest precisely in a video with complex back-

grounds is very difficult. More critically, a video can often

contain many thousands of frames, but it may have only

a few annotated starting/ending frames (namely the pos-

itive training examples), making the problem even more

challenging. Previous approaches often adopt a two-stage

pipeline [9, 40, 10], where they generate the proposals and

rank them according to their similarities with the query.

However, this pipeline incurs two issues: 1) One video often

contains thousands of proposals, resulting in a heavy com-

putation cost when comparing proposal-query pairs. 2) The

performance highly relies on the quality of proposals. To

address the above issues, one-stage video grounding meth-

ods [5, 43, 11] have been studied. Yuan et al. [43] pro-

pose to learn a representation of the video-query pair and

use a multi-layer perceptron (MLP) to regress the starting

and ending time. Chen et al. [5] and Ghosh et al. [11] at-

tempt to predict two probabilities at each frame, which in-

dicate whether this frame is a starting (or ending) frame of

the target video segment. The grounding result is obtained

by selecting the frame with the largest starting (or ending)

probability. However, the existing two-stage and one-stage

methods have one common issue: they neglect the rich in-

formation from the frames within the ground truth.
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Recently, anchor-free approaches [21, 31, 36, 26, 24] for

one-stage object detection become increasingly popular be-

cause of their simplicity and effectiveness. In this vein,

Tian et al. [36] propose the FCOS framework to solve ob-

ject detection in a per-pixel prediction fashion. Specifically,

FCOS trains a regression network to directly predict the dis-

tance from each pixel in the object to the object’s bound-

ary. This idea is helpful for video grounding. If we train a

model to predict the distance from each frame to the ground

truth boundary, then all the frames within the ground truth

can be leveraged as positive training samples. In this way,

the number of positive samples is sufficiently increased and

thus benefits the training.

In this paper, we propose a dense regression network

for video grounding, which consists of four modules, in-

cluding a video-query interaction module, a location regres-

sion head, a semantic matching head, and an IoU regression

head. The main idea is as straightforward as training a re-

gression module to directly regress the ground truth bound-

ary from each frame within the ground truth. In the training,

all frames within the ground truth are selected as positive

samples. By doing so, the sparse annotation is able to be

used to generate more positive training samples sufficiently,

which boosts grounding performance eventually.

For each video-query pair, our model produces dense

predictions (i.e., one predicted temporal bounding box for

each frame) while we are only interested in the one that

matches the query best. To select the best grounding re-

sult, we focus on two perspectives: 1) Does the box match

the query semantically? 2) Does the box match the tem-

poral boundary of the ground truth? Specifically, we train

a semantic matching head to predict a score for each box,

which indicates whether the content in the box matches the

query semantically. However, this score cannot directly re-

flect the localization quality (i.e., the IoU with the ground

truth), which is of vital importance for video grounding.

This motivates us to further consider the localization quality

of each prediction. To do so, one may use the “centerness”

assumption in FCOS, which, however, is empirically found

inapplicable for video grounding (see Table 5). In this pa-

per, we train an IoU regression head to directly estimate

the IoU between the predicted box and the ground truth.

Last, we combine the matching score and the IoU score to

find the best grounding result. It is worth noting that the

dense regression network works in a one-stage manner. We

evaluate our proposed method on three popular benchmarks

for video grounding, i.e., Charades-STA [9], ActivityNet-

Captions [25] and TACoS [32].

To sum up, our contributions are as follows:

• We propose a dense regression network for one-stage

video grounding. We provide a new perspective to

leverage dense supervision from the sparse annotations

in video grounding.

• To explicitly consider the localization quality of the

predictions, we propose a simple but effective IoU

regression head and integrate it into our one-stage

paradigm.

• We verified the effectiveness of our proposed method

on three video grounding datasets. On ActivityNet-

Captions especially, our method obtains the accuracy

of 42.49%, which significantly outperforms the state-

of-the-art, i.e., 36.90% by He et al. [16].

2. Related work

Video grounding. Recently, great progress has been

achieved in deep learning [48, 47, 2, 15, 13, 14, 19, 1, 51],

which facilitates the development of video grounding. Ex-

isting methods on this task can be grouped into two cat-

egories (i.e., two-stage and one-stage). Most two-stage

methods [9, 17, 10, 4, 30, 49] resort to a propose-and-

rank pipeline, where they first generate proposals and then

rank them relying on the similarity between proposal and

query. Gao et al. [9] and Hendricks et al. [17] propose

to use the sliding windows as proposals and then perform

a comparison between each proposal and the input query

in a joint multi-modal embedding space. To improve the

quality of the proposals, Xu et al. [40] incorporate a query

into a neural network to generate the query-guided propos-

als. Zhang et al. [46] explicitly model temporal relations

among proposals using a graph. The two-stage methods are

straightforward but have two limitations: 1) Comparing all

the proposal-query pairs leads to a heavy computation cost;

2) The performance highly relies on the quality of propos-

als. Our method is able to avoid the above limitations since

the candidate proposals are not required.

To perform video grounding more efficiently, many

methods that go beyond the propose-and-rank pipeline have

been studied. He et al. [16] and Wang et al. [39] propose a

reinforcement learning method for video grounding task. In

the work by He et al. [16], the agent adjusts the boundary of

a temporal sliding window according to the learned policy.

At the same time, Yuan et al. [43] propose the attention-

based grounding approach which directly predicts the tem-

poral coordinates of the video segment that described by

the input query. Ghosh et al. [11] and Chen et al. [4] pro-

pose to select the starting and ending frames by leveraging

cross-modal interactions between text and video. Specif-

ically, they predict two probabilities at each frame, which

indicate whether this frame is a starting (or ending) frame of

the ground truth video segment. Unlike the previous work

by Chen et al. [4] and Ghosh et al. [11] where only the

starting and ending frame are selected as positive training

samples, our method is able to leverage much more positive

training samples, which significantly boosts the grounding

performance.
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Figure 2. Schematic of our dense regression network. We use the video-query interaction module to fuse the features from the video and

query. By constructing the feature pyramid, we obtain hierarchical feature maps and forward them to the grounding module. At each

location t, the grounding module predicts a temporal bounding box, along with a semantic matching score and an IoU score for ranking.

Anchor-free object detection. Anchor-free object detec-

tors [21, 31, 36, 26, 24] predict bounding boxes and class

scores without using predefined anchor boxes. Redmon et

al. propose YOLOv1 [31] to predict bounding boxes at the

points near the center of objects. Law et al. propose Cor-

nerNet [26] to detect an object bounding box as a pair of

corners and CornerNet obtains a high recall. Kong et al.

propose FoveaBox [24] to predict category-sensitive seman-

tic maps for the object existing possibility and produce a

category-agnostic bounding box at each position. Tian et al.

devise FCOS [36] to make full use of the pixels in a ground

truth bounding box to train the model and propose center-

ness to suppress the low-quality predictions. Our work is

related to FCOS since we also directly predict the distance

from each frame to the ground truth boundary.

3. Proposed method

Notation. Let V = {It ∈ R
H×W×3}Tt=1 be an untrimmed

video, where It denotes the frame at time slot t with height

H and width W . We denote the query with N words as

Q = {wn}
N
n=1, where wn is the n-th word in the query.

Problem Definition. Given a video V and a query Q, video

grounding requires the machine to localize a video segment

(i.e., a temporal bounding box b = (ts, te)) starting at ts
and ending at te, which corresponds to the query. This task

is very challenging since it is difficult to localize actions of

interest precisely in a video with complex contents. More

critically, only a few frames are annotated in one video,

making the training samples extremely imbalanced.

3.1. General scheme

We focus on solving the problem that existing video

grounding methods neglect the rich information from the

frames within the ground truth, which, however, is able to

significantly improve the localization accuracy. To this end,

we propose a dense regression network to regress the start-

ing (or ending) frame of the video segment described by

the query for each frame. In this way, we are able to se-

lect every frame within the ground-truth as a positive train-

ing sample, which significantly benefits the training of our

video grounding model.

Formally, we forward the video frames {It}
T
t=1 and the

query {wn}
N
n=1 to the video-query interaction module G for

extracting the multi-scale feature maps. Then, each feature

map is processed by the grounding module, which consists

of three components, i.e., location regression head Mloc,

semantic matching head Mmatch and IoU regression head

Miou. The location regression head predicts a temporal

bounding box b̂t at the t-th frame by computing

{b̂t}
T
t=1 = {(t− d̂t,s, t+ d̂t,e)}

T
t=1,

{(d̂t,s, d̂t,e)}
T
t=1 = Mloc(G({It}

T
t=1, {wn}

N
n=1)),

(1)

where (d̂t,s, d̂t,e) are the predicted distances to the start-

ing and ending frame. With the predicted boxes {b̂t}
T
t=1 at

hand, our target is to select the box that matches the query

best. To this end, we propose two heads in the grounding

module. The semantic matching head predicts a score m̂t

indicating whether the content in the box b̂t matches the

query semantically. However, this score cannot directly re-

flect the localization quality (i.e., the IoU with the ground

truth), which, however, is also very important for video

grounding. Therefore, we propose the IoU regression head

to predict a score ût for directly estimating the IoU between

b̂t and the corresponding ground truth. The schematic of

our approach is shown in Figure 2. For simplicity, we de-

note our model as dense regression network (DRN).

Inference details. Given an input video, we forward it

through the network and obtain a box b̂t, a semantic match-

ing score m̂t as well as an IoU score ût for each frame It.
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The final grounding result is obtained by choosing the box

with the highest m̂t × ût.

In the following, we will introduce the details of the

video-query interaction module in Section 3.2. Then, we

detail the location regression head, the semantic matching

head and the IoU regression head in Sections 3.3, 3.4, and

3.5, respectively. Last, we introduce the training details of

our model in Section 3.6.

3.2. Multi­level video­query interaction module

Building connections between vision and language is a

crucial step for video grounding. To learn better vision-

language representations, we propose a multi-level video-

query interaction module. Given a video with T frames,

we use some feature extractor (e.g., C3D [37]) to obtain the

video feature F ∈ R
T×c, where c is the channel dimension.

Then, the vision-language representations are produced by

using multi-level fusion and temporal location embedding.

Multi-level fusion. The target video segments described by

the query often have large scale variance in video ground-

ing. For example on Charades-STA dataset [9], the shortest

ground truth is 2.4s while the longest is 180.8s. To handle

this issue, we follow Lin et al. [27] to obtain a set of hierar-

chical feature maps from multiple levels. Since the model

may focus on different parts of the input query at each

level, we follow [18] to fuse the query and the video fea-

tures at different levels. Specifically, we encode the query

Q = {wn}
N
n=1 into {hn}

N
n=1 and a global representation g

by using a bi-directional LSTM as:

h1,h2, . . . ,hN = BiLSTM(Q) and g = [h1;hN ], (2)

where hn = [
→

hn;
←

hn] is the concatenation of the forward

and backward hidden states of the LSTM for the n-th word.

For the i-th level, a textual attention αi,n is computed over

the words, and the query feature qi is computed as:

qi =

N∑

n=1

αi,n · hn,

αi,n = Softmax(W1(hn ⊙ (W
(i)
2 ReLU(W3g)))),

(3)

where ⊙ is element-wise multiplication. W1 and W3 are

the parameters shared across different levels but W
(i)
2 is

learned separately for each level i. Given the input visual

feature Mi ∈ R
Ti×c of a vision-language fusion mod-

ule, we first duplicate qi for Ti times to obtain a feature

map Di ∈ R
Ti×c, where Ti is the temporal resolution at

the i-th level. Then, we perform element-wise multiplica-

tion to fuse Mi and Di, leading to a set of feature maps

{Ci ∈ R
Ti×c}Li=1, where L is set to 3 in our paper. Last, we

obtain the feature maps {Pi ∈ R
Ti×c}Li=1 for the ground-

ing module by using FPN. We put more details in the sup-

plementary material.

Temporal location embedding. We find that the queries

often contain some words for referring temporal orders,

such as “after” and “before”. Therefore, we seek to fuse

the temporal information of the video with the visual fea-

tures. The temporal location of the t-th frame (or segment)

is lt = [ t−0.5
T

, t+0.5
T

, 1
T
]. The location embedding lt is con-

catenated with the output of the vision-query fusion module

that fuses the video feature F and the query feature. Note

that the concatenation is performed along the channel di-

mension, resulting in the feature map C1.

3.3. Location regression head

With the vision-language representation P (we omit in-

dex i for better readability), we propose a location regres-

sion head to predict the distance from each frame to the

starting (or ending) frame of the video segment that corre-

sponds to the query. We implement it as two 1D convolu-

tion layers with two output channels in the last layer. For

each location t on the feature map P, if it falls inside the

ground truth, then this location is considered as a training

sample. Then, we have a vector dt = (dt,s, dt,e) being the

regression target at location t. Here, dt,s and dt,e denote the

distance from location t to the corresponding boundary and

are computed as

dt,s = t− ts, dt,e = te − t, (4)

where ts and te is the starting and ending frames of the

ground truth, respectively. It is worth noting that dt,s and

dt,e are all positive real values since the positive location t

falls in the ground truth (i.e., ts < t < te). For those lo-

cations fall outside the ground truth, we do not use them to

train the location regression head as in [36].

It is worth mentioning that the FPN [27] exploited in our

video-query interaction module could also help the location

regression head. The intuition is that all the positive loca-

tions from different feature maps can be used to train the

location regression head, which further increases the num-

ber of training samples.

3.4. Semantic matching head

For each video-query pair, the location regression head

predicts a temporal bounding box b̂t at each location t.

Then, how to select the box that matches the query best is

the key to perform video grounding.

Since the target of video grounding is to localize the

video segments described by the query, it is straightforward

to evaluate whether the content in b̂t matches the query se-

mantically. To this end, we devise a semantic matching head

to predict a score m̂t for each predicted box b̂t. The seman-

tic matching head is implemented as two 1D convolution

layers with one output channel in the last layer. If location t

falls in the ground truth, its label is set as mt = 1. For those
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locations fall outside the ground truth, we consider them as

negative training samples, i.e., mt = 0.

3.5. IoU regression head

The semantic matching score m̂t indicates whether the

content in the box b̂t matches the query semantically. How-

ever, we also care about whether b̂t matches the ground

truth temporal boundary, which can be measured by the lo-

calization quality (i.e., the IoU with the ground truth).

To find the box with the best localization quality, one

may use the “centerness” technique in FCOS [36]. In short,

“centerness” is introduced for object detection to suppress

the low-quality detected objects based on a hand-crafted

assumption—the location closer to the center of objects will

predict a box with higher localization quality (i.e., a larger

IoU with the ground truth). However, we empirically found

that this assumption is inapplicable to video grounding.

Specifically, we conduct an experiment to find out which

location predicts the best box (i.e., has the largest IoU with

the ground truth). For each video-query pair, we select the

predicted box that has the largest IoU with the ground truth.

Then, we divide the ground truth into three portions evenly

and sum up the number of locations that predicts the best

box for each portion. Experimental results show that More

than 46% of the predictions are not predicted by the central

locations of the ground truth.

In this paper, we propose to explicitly consider the local-

ization quality of the predicted box b̂t in the training and

testing. The main idea is as straightforward as predicting

a score at each location t to estimate the IoU between b̂t

and the corresponding ground truth. To do so, we train a

three-layer convolution network as the IoU regression head

in the grounding module, as shown in Figure 2. Note that

the input of the IoU regression head is the concatenation of

the feature maps obtained from the first convolution layer

of the semantic matching head and the location regression

head. The training target ut is obtained by calculating the

IoU between b̂t and the corresponding ground truth.

3.6. Training details

We define the training loss function for the location re-

gression head as follows:

Lloc =
1

Npos

T∑

t=1

✶
t
gtL1(dt, d̂t), (5)

where we use the IoU regression loss [41] as L1 following

Tian et al. [36]. Npos is the number of positive samples.

✶
t
gt is the indicator function, being 1 if location t falls in the

ground truth and 0 otherwise. The training loss function for

the semantic matching head is defined as:

Lmatch =
1

Npos

T∑

t=1

L2(mt, m̂t), (6)

where we adopt the focal loss [28] as L2 since it is ef-

fective when handling the class imbalance issue. To train

the IoU regression head for predicting the IoU between the

predicted box and ground truth, we define the training loss

function as follows:

Liou =
T∑

t=1

L3(ut, ût), (7)

where we choose to use the Smooth-L1 loss [12] as L3

because it is less sensitive to outliers.

With randomly initialized parameters, the location re-

gression head often fails to produce high-quality temporal

bounding boxes for training the IoU regression head. Thus,

we propose a three-step strategy to train the proposed DRN,

which consists of a video-query interaction module G, a

semantic matching head Mmatch, an IoU regression head

Miou and a location regression head Mloc. Specifically, in

the first step, we fix the parameters of the IoU regression

head and train the DRN by minimizing Equations (5) and

(6). In the second step, we fix the parameters in DRN except

for the IoU regression head and train the DRN by minimiz-

ing Equation (7). In the third step, we fine-tune the whole

model in an end-to-end manner1.

4. Experiments

4.1. Datasets

Charades-STA is a benchmark dataset for the video

grounding task, which is built upon the Charades [33]

dataset. The Charades dataset is collected for video action

recognition and video captioning. Gao et al. [9] adapt the

Charades dataset to the video grounding task by collecting

the query annotations. The Charades-STA dataset contains

6672 videos and involves 16128 video-query pairs, where

12408 pairs are used for training and 3720 for testing. The

duration of the videos is 29.76 seconds on average. Each

video has 2.4 annotated moments and the duration of each

moment is 8.2 seconds. We follow the same split of the

dataset as in Gao et al. [9] for fair comparisons.

ActivityNet-Captions (ANet-Captions) is collected for the

dense video captioning task. It is also a popular bench-

mark for video grounding since the captions can be used as

queries. ANet-Captions consists of 20K videos with 100K

queries. The videos are associated with 200 activity classes,

where the content is more diverse compared to Charades-

STA. On average, each video contains 3.65 queries, and

each query has an average length of 13.48 words. The av-

erage duration of the videos is around 2 minutes. The Ac-

tivityNet Captions dataset is split into the training set, val-

idation set, testing set with a 2:1:1 ratio, including 37421,

17505 and 17031 video-query pairs separately. The public

1We put the training algorithm in the supplementary material.
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split of the dataset contains a training set and two validation

sets val 1 and val 2. The testing set is withheld for compe-

tition. We train our model on the training set and evaluate it

on val 1 and val 2 separately for fair comparisons.

TACoS dataset is collected by Regneri et al. [32] for video

grounding and dense video captioning tasks. It consists of

127 videos on cooking activities with an average length of

4.79 minutes. For the video grounding task, TACoS dataset

contains 18818 video-query pairs. Compared to Activi-

tyNet Captions dataset, TACoS has more temporally anno-

tated video segments with queries per video. Each video

has 148 queries on average. Moreover, TACoS dataset is

very challenging since the queries in TACoS dataset span

over only a few seconds even a few frames. We follow the

same split of the dataset as Gao et al. [9] for fair compar-

isons, which has 10146, 4589, and 4083 video-query pairs

for training, validation, and testing respectively.

4.2. Implementation details

Evaluation metric. For fair comparisons, we follow Gao et

al. [9] to compute “R@n, IoU=m” as the evaluation metric.

To be specific, it represents the percentage of testing sam-

ples that have at least one correct grounding prediction (i.e.,

the IoU between the prediction and the ground truth is larger

than m) in the top-n predictions.

Video Feature Extractor. We use the C3D [37] network

pre-trained on Sports-1M [22] as the feature extractor. The

C3D network takes 16 frames as input and the outputs of the

fc6 layer with dimensions of 4096 are used as a feature vec-

tor. We also extract the I3D [3] and VGG [34] features to

conduct experiments on Charades-STA. More details about

the feature extractor are put in the supplementary material.

Language Feature. We transform each word of language

sentences into lowercase. We use pre-trained GloVe word

vectors to initialize word embeddings with the dimension

of 300. A one-layer bi-directional LSTM with 512 hidden

units serves as the query encoder.

Training settings. The learning rate in the first training step

is 0.001 and we decay it by a factor of 100 for the second

step. During fine-tuning, we set the learning rate as 10−6.

We set batch size as 32 and use Adam [23] as the optimizer.

4.3. Comparisons with state­of­the­arts

Comparisons on Charades-STA. We compare our model

with the state-of-the-art methods in Table 1. Our DRN

reaches the highest scores over all IoU thresholds. Partic-

ularly, when using the same C3D features, our DRN out-

performs the previously best method (i.e., R-W-M [16]) by

8.7% absolute improvement, in terms of R@1, IoU=0.5.

For fair comparisons with MAN [46] and ExCL [11], we

perform additional experiments by using the same features

(i.e., VGG and I3D) as reported in their papers. Our DRN

outperforms them by 1.66% and 8.99%, respectively.

Table 1. Comparisons with state-of-the-arts on Charades-STA.

Methods Feature
R@1 R@1 R@5 R@5

IoU=0.5 IoU=0.7 IoU=0.5 IoU=0.7

CTRL [9] C3D 23.63 8.89 58.92 29.52

SMRL [39] C3D 24.36 11.17 61.25 32.08

MAC [10] C3D 30.48 12.20 64.84 35.13

T-to-C [40] C3D 35.60 15.80 79.40 45.40

R-W-M [16] C3D 36.70 - - -

DRN (ours) C3D 45.40 26.40 88.01 55.38

ExCL [11] I3D 44.10 22.40 - -

DRN (ours) I3D 53.09 31.75 89.06 60.05

SAP [7] VGG 27.42 13.36 66.37 38.15

MAN [46] VGG 41.24 20.54 83.21 51.85

DRN (ours) VGG 42.90 23.68 87.80 54.87

Table 2. Comparisons on ANet-Captions using C3D features. (∗)

indicates the method that uses val 2 split as the testing set, while

other methods use the val 1 split.

Methods
R@1 R@1 R@5 R@5

IoU=0.5 IoU=0.7 IoU=0.5 IoU=0.7

CTRL [9] 14.00 - - -

ACRN [29] 16.17 - - -

T-to-C[40] 27.70 13.60 59.20 38.30

R-W-M [16] 36.90 - - -

DRN (ours) 42.49 22.25 71.85 45.96

TGN∗ [4] 27.93 - 44.20 -

ABLR∗ [43] 36.79 - - -

CMIN∗ [49] 43.40 23.88 67.95 50.73

DRN∗ (ours) 45.45 24.36 77.97 50.30

Table 3. Comparisons on TACoS using C3D features.

Methods
R@1 R@5

IoU=0.5 IoU=0.5

ABLR [43] 9.40 -

CTRL [9] 13.30 25.42

ACRN [29] 14.62 24.88

SMRL [39] 15.95 27.84

CMIN [49] 18.05 27.02

TGN [4] 18.90 31.02

MAC [10] 20.01 30.66

DRN (ours) 23.17 33.36

Comparisons on ActivityNet-Captions. Table 2 reports

the video grounding results of various methods. We follow

the previous methods to use C3D features for fair compar-

isons. Since previous methods use different testing splits,

we report the performance of our model on both val 1 and

val 2. Regarding R@1, IoU=0.5, our method outperforms

R-W-M [16] by 5.59% absolute improvement on val 1 split

and exceeds CMIN [49] by 2.05% on val 2 split.

Comparisons on TACoS. We compare our DRN with state-

of-the-art methods with the same C3D features in Table 3.

It is worth noting that this dataset is very challenging since

each video may correspond to multiple queries (148 queries
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Table 4. Ablation study on the number of positive training samples

on Charades, measured by R@1 and R@5 when IoU=0.5.

Methods
R@1

Gain
R@5

Gain
IoU=0.5 IoU=0.5

DRN-Center 38.36 - 83.36 -

DRN-Random 40.88 2.52 84.11 0.75

DRN-Half 42.79 4.43 85.88 2.52

DRN-All 45.40 7.04 88.01 4.65

on average). Despite its difficulty, our method reaches the

highest score in terms of both R@1 and R@5 when IoU =
0.5 and outperforms previous best result by a large margin

(i.e., 23.17% vs. 20.01%).

5. Ablation studies

In this section, we will perform complete and in-depth

ablation studies to evaluate the effect of each component

of our model. More details about the structures and train-

ing configurations of the baseline methods (such as DRN-

Center) can be found in the supplementary material.

5.1. How does location regression help?

Compared with other one-stage video grounding meth-

ods, the key to our DRN is to leverage more positive sam-

ples for the training. Here, we implement three variants

of our methods: DRN-Half, DRN-Random and DRN-

Center. The three baselines are the same as the original

DRN (DRN-All) except that they only select a subset of

frames within the ground truth as the positive training sam-

ples. Specifically, DRN-Half randomly chooses 50% of the

frames within the ground truth to train the model. DRN-

Random and DRN-Center are the extreme cases of our lo-

cation regression settings, where they only randomly select

one frame or the center frame within the ground truth as the

positive training sample. By comparing the performance of

the variants with our DRN, we justify the importance of in-

creasing the number of positive training samples to train a

one-stage video grounding model. Table 4 shows that all

of these variants decrease the performance significantly. It

verifies the effectiveness of our dense regression network,

which is able to mine more positive training samples from

sparse annotations.

5.2. Does IoU regression help video grounding?

As discussed in Section 3.5, besides the IoU regression

head, using “centerness” technique is another way to assess

the localization quality. Here, we implement a variant of our

model by replacing the IoU regression head with the center-

ness head in FCOS [36]. Specifically, the centerness head

is trained to predict a centerness score at each frame. The

frame closer to the ground truth’s center is expected to have

a larger centerness value. In the inference, we follow [36] to

Table 5. Ablation study of the IoU regression head on Charades-

STA and ActivityNet-Captions, measured by R@1 when IoU=0.5.

Dataset Methods
R@1

IoU=0.5

Charades-STA

w/o IoU regression head 44.13

w/ Centerness 44.02

w/ IoU regression head 45.40

ANet-Captions

w/o IoU regression head 40.44

w/ Centerness 39.83

w/ IoU regression head 42.49

Table 6. Ablation study of multi-level fusion (MLF) and location

embedding on Charades-STA, measured by R@1 when IoU=0.5.

Dataset
Components R@1

MLF location IoU=0.5

Charades-STA

× × 43.04

X × 43.79

× X 43.47

X X 45.40

ANet-Captions

× × 39.78

X × 40.61

× X 40.96

X X 42.49

multiply the centerness score and matching score to obtain

the final score for each predicted box. We also implement

a baseline by removing the IoU regression head from our

model and directly use the matching score to rank the pre-

dictions. Table 5 reveals that the IoU regression head con-

sistently improves the performance on both datasets. These

results demonstrate that the matching score is not sufficient

to evaluate the localization quality. Predicting the IoU be-

tween the predicted box and ground truth is straightforward

and helpful for video grounding. Using centerness slightly

decreases the grounding accuracy since the centerness as-

sumption is not suitable for video grounding. We also visu-

alize the qualitative results in Figure 3. In the top example,

the two grounding results are both predicted by the frames

within the ground truth, while the IoU regression head helps

to select the one that has a larger IoU. In the bottom exam-

ple, the background context is similar and the query is com-

plex. Despite such difficulty, the IoU regression head still

helps to select a better grounding result. More visualization

results are shown in the supplementary material.

5.3. Does multi­level fusion help?

The multi-level fusion (MLF) technique extracts differ-

ent representations of the same query at different levels and

fuses them with the video feature. Here, we implement a

baseline by removing MLF from our DRN. Specifically, we

only fuse the visual feature and the query feature at the first

level (i.e., C1 in Figure 2). From Table 6, applying MLF to

our model is able to lift the video grounding performance
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Time

Query:  The child continues using the toy on the clothes while looking up.

Ground Truth 18.56 s 41.98 s

32.86 s 46.39 s

23.52 s 44.39 s

Time

Query:  People are canoeing in a body of water.

0 s 46.5 s

15.88 s 60.00 s

6.12 s 50.27 s

w/ IoU Predictor

w/o IoU Predictor

Ground Truth

w/ IoU Predictor

w/o IoU Predictor

Figure 3. Qualitative results on ActivityNet Captions dataset.

Table 7. Ablation study of the location embedding on the collected

subset of ANet-Captions, measured by R@1 when IoU=0.5.

Train Test Methods
R@1

IoU=0.5

Full-set Full-set
w/o location 40.61

w/ location 42.49

Full-set Sub-set
w/o location 47.38

w/ location 48.37

Sub-set Sub-set
w/o location 43.28

w/ location 44.97

on both Charades-STA (43.79% vs. 43.04%) and ANet-

Captions datasets (40.61% vs. 39.78%). In addition, we

implement another baseline MLF-Same by using the same

query feature to fuse the video feature at different levels. In

our experiments, the MLF-Same baseline performs worse

than our DRN on Charades-STA (44.76% vs. 45.40%), re-

vealing that extracting different query features at different

levels is able to improve the video-query representations

and boost the grounding performance eventually.

5.4. How does the location embedding help?

To evaluate the effectiveness of the temporal location

embedding in our model, we conduct an ablation study

by directly forwarding the video features into the network

without concatenating with the location embeddings. The

results in Table 6 conclude that the location embedding

makes the localization more precisely. One possible rea-

son is that the model is able to learn the temporal orders

of the video contents through the location embeddings. To

further study the effect of the location embedding, we col-

lect a “temporal” subset of samples from the ANet-Captions

dataset. In particular, we are interested in the query that

contains four commonly used temporal words (i.e., before,

after, while, then). The subset consists of 7176 training

samples and 3620 testing samples. We use two settings to

evaluate our model: 1) train on full ANet-Captions dataset

and test on the temporal subset; 2) train and test on the tem-

poral subset. From Table 7, using location embedding con-

sistently improves the performance in both settings. Espe-

cially when training and testing the model on the temporal

subset, the performance gain increases to 1.7%, further ver-

ifying the effectiveness of the location embedding.

6. Conclusions

In this paper, we have proposed a dense regression net-

work for video grounding. By training the model to pre-

dict the distance from each frame to the starting (ending)

frame of the video segment described by the query, the num-

ber of positive training samples is significantly increased,

which boosts the performance of video grounding. More-

over, we have devised a simple but effective IoU regression

head to explicitly consider the quality of localization results

for video grounding. Our DRN outperforms the state-of-

the-art methods on three benchmarks, i.e., Charades-STA,

ActivithNet-Captions and TACoS. It would be interesting to

extend our DRN for temporal action localization and dense

video captioning, and we leave it for our future work.
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