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Abstract

We propose a Geometric unsupervised matching Net-

work (Gum-Net) for finding the geometric correspondence

between two images with application to 3D subtomogram

alignment and averaging. Subtomogram alignment is the

most important task in cryo-electron tomography (cryo-ET),

a revolutionary 3D imaging technique for visualizing the

molecular organization of unperturbed cellular landscapes

in single cells. However, subtomogram alignment and av-

eraging are very challenging due to severe imaging limits

such as noise and missing wedge effects. We introduce an

end-to-end trainable architecture with three novel modules

specifically designed for preserving feature spatial informa-

tion and propagating feature matching information. The

training is performed in a fully unsupervised fashion to op-

timize a matching metric. No ground truth transformation

information nor category-level or instance-level matching

supervision information is needed. After systematic assess-

ments on six real and nine simulated datasets, we demon-

strate that Gum-Net reduced the alignment error by 40 to

50% and improved the averaging resolution by 10%. Gum-

Net also achieved 70 to 110 times speedup in practice with

GPU acceleration compared to state-of-the-art subtomo-

gram alignment methods. Our work is the first 3D unsu-

pervised geometric matching method for images of strong

transformation variation and high noise level. The train-

ing code, trained model, and datasets are available in our

open-source software AITom 1.

1. Introduction

Given a transformation model, geometric matching aims

to estimate the geometric correspondence between related

images. In two and three dimensions, geometric matching is

∗Corresponding author
1https://github.com/xulabs/aitom

widely applied to fields such as pattern recognition [48, 74],

3D image reconstruction [35, 29], medical image alignment

and registration [19, 27], and computational chemistry [86].

Finding the global optimal parameters consistent with a geo-

metric transformation model such as affine or rigid transfor-

mation has a fundamental bottleneck. The parametric space

needs to be exhaustively searched but the computational cost

is infeasible [36]. Many popular methods have been pro-

posed that alleviate the computational cost by detecting and

matching hand-crafted local features [50, 15, 73] to estimate

the global geometric transformation robustly [23, 67, 47, 51].

Recently, end-to-end trainable image alignment attracts

attention. There are two major advantages over traditional

non-trainable methods: (1) a properly trained convolutional

neural network (CNN) model can process a large amount

of data in a significantly shorter time and (2) with increas-

ing amount of data collected, the deep learning model per-

formance can be improved progressively by better feature

learning [60].

In this paper, we focus on an important geometric match-

ing application field, cryo-electron tomography (cryo-ET).

In recent years, cryo-ET emerges as a revolutionary in situ

3D structural biology imaging technique for studying macro-

molecular complexes in single cells, the nano-machines that

govern cellular biological processes [44]. Cryo-ET cap-

tures the 3D native structure and spatial distribution of all

macromolecular complexes together with other subcellular

components without disrupting the cell [11]. Nevertheless,

cryo-ET data is heavily affected by a low signal-to-noise

ratio (SNR) (example input data and mathematical definition

in Supplementary Section S3) due to the complex cytoplasm

environment and missing wedge effects2. Therefore, the

macromolecular structures in the 3D tomogram need to be

detected and recovered for further biomedical interpretation.

A subtomogram from a tomogram is a small cubic sub-

2Partial sampling of images due to limited tilt angle ranges (description

in Supplementary Section S1)
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Figure 1. Gum-Net model pipeline. The model is unsupervised and feed-forward. The model inputs two subtomograms sa and sb (underlying

structures are shown in isosurface representation) and outputs the transformed subtomogram ŝb to geometrically match sa, in addition to the

transformation model parameters φtr and φrot. The dash-line denotes that the parameters are shared between the two feature extractors.

volume generally containing one macromolecular complex.

Subtomogram alignment is the most critical cryo-ET data

processing technique for two reasons: first, high-resolution

macromolecular structures can be recovered through subto-

mogram averaging based on alignment. Second, the spatial

distribution of a certain structure can be detected through

alignment. To recover the structure, subtomograms con-

taining the same macromolecular structure but in different

poses must be iteratively aligned and averaged. Subtomo-

gram averaging improves resolution by reducing noise and

missing wedge artifacts [83]. Subtomogram alignment is a

considerably more challenging geometric matching task than

related tasks such as 3D deformable medical image registra-

tion from two aspects: first, there is strong transformation

variation because the structure inside a subtomogram is of

completely random orientation and displacement. Second,

medical images are relatively clean tissue images whereas

subtomograms are cellular images with a low SNR (around

0.01 to 0.1) due to the complex cytoplasm environment and

the low electron dose used for imaging [16] (example input

data in Supplementary Section S3).

Given the 3D rigid transformation model, subtomogram

alignment computes the six parameters (three rotational and

three translational). We and others have proposed methods

[87, 13] to approximate the constrained correlation objective

function [25] as heuristics to limit the computational time to

a feasible range. However, it is possible nowadays to collect

a set of tomograms in several days containing millions of

subtomograms [5]. Existing state-of-the-art subtomogram

alignment methods [87, 13] generally align a pair of subto-

mograms on the scale of several seconds, which is too slow

for processing such a large amount of data. Moreover, their

accuracy is limited because they are approximation methods.

We propose Gum-Net (Geometric unsupervised matching

Network), a deep architecture for 3D subtomogram align-

ment and averaging through unsupervised rigid geometric

matching. Integrating three novel modules, Gum-Net inputs

two subtomograms to estimate the transformation parameters

by extracting and matching convolutional features. Gum-Net

achieved significant improvement in efficiency (70 to 110

times speedup) and accuracy (40 to 50 % reduction in align-

ment error) over two state-of-the-art subtomogram alignment

methods [87, 13]. The improvements from proposed mod-

ules were demonstrated in three ablation studies.

Main contributions. Our work is the first 3D unsupervised

geometric matching method for images of strong transforma-

tion variation and high noise level. We integrated three novel

modules (Figure 1): (1) we observe that as the max pooling

and averaging pooling operations in the standard deep fea-

ture extraction process seek to achieve local transformation

invariance, it is not suitable for accurate geometric matching,

because the feature spatial locations need to be preserved to

a large extent during feature extraction. Therefore, we in-

troduce a feature extraction module with spectral operations

including pooling and filtering to preserve the spatial loca-

tion of extracted features. (2) We propose a novel Siamese

matching module that improves spatial correlation informa-

tion propagation by processing two feature correlation maps

in parallel. (3) We incorporate a modified spatial transformer

network [37] with a differentiable missing wedge imputa-

tion strategy into the alignment module. We achieved fully

unsupervised training by feeding into random pairs of subto-

mograms regardless of their structural class information.

Therefore, in contrast to other weakly-supervised geometric

matching methods [71, 70, 42, 80, 58], no supervision such

as instance-level or category-level matching information is

needed.

2. Related Work

2.1. 2D image alignment based on CNN

2D image alignment usually consists of two steps: (1)

obtaining image feature descriptors and (2) matching feature

descriptors according to a geometric model. Recently, some
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methods have employed pre-trained [81] or trainable [41, 63]

CNN-based feature extractors. Specifically, [22] proposed

a hierarchical metric learning strategy to learn better fea-

ture descriptors for geometric matching. However, all the

networks are combined with traditional matching methods.

In 2017, Rocco et al. proposed the first end-to-end con-

volutional neural network for geometric matching of 2D im-

ages [69]. This fully supervised model utilizes a pre-trained

network [77] to extract features from the two images to be

matched. Then a correlation layer matches the features fol-

lowed by a network to regress to the known transformation

parameters for supervised training. Later, they extended this

model to be weakly-supervised for finding category-level

[70] and instance-level correspondence [71]. Other weakly

supervised methods have been proposed for similar tasks

including semantic attribute matching [42], simultaneous

alignment and segmentation [80], and alignment under large

intra-class variations [58]. However, they still require addi-

tional training supervision such as matching image pairs on

the instance level or category level.

2.2. Unsupervised optical flow estimation

Optical flow estimation describes the small displacements

of pixels in a sequence of 2D images using a dense or sparse

vector field. Early unsupervised methods have used the gated

restricted Boltzmann machine to learn image transformations

[56, 57]. Recent CNN-based methods applied techniques

such as frame interpolation [49], occlusion reasoning [38],

and unsupervised losses in terms of brightness constancy

[39] or bidirectional census [53]. Although these methods

are all unsupervised, they require their input images to be

highly similar with only small pixel shifts.

2.3. Unsupervised deformable medical image regis
tration

3D image registration is the 3D analog to the 2D optical

flow estimation. Deformable image registration has been

extensively applied to 3D medical images such as brain MRI

[85, 59], CT [33, 76], and cardiac images [91, 72]. Recent

works present unsupervised CNN models based on spatial

transformation function [18, 4, 17] or generative adversarial

networks [52, 40]. Similar to optical flow estimation, these

methods require the input pair of fixed and moving volumes

to be similar. The information from the two volumes is

integrated by stacking them as one input to the CNN models.

However, simply stacking the input image pairs works poorly

when there is strong transformation variation because the

image similarity comparison is spatially constrained to a

local neighborhood [55].

2.4. Nonlearningbased subtomogram alignment

Early works have used exhaustive grid search of rotations

and translations with fixed intervals such as 1 voxel and 5◦

to align subtomograms [8, 24, 3]. To reduce the computa-

tional cost of searching the 6D parametric space exhaustively,

high-throughput alignment proposed in [87] applied the fast

rotational matching algorithm [43]. Fast and accurate align-

ment proposed in [13] also used the fast rotational matching

algorithm and takes into account more information including

amplitude and phase into their procedure. Another approach

is to collaboratively align multiple subtomograms together

based on nuclear-norm [46].

In this paper, we focus on pairwise subtomogram align-

ment and compared our method against the two most popular

subtomogram alignment methods as baselines [87, 13].

3. Method

Our model is shown in Figure 1 (detailed architecture

in Supplementary Section S2). Two subtomograms (3D

grayscale cubic images) sa and sb are processed using fea-

ture extractors with shared weights to produce two feature

maps va and vb. Then a Siamese matching module com-

putes two correlation maps cab and cba. At a specific posi-

tion (i,j,k), cab contains the similarity between va at that

position (i,j,k) and all the features of vb, whereas cba is

similarly defined. cab and cba are processed with the same

network architecture and are later concatenated to estimate

the transformation parameters. The 6D transformation pa-

rameters, which consist of φtr = {qx, qy, qz} for 3D trans-

lation and φrot = {qα, qβ , qγ} for 3D rotation in ZYZ con-

vention, are feed into a differentiable spatial transformer

network to compute the output, a transformed subtomogram

ŝb = Tφ(sb) = TφtrTφrot(sb) with the missing wedge re-

gion imputed (Section 3.3). A spectral data imputation tech-

nique is integrated into the spatial transformer network to

compensate for the missing wedge effects. In the training

process, we do not have the ground truth transformation

parameters to regress to as in [69]. Therefore, to assess the

geometric matching performance, our objective is to find

3D rigid transformation parameters to maximize the cross-

correlation between sa and ŝb in an unsupervised fashion.

The cross-correlation-based loss is back-propagated to up-

date the model weights.

3.1. Feature extraction module

Feature extraction is a dimensionality reduction process

to efficiently learn a compact feature vector representation

of interesting parts of raw images. There are various pop-

ular feature extraction techniques such as DenseNet [34],

InceptionNet [79], and ResNet [32]. Subsampling meth-

ods such as max pooling and average pooling are used in

these convolutional neural networks to reduce feature map

dimensionality and facilitate computation. Compared with

max pooling and average pooling, spectral representation for

convolutional neural networks preserves considerably more

spatial information per parameter and enables flexibility in
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the pooling output dimensionality [68]. 2D spectral pooling

layers that perform dimension reduction in the frequency

domain have been proposed based on discrete Fourier trans-

form (DFT) [68], discrete cosine transform (DCT) [78], and

Hartley transform [92]. However, these methods are de-

signed for 2D images and do not take into account image

noise.

We propose a 3D DCT-based spectral layer with pool-

ing and filtering operations. Since our inputs are 3D noisy

images, the novel filtering operation is for feature map high-

frequency noise reduction, and pooling operation for feature

map dimension reduction. We choose the DCT because it

stores only real-valued coefficients and compacts more en-

ergy in a smaller portion of the spectra compared to the DFT

[84].

For an input feature map v ∈ R
L×W×H , its 3D type-II

DCT is defined as [2]:

C (v)lhw =
8

LWH
ǫlǫhǫw

L−1
∑

i=0

H−1
∑

j=0

W−1
∑

k=0

vijk cos

(

lπ (2i+ 1)

2L

)

cos

(

hπ (2j + 1)

2H

)

cos

(

wπ (2k + 1)

2W

)

,

(1)

where ǫl =

{

1√
2

for l = 0

1 otherwise
, ∀l ∈ {0, ..., L − 1}. ǫh and ǫw

are similarly defined ∀h ∈ {0, ..., H−1}, ∀w ∈ {0, ...,W−1}.

The inverse transform C
−1

of 3D type-II DCT is well defined

as 3D type-III DCT [2]. Therefore, the pooled and filtered

representation in the frequency domain can be transformed

back through type-III DCT to the spatial domain as the

output of the layer.

Max 
pooling

DCT 
spectral 
pooling

Cropped 
frequencies

Subsampling 
factor

1:1 32:324:4 8:82:2

Average 
pooling

128:128

Figure 2. Image reconstruction from the max pooling, average

pooling, and DCT spectral pooling scheme at different subsampling

factors. DCT spectral pooling retains substantially greater spatial

information of features from the original image and offers arbitrary

output map dimensionality.

We use the DCT to perform subsampling in which the

input is transformed to the frequency domain and cropped

there. The output with reduced dimensionality is computed

by transforming the cropped spectrum back into the spatial

domain. The spectral pooling operation has been shown to

achieve better spatial information preservation per parameter

in terms of the l2 norm as compared to the max pooling op-

eration [68]. Figure 2 shows the image reconstruction from

max pooling, average pooling, and DCT spectral pooling at

different subsampling factors. Compared to other pooling

operations, a major advantage of using spectral pooling &

filtering layers for geometric matching tasks is that the spa-

tial location of features in two images are significantly better

preserved for accurate matching. For example, during max

pooling, the maximum from the receptive field is selected

to achieve local rotation and translation invariance with the

intuition that the exact location of a feature does not matter

to the final classification. By contrast, during the feature

extraction step for geometric matching, the exact feature

spatial location is critical and the information loss will lead

to inaccurate downstream matching.

We implement the 3D DCT spectral pooling & filter-

ing as differentiable layers in the feature extractor. The

low-pass filtering is also performed by masking out high-

frequency regions dominated by noise. The forward and

back-propagation procedure of the 3D DCT spectral pooling

& filtering layer is outlined in Algorithm 1 and 2.

Algorithm 1: DCT spectral pooling & filtering

Input: Feature map v ∈ R
L×W×H

Output size L1 ×W1 ×H1

Cropping size L2 ×W2 ×H2

Output: Feature map v̂ ∈ R
L1×W1×H1

1 u← C(v)
2 u← Crop u to size L2 ×W2 ×H2

3 û← ZeroPad u to size L1 ×W1 ×H1

4 v̂ ← C
−1

(û)

Algorithm 2: DCT spectral pooling & filtering back-

propagation

Input: Gradient w.r.t layer output ∂L
∂v̂

Output: Gradient w.r.t layer input ∂L
∂v

1 y ← C( ∂L
∂v̂

)
2 y ← Crop y to size L2 ×W2 ×H2

3 ŷ ← ZeroPad y to size L×W ×H

4
∂L
∂v
← C

−1

(ŷ)

The arbitrary output size of spectral pooling & filtering

layers offers another major advantage for geometric match-

ing tasks. If the output two feature maps are of size L×W×H

with C channels, the Siamese correlation layer (Section 3.2)

will create two correlation maps, each of size L ×W ×H

with (LWH) channels. The output feature map size from the

feature extraction module to the Siamese matching module

needs to be carefully manipulated, especially for 3D images.
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If the output feature map is too small, such as 3×3×3, there

is too much information loss for matching. If the output

feature map is too large, such as 20× 20× 20, the resulting

correlation maps will be of size 20× 20× 20× 8000, which

is too large to be processed. Unlike max pooling or average

pooling layers which aggressively reduce each dimension

to half of the size and remove 87.5 % of the information,

spectral pooling & filtering layers can gradually reduce the

feature map size to the desired feature extraction module

output size. Therefore, no additional spatial cropping or

padding layer is needed to control the feature map size.

3.2. Siamese matching module

The matching of extracted features from images is usu-

ally performed as an independent post-processing step

[31, 90, 75, 54, 64]. The 2D correlation layer proposed in

[69] achieved the state-of-the-art for integrating the match-

ing information from two images. It is essentially a normal-

ized cross-correlation function G : RH×W×C ×R
H×W×C →

R
H×W×(HW ). One of the input feature maps va is first flat-

tened into shape va ∈ R
N×C , where N = HW , in order to

keep the output correlation map 2D. Then for each feature

(pixel) in va and vb, the dot product is computed over all the

channels (as feature descriptors) to obtain the correlation,

which is later normalized. Nevertheless, to control the di-

mension of the output correlation map, all axes of one input

feature map are broken and later cast into the channels of

the output whereas the other input feature map is preserved.

We propose a novel Siamese matching module for pair-

wise 3D feature matching. To better utilize and process the

feature correlation information, we design a Siamese cor-

relation layer. Different from the correlation layer in [69]

which computes only cab, the Siamese correlation layer is

intuitive and symmetrically designed, which computes two

correlation maps cab and cba. Each of them preserves the

spatial coordinates of one input feature map. The use of two

correlation maps propagates more feature spatial correla-

tion information for the transformation parameter estimation.

Element at a specific position lwhc is defined as:

(cab)lwhc =
〈van:

, vblwh:
〉

√

∑

i,j,k

〈

van:
, vbijk:

〉

,

(cba)lwhc =
〈vbn:

, valwh:
〉

√

∑

i,j,k

〈

vbn:
, vaijk:

〉

.

(2)

The two correlation maps are feed into a pseudo-Siamese

network consisting of convolution layers and convolved sep-

arately but later concatenated for one fully connected layer.

After another fully connected layer, the Siamese matching

module outputs the estimated rigid transformation parame-

ters φtr and φrot. Detailed model architecture can be found in

Supplementary Section S2.

3.3. Unsupervised geometric alignment module

Existing subtomogram alignment methods optimize a

matching metric [87, 13, 6, 3]. In practice, preparing the

subtomogram alignment ground truth for training is ex-

tremely time-consuming (need to exhaustively search the

6D parametric space). Therefore, the deep model should be

unsupervised for this task. To achieve this goal, we propose

an unsupervised geometric alignment module utilizing the

spatial transformer network [37] with spectral data imputa-

tion designed specifically for subtomogram data.

In a tomogram with fixed voxel spacing (around 1nm), a

certain type of macromolecular structure does not scale or

reflect. Therefore, we restrict ourselves to 3D rigid transfor-

mation. Denoting the transformation matrix generated by

the 3D rigid transformation parameters as Mθ [21] and the

3D warping as Tφ : R3 → R
3, we have:
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(3)

where
(

xt
i, y

t
i , z

t
i

)

is the target coordinates on the transformed

output 3D image and (xs
i , y

s
i , z

s
i ) is the source coordinates

on the input 3D image. θ is an element of the transformation

matrix. The 3× 3 orthogonal rotation matrix is from θ11 to

θ33. The displacement along each axis is specified by θ14,

θ24, and θ34. The 3D warping is differentiable and therefore

able to be trained end-to-end.

In order to compensate for the missing wedge effects and

thus to decrease the bias introduced, we integrate a spectral

data imputation strategy from our previous work [88] into

the spatial transformer network. For a subtomogram, we use

its current estimated transformation to compute the rotated

missing wedge mask m, as an indicator function to represent

whether the Fourier coefficients are valid or missing in cer-

tain regions, and impute the missing ones with those from

its transformation target subtomogram sa. We can form a

transformed and imputed subtomogram ŝb such that:

(F ŝb) (ξ) =

{

[Fsa] (ξ) if m (ξ) = 0

[FTφ(sb)] (ξ) if m (ξ) = 1
,

m (ξ) =

{

0 if the Fourier coefficient at ξ is missing

1 if the Fourier coefficient at ξ is valid
,

(4)

where F is the Fourier transform operator, ξ ∈ R
3 is a Fourier

space location, and m (ξ) is the rotated missing wedge mask

according to φrot. Since the magnitude of Fourier transform

is translation-invariant, we only need to rotate m (ξ) without
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using φtr [25]. The imputation operation facilitates the un-

supervised geometric matching task because only when the

optimal alignment is obtained, the imputed data results in

the highest consistency with the transformed subtomogram.

We note that since the rotation of the missing wedge mask

m is implemented along with the transformation of the input

subtomogram in the differentiable spatial transformer net-

work and the inverse discrete Fourier transformation is well

defined, this spectral data imputation step is differentiable in

a similar manner as Algorithm 2.

Loss function. Pearson’ correlation and its variants are widely

used for assessing the alignment between two subtomograms

[25, 6, 87, 13, 3] because of its simplicity and effectiveness.

We implement it as a loss function to Gum-Net:

L = 1−

∑N

i=1 (sai
− s̄a)

(

ŝbi −
¯̂sb

)

√

∑N

i=1 (sai
− s̄a)

2
√

∑N

i=1

(

ŝbi −
¯̂sb

)2
, (5)

where N is the total number of voxels in an input subto-

mogram. Compared to existing methods [87, 13], which

utilize translation-invariant upper bound to approximate the

Pearson’s correlation objective to reduce the computational

cost, Gum-Net optimizes Pearson’s correlation directly for

more accurate alignment.

3.4. Baseline methods

We implemented two most popular state-of-the-art subto-

mogram alignment methods for comparison: H-T align [87]

and F&A align [13]. We performed three ablation studies

with existing modules: Gum-Net Max Pooling (Gum-Net

MP), Gum-Net Average Pooling (Gum-Net AP), and Gum-

Net Single Correlation (Gum-Net SC). Detailed implemen-

tation can be found in Supplementary Section S2.

4. Experiments

Gum-Net was evaluated on six real and nine realisti-

cally simulated datasets at different SNR. On the simulated

datasets, the accuracy of subtomogram alignment was evalu-

ated by comparing the estimated transformation parameters

φtr and φrot to the ground truth. On the real datasets, since

the transformation ground truth is not available, in prac-

tice, the optimal transformation is usually obtained by para-

metric space exhaustive grid search to optimize the cross-

correlation between sa and ŝb. Therefore, we compared

the cross-correlation between sa and ŝb computed by Gum-

Net and baseline methods as an indirect indicator of the

alignment accuracy. The visualization of subtomograms in

different datasets can be found in Supplementary Section S3.

4.1. Datasets

4.1.1 Real datasets

GroEL/GroES dataset: this dataset contains 786 experimen-

tal subtomograms of purified GroEL and GroEL/GroES

complexes from 24 tomograms [25]. Each subtomogram

is rescaled to size 323 with voxel size 0.933 nm and 25◦

missing wedge.

Rat neuron culture dataset: this recent dataset is a set of tomo-

grams from rat neuron culture [28]. In total 1095 ribosome

subtomograms and 1527 capped proteasome subtomograms

were extracted by template matching [8] and biology expert

annotation. Each subtomogram is of size 323 with voxel size

1.368 nm and 30◦ missing wedge.

S. cerevisiae 80S ribosome dataset: this dataset contains 3120

subtomograms extracted from 7 tomograms of purified S.

cerevisiae 80S ribosomes [7]. Each subtomogram is rescaled

to size 323 with voxel size 1.365 nm and 30◦ missing wedge.

TMV dataset: this dataset contains 2742 Tobacco Mosaic

Virus (TMV) subtomograms, a type of helical virus [45].

Each subtomogram is binned to size 323 with voxel size

1.080 nm and 30◦ missing wedge.

Aldolase dataset: this recent dataset contains 400 purified

rabbit muscle aldolase subtomograms [61]. Each subtomo-

gram is rescaled to size 323 with voxel size 0.750 nm and

30◦ missing wedge.

Insulin receptor dataset: this recent dataset contains 400 puri-

fied human insulin-bounded insulin receptor subtomograms

[62]. Each subtomogram is rescaled to size 323 with voxel

size 0.876 nm and 45◦ missing wedge.

4.1.2 Simulated datasets

The subtomogram dataset simulation utilized a standard pro-

cedure in [26, 65] which takes into account the tomographic

reconstruction process with missing wedges and contrast

transfer function (detailed simulation procedure in Supple-

mentary Section S3). We chose five representative macro-

molecular complexes: spliceosome (PDB ID: 5LQW), RNA

polymerase-rifampicin complex (1I6V), RNA polymerase II

elongation complex (6A5L), ribosome (5T2C), and capped

proteasome (5MPA). All five structures are asymmetric so

that there exists only one alignment ground truth. We simu-

lated five datasets, one relatively clean (SNR 100) and four

with SNR close to the experimental conditions (0.1, 0.05,

0.03, and 0.01), each consists of 2100 subtomogram pairs

of each structure (in total 10500 subtomogram pairs). 5000

subtomogram pairs from each dataset were used for training

and 500 pairs for validation. The rest 5000 subtomogram

pairs from each dataset are used for testing. For a pair of

subtomograms, one structure is a randomly transformed copy

of the other and the two structures were processed indepen-

dently to obtain its tomographic image distortions. Each

subtomogram is of size 323 with voxel size 1.2 nm. The sb

in each pair has a typical missing wedge 30◦ while sa has no

missing wedge.

For subtomogram averaging, we simulated four datasets

of 500 ribosomes (PDB ID: 5T2C) in the same manner of
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Method SNR 100 SNR 0.1 SNR 0.05 SNR 0.03 SNR 0.01

H-T align 0.30±0.68, 1.82±2.69 1.22±1.07, 4.76±4.56 1.93±0.98, 7.26±4.77 2.22±0.77, 8.86±4.72 2.38±0.57, 11.33±5.02

F&A align 0.33±0.70, 1.93±2.86 1.34±1.13, 5.39±4.90 1.95±0.98, 7.54±4.94 2.22±0.77, 8.99±4.81 2.38±0.57, 11.32±4.92

Gum-Net MP 0.90±0.87, 3.34±3.41 1.30±0.79, 4.93±3.36 1.44±0.79, 5.46±3.38 1.53±0.78, 5.96±3.34 1.67±0.77, 7.28±3.38

Gum-Net AP 0.60±0.71, 2.32±2.71 1.09±0.73, 4.20±2.96 1.30±0.77, 5.00±3.15 1.45±0.77, 5.70±3.25 1.65±0.78, 7.18±3.35

Gum-Net SC 0.70±0.75, 2.63±2.86 1.16±0.77, 4.41±3.23 1.36±0.79, 5.13±3.34 1.48±0.78, 5.75±3.34 1.67±0.77, 7.24±3.46

Gum-Net 0.41±0.70, 1.59±2.63 0.62±0.69, 2.41±2.61 0.87±0.74, 3.20±2.78 1.13±0.75, 4.29±2.75 1.50±0.78, 6.78±4.22

Table 1. Subtomogram alignment accuracy on five datasets with SNR specified. In each cell, the first term is the mean and standard deviation

of the rotation error and the second term, the translation error. We highlighted Gum-Net results that are significantly better (p < 0.001) than

all baselines by the paired sample t-test. More detailed results and analysis can be found in Supplementary Section S3.

SNR 0.1, 0.05, 0.03, and 0.01.

4.2. Implementation

The deep models were implemented in Keras [14] with

custom layers backend by Tensorflow [1]. All inputs have

size 323. We note that due to the flexibility of input and

output size of the DCT spectral pooling & filtering layers,

the input size can be arbitrary. Higher resolution can be

achieved with larger input subtomogram sizes. Detailed

implementation of Gum-Net and baselines can be found in

Supplementary Section S2.

For each epoch, we randomly draw 5000 subtomogram

pairs sa and sb from the training dataset regardless of their

structural class information. Therefore, Gum-Net is fully

unsupervised without instance-level or category-level match-

ing information for weak supervision as in other geometric

matching methods [71, 70, 42, 80, 58]. For a simulated

dataset, there are 50002 possible image pairs. As a result, we

did not observe any overfitting issue.

4.3. Subtomogram alignment

Given the transformation ground truth, we measure the

alignment accuracy with two metrics: (1) the translation

error defined as the Euclidean distance between the trans-

lation estimation and the ground truth and (2) the rotation

error defined as the Euclidean distance between the flattened

rotation matrix of estimation and the ground truth.

On simulated datasets: Table 3.4 shows the alignment accu-

racy. Gum-Net achieved similar performance on the clean

dataset (SNR 100). As max pooling achieves more lo-

cal transformation invariance [93], Gum-Net MP performs

worse than Gum-Net AP in all settings as expected. When

the SNR is close to experimental condition (the real datasets

have SNR around 0.01 to 0.1), CNN-based methods gener-

ally perform better than traditional methods. Specifically,

Gum-Net outperformed all the baseline methods, demon-

strating the improvement from the proposed modules.

In our experiments, the training, validation, and testing

datasets are independent, which ensured no overfitting. How-

ever, since Gum-Net is fully unsupervised, even if the testing

dataset is from a different domain source, such as collected

under different imaging conditions, it is possible to fine-tune

a trained model on the testing dataset (with no ground truth)

for adaptation. In terms of speed, with a trained model, Gum-

Net only takes 17.6 seconds to align 1000 subtomograms

on a single GPU core. The training takes less than 10 hours.

Since there is no available GPU-accelerated version of the

traditional algorithms, H-T align and F & A align take 1916.4

seconds and 1251.2 seconds to align 1000 subtomograms on

a CPU core, respectively. Therefore, in practice, this results

in 70 to 110 times speedup over traditional methods.

Figure 3. Example alignment inputs and outputs at SNR 100. 2D

slices representations are shown in Supplementary Section S3.

On real datasets: We split the GroEL/GroES dataset into a

training dataset of 617 subtomograms, a validation dataset

of 69 subtomograms, and a testing dataset of 100 subtomo-

grams. There are 4950 pairs of subtomograms in the testing

dataset. We align them pairwise by Gum-Net, H-T align, and

F&A align and calculates the cross-correlation. Gum-Net

achieved cross-correlations of 0.0908±0.0204, significantly

better (p < 0.001) than H-T align (0.0756±0.0194) and F&A

align (0.0838±0.0204).

We split the rat neuron culture dataset into a training

dataset of 2270 subtomograms, a validation dataset of 252

subtomograms, and a testing dataset of 100 ribosome and

100 capped proteasome subtomograms. There are 19900

pairs of subtomograms in the testing dataset. Gum-Net

achieved cross-correlations of 0.0615±0.0187, significantly

better (p < 0.001) than H-T align (0.0541±0.0235) and F&A

align (0.0607±0.0199). We use the pairwise correlation ma-

trix to cluster the subtomograms by defining the pairwise

distance as 1 - pairwise correlation. Applying the complete-

linkage hierarchical clustering algorithm with k = 2, Gum-

Net achieved an accuracy of 92%, better than F&A align
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Figure 4. Illustration of alignment-based subtomogram averaging using Gum-Net. On the left are five example input subtomograms at SNR

0.1 in our experiment. On the right are subtomogram averages at different iterations and the true structure. The 2D slices representations are

shown in Supplementary Section S3.

(65%) and H-T align (53.5%).

4.4. Nonparametric referencefree subtomogram
averaging

Structures present in multiple noisy copies (usually thou-

sands of) in a tomogram must be averaged through geo-

metric transformation to obtain higher resolution 3D views

[83]. To eliminate potential bias, subtomogram averaging

is often done without any external structural reference. One

major approach of reference-free subtomogram averaging

is non-parametric alignment-based averaging in which all

subtomograms are iteratively aligned to their average and

re-averaged for the next iteration [9]. Figure 4 illustrates

such a process in which the initial average is generated by

simply averaging all the subtomograms without any trans-

formation. The structural resolution of the subtomogram

average is gradually improved through the iterative process.

Method 0.1 0.05 0.03 0.01 80S TMV Aldolase Insulin

H-T align 2.89 3.79 4.92 4.41 3.05 2.23 2.34 1.90

F&A align 2.78 4.36 3.81 4.53 2.77 2.52 3.13 2.18

Gum-Net 2.78 2.95 4.01 4.22 2.73 2.16 1.97 1.77

Table 2. Subtomogram averaging results in FSC resolution (nm).

‘0.1’ denotes simulated dataset at SNR 0.1. ‘80S’, ‘TMV’, ‘Al-

dolase’, and ‘Insulin’ denote the real datasets. The best resolution

is highlighted.

The iterative alignment-based non-parametric reference-

free subtomogram averaging was tested using the proposed

and baseline methods. The standard resolution measurement

for assessing subtomogram averaging is Fourier shell corre-

lation (FSC) [82] (mathematical definition in Supplementary

Section S3), which measures the maximal discrepant struc-

tural factors between the subtomogram average and the true

structure. The smaller the value, the better the results. As

shown in Table 4.4, Gum-Net achieved the overall best aver-

aging performance and improved the resolution by around

10%.

5. Conclusion

Cryo-ET subtomogram alignment and averaging revolu-

tionize the discovery of 3D native macromolecular structure

details in single cells. Such information provides critical

insights into the precise function/dysfunction of the cellular

processes. However, with a rapidly increasing amount of

cryo-ET data collected, there is an urgent need to drastically

improve the efficiency of subtomogram alignment methods.

We developed the first unsupervised deep learning approach

for 3D subtomogram alignment and averaging. Using the

three proposed modules, Gum-Net achieved fast and accu-

rate alignment with end-to-end unsupervised learning. Gum-

Net opens up the possibility for continued improvement of

subtomogram alignment and averaging efficiency and ac-

curacy with better model design and training. This work

serves as an important step toward in situ high-throughput

detection and recovery of macromolecular structures for a

better understanding of the molecular machinery in cellular

processes.

Gum-Net can be integrated into existing cryo-ET anal-

ysis software in several ways. For example, EMAN2 [26]

performs exhaustive 3D rotational and translational search

followed by local refinement for alignment-based averaging.

RELION [7] maximizes the likelihood of a model with Gaus-

sian noise assumption by exhaustively scanning the 3D rigid

transformation space for integration. Gum-Net improves

the accuracy and efficiency of subtomogram alignment, es-

pecially for a large amount of cryo-ET data. Therefore,

integrating Gum-Net with existing software can boost the

speed of their alignment step or quickly generate initial struc-

tural models for averaging refinement. Gum-Net can also be

easily extended to related tasks including tomographic tilt

series alignment [30] and cryo-electron microscopy single-

particle reconstruction [94]. The proposed modules can be

adapted to other geometric matching tasks for images of

strong transformation variation such as face alignment un-

der pose variations [20, 95], or of high noise level such as

synthetic aperture radar imaging [89, 12] and sonar imaging

[10, 66].
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