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Abstract

In this paper we address the problem of visual reaction:

the task of interacting with dynamic environments where

the changes in the environment are not necessarily caused

by the agent itself. Visual reaction entails predicting the

future changes in a visual environment and planning ac-

cordingly. We study the problem of visual reaction in the

context of playing catch with a drone in visually rich syn-

thetic environments. This is a challenging problem since

the agent is required to learn (1) how objects with different

physical properties and shapes move, (2) what sequence

of actions should be taken according to the prediction, (3)

how to adjust the actions based on the visual feedback from

the dynamic environment (e.g., when objects bouncing off

a wall), and (4) how to reason and act with an unexpected

state change in a timely manner. We propose a new dataset

for this task, which includes 30K throws of 20 types of ob-

jects in different directions with different forces. Our re-

sults show that our model that integrates a forecaster with

a planner outperforms a set of strong baselines that are

based on tracking as well as pure model-based and model-

free RL baselines. The code and dataset are available at

github.com/KuoHaoZeng/Visual_Reaction.

1. Introduction

One of the key aspects of human cognition is the ability

to interact and react in a visual environment. When we play

tennis, we can predict how the ball moves and where it is

supposed to hit the ground so we move the tennis racket ac-

cordingly. Or consider the scenario in which someone tosses

the car keys in your direction and you quickly reposition

your hands to catch them. These capabilities in humans start

to develop during infancy and they are at the core of the

cognition system [3, 8].

Visual reaction requires predicting the future followed

by planning accordingly. The future prediction problem has

received a lot of attention in the computer vision community.

The work in this domain can be divided into two major

categories. The first category considers predicting future

actions of people or trajectories of cars (e.g., [5, 22, 25,
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Figure 1: Our goal is to train an agent that can visually

react with an interactive scene. In the studied task, the en-

vironment can evolve independently of the agent. There is

a launcher in the scene that throws an object with different

force magnitudes and in different angles. The drone learns

to predict the trajectory of the object from ego-centric ob-

servations and move to a position that can catch the object.

The trajectory of the thrown objects varies according to their

weight and shape and also the magnitude and angle of the

force used for throwing.

58]). Typically, there are multiple correct solutions in these

scenarios, and the outcome depends on the intention of the

people. The second category is future prediction based on

the physics of the scene (e.g., [27, 32, 60, 66]). The works

in this category are mostly limited to learning from passive

observation of images and videos, and there is no interaction

or feedback involved during the prediction process.

In this paper, we tackle the problem of visual reaction:

the task of predicting the future movements of objects in a

dynamic environment and planning accordingly. The inter-

action enables us to make decisions on the fly and receive

feedback from the environment to update our belief about the
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future movements. This is in contrast to passive approaches

that perform prediction given pre-recorded images or videos.

We study this problem in the context of playing catch with a

drone, where the goal is to catch a thrown object using only

visual ego-centric observations (Figure 1). Compared to

the previous approaches, we not only need to predict future

movements of the objects, but also to infer a minimal set of

actions for the drone to catch the object in a timely manner.

This problem exhibits various challenges. First, objects

have different weights, shapes and materials, which makes

their trajectories very different. Second, the trajectories vary

based on the magnitude and angle of the force used for throw-

ing. Third, the objects might collide with the wall or other

structures in the scene, and suddenly change their trajectory.

Fourth, the drone movements are not deterministic so the

same action might result in different movements. Finally, the

agent has limited time to reason and react to the dynamically

evolving scene to catch the object before it hits the ground.

Our proposed solution is an adaptation of the model-

based Reinforcement Learning paradigm. More specifically,

we propose a forecasting network that rolls out the future

trajectory of the thrown object from visual observation. We

integrate the forecasting network with a model-based planner

to estimate the best sequence of drone actions for catching

the object. The planner is able to roll out sequences of

actions for the drone using the dynamics model and an action

sampler to select the best action at each time step. In other

words, we learn a policy using the rollout of both object and

agent movements.

We perform our experiments in AI2-THOR [23], a

near-photo-realistic interactive environment which models

physics of objects and scenes (object weights, friction, colli-

sion, etc). Our experiments show that the proposed model

outperforms baselines that are based on tracking (current

state estimation as opposed to forecasting) and also pure

model-free and model-based baselines. We provide an ab-

lation study of our model and show how the performance

varies with the number of rollouts and also the length of the

planning horizon. Furthermore, we show how the model

performs for object categories unseen during training.

The contributions of the paper are as follows: (1) We

investigate the problem of visual reaction in an interactive,

dynamic, and visually rich environment. (2) We propose a

new framework and dataset for visual reaction in the context

of playing catch with a drone. (3) We propose a solution

by integrating a planner and a forecaster and show it signif-

icantly outperforms a number of strong baselines. (4) We

provide various analyses to better evaluate the models.

2. Related Work

Future prediction & Forecasting. Various works explore

future prediction and forecasting from visual data. Several

authors consider the problem of predicting the future tra-

jectories of objects from individual [31, 37, 55, 56, 57, 65]

and multiple sequential [1, 22, 62] images. Unlike these

works, we control an agent that interacts with the environ-

ment which causes its observation and viewpoint to change

over time. A number of approaches explore prediction from

ego-centric views. [36] predict a plausible set of ego-motion

trajectories. [39] propose an Inverse Reinforcement Learning

approach to predict the behavior of a person wearing a cam-

era. [54] learn visual representation from unlabelled video

and use the representation for forecasting objects that appear

in an ego-centric video. [26] predict the future trajectories

of interacting objects in a driving scenario. Our agent also

forecasts the future trajectory based on ego-centric views

of objects, but the prediction is based on physical laws (as

opposed to peoples intentions). The problem of predicting

future actions or the 3D pose of humans has been explored

by [6, 14, 25, 49]. Also, [5, 28, 46, 52, 53, 63] propose meth-

ods for generating future frames. Our task is different from

the mentioned approaches as they use pre-recorded videos

or images during training and inference, while we have an

interactive setting. Methods such as [13] and [10] consider

future prediction in interactive settings. However, [13] is

based on a static third-person camera and [10] predicts the

effect of agent actions and does not consider the physics of

the scene.

Planning. There is a large body of work (e.g., [7, 16, 18,

19, 34, 38, 45, 51, 59]) that involves a model-based plan-

ner. Our approach is similar to these approaches as we

integrate the forecaster with a model-based planner. The

work of [4] shares similarities with our approach. The au-

thors propose learning a compact latent state-space model

of the environment and its dynamics; from this model an

Imagination-Augmented Agent [38] learns to produce infor-

mative rollouts in the latent space which improve its policy.

We instead consider visually complex scenarios in 3D so

learning a compact generative model is not as straightfor-

ward. Also, [59] adopts a model-based planner for the task

of vision and language navigation. They roll out the future

states of the agent to form a model ensemble with model-free

RL. Our task is quite different. Moreover, we consider the

rollouts for both the agent and the moving object, which

makes the problem more challenging.

Object catching in robotics. The problem of catching ob-

jects has been studied in the robotics community. Quadro-

copters have been used for juggling a ball [33], throwing and

catching a ball [40], playing table tennis [44], and catching

a flying ball [47]. [20] consider the problem of catching

in-flight objects with uneven shapes. These approaches have

one or multiple of the following issues: they use multiple

external cameras and landmarks to localize the ball, bypass

the vision problem by attaching a distinctive marker to the

ball, use the same environment for training and testing, or as-

sume a stationary agent. We acknowledge that experiments
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on real robots involve complexities such as dealing with air

resistance and mechanical constraints that are less accurately

modeled in our setting.

Visual navigation. There are various works that address

the problem of visual navigation towards a static target us-

ing deep reinforcement learning or imitation learning (e.g.,

[17, 29, 43, 64, 67]). Our problem can be considered as an

extension of these works since our target is moving and our

agent has a limited amount of time to reach the target. Our

work is also different from drone navigation (e.g., [15, 41])

since we tackle the visual reaction problem.

Object tracking. Our approach is different from object

tracking (e.g., [2, 9, 11, 35, 48]) as we forecast the future

object trajectories as opposed to the current location. Also,

tracking methods typically provide only the location of the

object of interest in video frames and do not provide any

mechanism for an agent to take actions.

3. Approach

We first define our task, visual reaction: the task of in-

teracting with dynamic environments that can evolve inde-

pendently of the agent. Then, we provide an overview of the

model. Finally, we describe each component of the model.

3.1. Task definition

The goal is to learn a policy to catch a thrown object using

an agent that moves in 3D space. There is a launcher in the

environment that throws objects in the air with different

forces in different directions. The agent needs to predict

the future trajectory of the object from the past observations

(three consecutive RGB images) and take actions at each

timestep to intercept the object. An episode is successful

if the agent catches the object, i.e. the object lies within

the agent’s top-mounted basket, before the object reaches

the ground. The trajectories of objects vary depending on

their physical properties (e.g., weight, shape, and material).

The object might also collide with walls, structures, or other

objects, and suddenly change its trajectory.

For each episode, the agent and the launcher start at a

random position in the environment (more details in Sec. 4.1).

The agent must act quickly to reach the object in a short

time before the object hits the floor or goes to rest. This

necessitates the use of a forecaster module that should be

integrated with the policy of the agent. We consider 20

different object categories such as basketball, newspaper,

and bowl (see the supplementary for the complete list).

The model receives ego-centric RGB images from a

camera that is mounted on top of the drone agent as in-

put, and outputs an action adt
= (∆vx ,∆vy

,∆vz ) ∈
[−25m/s2, 25m/s2]3 for each timestep t, where, for ex-

ample, ∆vx shows acceleration, in meters, along the x-axis.

The movement of the agent is not deterministic due to the

time dependent integration scheme of the physics engine.

Forecaster

Action 
Sampler

Repeat H times

Forecaster

Model-predictive Planner

rt

sdt

sot+1

sot

sot+H

sot+1:t+H

sot+1

s*
dt+1

a*
dt

{adt
}N

t

t + 1

Physics Model w/ 
MPC Objective

Figure 2: Model overview. Our model includes two main

parts: Forecaster and Planner. The visual encoding of the

frames, object state, agent state and action are denoted by r,

so, sd, and a, respectively. t denotes the timestep, and H is

the planning horizon.

In the following, we denote the agent and object state by

sd = [d, vd, ad, φ, θ] and so = [o, vo, ao], respectively. d, vd
and ad denote the position, velocity and acceleration of the

drone and o, vo and ao denote those of the object. φ and θ
specify the orientation of the agent camera, which can rotate

independently from the agent.

3.2. Model Overview

Our model has two main components: a forecaster and

a model-predictive planner, as illustrated in Fig. 2. The

forecaster receives the visual observations it−2:t and the es-

timated agent state sdt
at time t, and predicts the current

state sot of the thrown object. The forecaster further uses

the predicted object state (i.e., position, velocity and accel-

eration) to forecast H steps of object states sot+1:t+H
in the

future. The model-predictive planner is responsible for gen-

erating the best action for the agent such that it intercepts the

thrown object. The model-predictive planner receives the

future trajectory of the object from the forecaster and also

the current estimate of the agent state as input and outputs

the best action accordingly. The model-predictive planner

includes an action sampler whose goal is to sample N se-

quences of actions given the current estimate of the agent

state, the predicted object trajectory, and the intermediate

representation rt produced by the visual encoder in the fore-

caster. The action sampler samples actions according to a

policy network that is learned. The second component of the

model-predictive planner consists of a physics model and

a model-predictive controller (MPC). The physics model

follows Newton Motion Equation to estimate the next state

of the agent (i.e., position and velocity at the next timestep)

given the current state and action (that is generated by the

action sampler). Our approach builds on related joint model-

based and model-free RL ideas. However, instead of an
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ensemble of model-free and model-based RL for better deci-

sion making [24, 59], or using the dynamics model as a data

augmentor/imaginer [12, 38] to help the training of model-

free RL, we explicitly employ model-free RL to train an

action sampler for the model-predictive planner.

In the following, we begin by introducing our forecaster,

as shown in Fig. 3(a), along with its training strategy. We

then describe how we integrate the forecaster with the model-

predictive planner, as presented in Fig. 2 and Fig. 3(b). Fi-

nally, we explain how we utilize model-free RL to learn the

action distribution used in our planner, Fig. 3(b).

3.3. Forecaster

The purpose of the forecaster is to predict the current

object state sot , which includes the position ot ∈ R
3, the

velocity vot ∈ R
3, and the acceleration aot ∈ R

3, and

then, based on the prediction, forecast future object positions

ot+1:t+H from the most recent three consecutive images

it−2:t. The reason for forecasting H timesteps in the future

is to enable the planner to employ MPC to select the best

action for the task. We show how the horizon length H
affects the performance in the supplementary. Note that if the

agent does not catch the object in the next timestep, we query

the forecaster again to predict the trajectory of the object

ot+2:t+H+1 for the next H steps. Forecaster also produces

the intermediate visual representation rt ∈ R
256, which is

used by the action sampler. The details are illustrated in

Fig. 3(a). We define the positions, velocity, and acceleration

in the agent’s coordinate frame at its starting position.

The three consecutive frames it−2:t are passed through

a convolutional neural network (CNN). The features of the

images and the current estimate of the agent state sdt
are

combined using an MLP, resulting in an embedding rt. Then,

the current state of the object sot is obtained from rt through

three separate MLPs. The NME, which follows the dis-

cretized Newton’s Motion Equation (ot+1 = ot + vt ×∆t,
vt+1 = vt + at ×∆t) receives the predicted state of the ob-

ject to calculate the future positions ot+1:t+H . We take the

derivative of NME and back-propagate the gradients through

it in the training phase. Note that NME itself is not learned.

To train the forecaster, we provide the ground truth posi-

tions of the thrown object from the environment and obtain

the velocity and acceleration by taking the derivative of the

positions. We cast the position, velocity, and acceleration

prediction as a regression problem and use the L1 loss for

optimization.

3.4. Modelpredictive Planner

Given the forecasted trajectory of the thrown object, our

goal is to control the flying agent to catch the object. We

integrate the model-predictive planner with model-free RL

to explicitly incorporate the output of the forecaster.

Our proposed model-predictive planner consists of a

model-predictive controller (MPC) with a physics model,

and an action sampler as illustrated in Fig. 3(b). We will

describe how we design the action sampler in Sec. 3.5. The

action sampler produces a rollout of future actions. The

action is defined as the acceleration ad of the agent. We

sample N sequences of actions that are of length H from

the action distribution. We denote these N sequences by

adt:t+H−1
. For each action in the N sequences, the physics

model estimates the next state of the agent sdt+1
given the

current state sdt
by using the discretized Newton’s Motion

Equation (dt+1 = dt + vdt
×∆t, vdt+1

= vdt
+ adt

×∆t).
This results in N possible trajectories dt+1:t+H for the agent.

Given the forecasted object trajectories ot+1:t+H , the MPC

then selects the best sequence of actions a∗t:t+H−1 based on

the defined objective. The objective for MPC is to select a

sequence of actions that minimizes the sum of the distances

between the agent and the object over H timesteps. We

select the first action a∗t in the sequence of actions, and the

agent executes this action. We feed in the agent’s next state

s∗dt+1
for planning in the next timestep.

Active camera viewpoint. The agent is equipped with a

camera that rotates. The angle of the camera is denoted by

φ and θ in the agent’s state vector sd. We use the estimated

object and agent position at time t + 1, ot+1 and d∗t+1, to

compute the angle of the camera. We calculate the relative

position p ∈ (px, py, pz) between object and agent by o− d.

Then, we obtain the Euler angles along y-axis and x-axis by

arctan px

pz
and arctan

py

pz
, respectively. In the supplementary,

we also show results for the case that the camera is fixed.

3.5. Action sampler

The actions can be sampled from a uniform distribution

over the action space or a learned policy network. We take

the latter approach and train a policy network which is con-

ditioned on the forecasted object state, current agent state

and visual representation. Model-based approaches need

to sample a large set of actions at each timestep to achieve

a high level of performance. To alleviate this issue, we

parameterize our action sampler by a series of MLPs that

learns an action distribution given the current agent state, the

forecasted trajectory of the object ot+1:t+H and the visual

representation rt of observation it − 2 : t (refer to Sec. 3.3).

This helps to better shape the action distribution, which may

result in requiring fewer samples and better performance.

To train our policy network, we utilize policy gradients

with the actor-critic algorithm [50]. To provide the reward

signal for the policy gradient, we use the ‘success’ signal (if

the agent catches the object or not) as a reward. In practice,

if the agent succeeds to catch the object before it hits the

ground or goes to rest, it would receive a reward of +1.

Furthermore, we also measure the distance between the agent

trajectory and the object trajectory as an additional reward

signal (pointwise distance at each timestep). As a result, the
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Figure 3: Model architecture. (a) The forecaster receives images and an estimate of the agent state sdt
as input and outputs

the estimates for the current state sot , including ot, vot , and aot . Then it forecasts future positions of the object ot+1:t+H

by discretized Newton Motion Equation. Forecasting is repeated every timestep if the object has not been caught. (b) The

model-predictive planner includes a MPC w/ Physics model and an action sampler. The action sampler generates N sequences

adt:t+H−1
= {(∆j

vx,i
,∆j

vy,i
,∆j

vz,i
)t+H−1

i=t |j = 1, ..., N} of actions at each timestep, and an optimal action (∆v∗

x
,∆v∗

y
,∆v∗

z
)

is chosen such that it minimizes the distance between the agent and the object at each timestep.

total reward for each episode is R = ✶{episode success} −
0.01 ·

∑
t ||d

∗

t − o∗t ||2 where d∗t and o∗t are the ground truth

positions of the agent and object at time t.

4. Experiments

We first describe the environment that we use for training

and evaluating our model. We then provide results for a set

of baselines: different variations of using current state predic-

tion instead of future forecasting and a model-free baseline.

We also provide ablation results for our method, where we

use uniform sampling instead of the learned action sampler.

Moreover, we study how the performance changes with vary-

ing mobility of the agent, noise in the agent movement and

number of action sequence samples. Finally, we provide

analysis of the results for each object category, different

levels of difficulty, and objects unseen during training.

4.1. Framework

We use AI2-THOR [23], which is an interactive 3D in-

door virtual environment with near photo-realistic scenes.

We use AI2-THOR v2.3.8, which implements physical prop-

erties such as object materials, elasticity of various materials,

object mass and includes a drone agent. We add a launcher to

the scenes that throws objects with random force magnitudes

in random directions.

The trajectories of the objects vary according to their

mass, shape, and material. Sometimes the objects collide

with walls or other objects in the scene, which causes sudden

changes in the trajectory. Therefore, standard equations of

motion are not sufficient to estimate the trajectories, and

learning from visual data is necessary. The statistics of the

average velocity and the number of collisions have been

provided in Fig. 4. More information about the physical

properties of the objects are in the supplementary.

The drone has a box on top to catch objects. The size of

drone is 0.47m × 0.37m with a height of 0.14m, and the

box is 0.3m × 0.3m with a height of 0.2m. The drone is

equipped with a camera that is able to rotate. The maximum

acceleration of the drone is 25m/s2 and the maximum ve-

locity is 40m/s. However, we provide results for different

maximum acceleration of the drone. The action for the drone

is specified by acceleration in x, y, and z directions. The

action space is continuous, but is capped by the maximum

acceleration and velocity.

Experiment settings. We use the living room scenes of AI2-

THOR for our experiments (30 scenes in total). We follow

the common practice for AI2-THOR wherein the first 20

scenes are used for training, the next 5 for validation, and the

last 5 for testing. The drone and the launcher are assigned

a random position at the beginning of every episode. We

set the horizontal relative distance between the launcher and

the drone to be 2 meters (any random position). We set

the height of the launcher to be 1.8 meters from the ground

which is similar to the average human height. The drone

faces the launcher in the beginning of each episode so it

observes that an object is being thrown.

To throw the object, the launcher randomly selects a

force between [40, 60] newtons, an elevation angle between

[45, 60] degree, and an azimuth angle between [−30, 30]
degree for each episode. The only input to our model at

inference time is the ego-centric RGB image from the drone.

We use 20 categories of objects such as basketball, alarm

clock, and apple for our experiments. We observe different

types of trajectories such as parabolic motion, bouncing off

the walls and collision with other objects, resulting in sharp

changes in the direction. Note that each object category has

different physical properties (mass, bounciness, etc.) so the

trajectories are quite different. We use the same objects for

training and testing. However, the scenes, the positions, the

magnitude, and the angle of the throws vary at test time. We

also show an experiment, where we test the model on cate-

gories unseen during training. We consider 20K trajectories

during training, 5K for val and 5K for test. The number of

trajectories is uniform across all object categories.
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Figure 4: Dataset statistics. We provide the statistics for the 20 types of objects in our dataset. We illustrate the average

velocity along the trajectories and the number of collisions with walls or other structures in the scene.

4.2. Implementation details

We train our model by first training the forecaster. Then

we freeze the parameters of the forecaster, and train the ac-

tion sampler. An episode is successful if the agent catches

the object. We end an episode if the agent succeeds in catch-

ing the object, the object falls on the ground, or the length

of the episode exceeds 50 steps which is equal to 1 second.

We use SGD with initial learning rate of 10−1 for forecaster

training and decrease it by a factor of 10 every 1.5 × 104

iterations. For the policy network, we employ Adam opti-

mizer [21] with a learning rate of 10−4. We evaluate the

framework every 103 iterations on the validation scenes and

stop the training when the success rate saturates. We use

MobileNet v2 [42], which is an efficient and light-weight

network as our CNN model. The forecaster outputs the cur-

rent object position, velocity, and acceleration. The action

sampler provides a set of accelerations to the planner. They

are all continuous numbers. The supplementary provides

details for the architecture of each component of the model.

4.3. Baselines

Current Position Predictor (CPP). This baseline predicts

the current position of the object relative to the initial posi-

tion of the drone in the 3D space, ot, instead of forecasting

the future trajectory. The model-predictive planner receives

this predicted position at each time-step and outputs the best

action for the drone accordingly. The prediction model is

trained by an L1 loss with the same training strategy used

for our method.

CPP + Kalman filter. We implement this baseline by in-

troducing the prediction update through time to the Current

Position Predictor (CPP) baseline. We assume the change in

the position of the object is linear and follows the Markov

assumption in a small time period. Thus, we add the Kalman

Filter [61] right after the output of the CPP. To get the tran-

sition probability, we average the displacements along the

three dimensions over all the trajectories in the training set.

We set the process variance to the standard deviation of

the average displacements, and measurement variance to

3× 10−2. Further, same as CPP, the model-predictive plan-

ner receives this predicted position at each time-step as input

and outputs the best action to control the agent. This baseline

is expected to be better than CPP, because the Kalman Filter

takes into account the possible transitions obtained from the

training set so it further smooths out the noisy estimations.

Model-free (A3C [30]). Another baseline is model-free

RL. We use A3C [30] as our model-free RL baseline. The

network architecture for A3C includes the same CNN and

MLP used in our forecaster and the action sampler. The

network receives images it−2:t as input and directly outputs

action at for each time-step. We train A3C by 4 threads and

use SharedAdam optimizer with the learning rate of 7×10−4.

We run the training for 8 × 104 iterations (≈ 12 millions

frames in total). In addition to using the the ‘success’ signal

as the reward, we use the distance between the drone and the

object as another reward signal.

4.4. Ablations

We use the training loss described in Sec. 3.3 and the

training strategy mentioned in Sec. 4.2 for ablation studies.

Motion Equation (ME). The forecaster predicts the posi-

tion, velocity, and acceleration at the first time-step so we

can directly apply motion equation to forecast all future posi-

tions. However, since our environment implements complex

physical interactions, there are several different types of tra-

jectories (e.g., bouncing or collision). We evaluate if simply

using the motion equation is sufficient for capturing such

complex behavior.

Uniform Action Sampling (AS). In this ablation study, we

replace our action sampler with a sampler that samples ac-

tions from a uniform distribution. This ablation shows the

effectiveness of learning a sampler in our model.

4.5. Results

Quantitative results. The results are summarized in Tab. 1

for all 20 objects and different number of action sequences.
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N = 100000 N = 10000 N = 1000 N = 100 N = 10 Best

Curr. Pos. Predictor (CPP) 22.92±2.3 22.57±2.0 21.04±1.2 18.72±1.8 10.86±0.5 22.92±2.3

CPP + Kalman Filter 23.22±1.29 22.78±0.90 21.88±0.79 19.29±0.81 12.17±1.2 23.22±1.29

Model-free (A3C [30]) - - - - - 4.54±2.3

Ours, ME, uniform AS 6.12±0.7 6.11±0.7 6.00±0.5 5.99±0.5 5.12±1.0 6.12±0.7

Ours, uniform AS 26.01±1.3 25.47±1.3 23.61±1.5 20.65±0.93 10.58±1.1 26.01±1.3

Ours, full 29.34±0.9 29.26±1.4 29.12±0.8 29.14±0.8 24.72±1.6 29.34±0.9

MPC Upper bound 68.67±1.9 76.00±0.0 78.67±1.9 66.00±3.3 49.33±10.5 78.67±1.9

Table 1: Quantitative results. We report the success rate for the baselines and the ablations of our model. N refers to the

number of action sequences that the action sampler provides. The model-free baseline does not have an action sequence

sampling component so we can provide only one number. The MPC upper bound is the case that model-predictive planner

uses perfect forecasting with uniform action sampler. Note that the MPC upper bound must be done in the off-line mode since

the perfect forecasting only available after collecting the objects’ trajectory.

S

Ours, uniform AS 20.4 49.8 32.4 13.7 39.2 17.3 12.9 6.0 37.6 26.8 0.0 49.6 34.8 24.0 25.6 61.2 14.0 12.8 39.6 8.4

Ours, full 22.8 65.9 35.2 20.1 37.2 18.5 14.5 12.0 42.8 29.6 0.0 54.4 37.2 24.4 26.4 64.4 18.1 18.0 40.8 10.0

Table 2: Per category result. Our dataset includes 20 object categories. We provide the success rate for each object category.

We use success rate as our evaluation metric. Recall that

the action sampler samples N sequences of future ac-

tions. We report results for five different values N =
10, 100, 1000, 10000, 100000. We set the horizon H to 3
for the forecaster and the planner. For evaluation on the test

set, we consider 5K episodes for each model. For Tab. 1,

we repeat the experiments 3 times and report the average.

As shown in the table, both the current position predic-

tors (CPP) and the Kalman Filter (CPP + Kalman Filter)

baseline are outperformed by our model, which shows the

effectiveness of forecasting compared to estimating the cur-

rent position. Our full method outperforms the model-free

baseline, which shows the model-based portion of the model

helps improving the performance. ‘Ours, ME, uniform AS’

is worse than the two other variations of our method. This

shows that simply applying motion equation and ignoring

complex physical interactions is insufficient and it confirms

that learning from visual data is necessary. We also show

that sampling from a learned policy ‘Ours - full’ outperforms

‘Ours, uniform AS’, which samples from a uniform distri-

bution. This justifies using a learned action sampler and

shows the effectiveness of the integration of model-free and

model-based learning by the model-predictive planner.

4.6. Analysis

Per-category results. Tab. 2 shows the results for each

category for ‘Ours - full’ and ‘Ours, uniform AS’. The results

show that our model performs better on relatively heavy

objects. This is expected since typically there is less variation

in the trajectories of heavy objects.

Difficulty-based categorization. Tab. 3 shows the perfor-

mance achieved by ‘Ours - full’ and ‘Ours, uniform AS’ in

terms of difficulty of the trajectory. The difficulty is defined

Easy Medium Difficult

Proportion 43% 33% 24%

Ours, uniform AS 46.4 18.4 1.2

Ours, full 51.9 20.7 1.6

Table 3: Difficulty categorization. We show the categoriza-

tion of the results for different levels of difficulty.

100% 80% 60% 40% 20%

Ours, uniform AS 26.0 23.6 16.0 10.5 3.3

Ours, full 29.3 25.1 18.4 10.5 3.5

Table 4: Mobility results. We show the results using 100%,

80%, 60%, 40%, 20% of the maximum acceleration.

by how many times the object collides with other structures

before reaching the ground or being caught by the agent. We

define easy by no collision, medium by colliding once, and

difficult by more than one collision. The result shows that

even though our model outperforms baselines significantly, it

is still not as effective for medium and difficult trajectories. It

suggests that focusing on modeling more complex physical

interactions is important for future research.

Different mobility. We evaluate how varying the mobility

of the drone affects the performance (Tab. 4). We define

the mobility as the maximum acceleration of the drone. We

re-train the model using 100%, 80%, 60%, 40%, 20% of the

maximum acceleration.

Movement noise. Here, we evaluate the scenarios where

the agent has more noisy movements. We perform this by

injecting a Gaussian noise to the drone’s movement after

each action (Fig. 6). We re-train the model using 0.01, 0.05,

0.1, and 0.15 of the standard deviation of the Gaussian noise.

As expected, the performance decreases with more noise.

Unseen categories. We train the best model on 15 object
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Figure 5: Qualitative Results. We show two successful sequences of catching objects in the first two rows and a failure case

in the third row. For instance, in the second row, the object bounces off the ceiling, but the drone is still able to catch it.
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Figure 6: Movement noise variation results. We show how

the noise in the agent movement affects the performance.

categories (the list is in the supplementary) and evaluate

on the remaining categories. The success rate is 29.12 ±
0.9%. This shows that the model is rather robust to unseen

categories.

Qualitative results. Fig. 5 shows two sequences of catching

the object and a failure case. The sequence is shown from

a third person’s view and the agent camera view (we only

use the camera view as the input to our model). The second

row shows the drone is still able to catch the object although

there is a sudden change in the direction due to the collision

of the object with the ceiling. A supplementary video1 shows

more success and failure cases.

More analysis are provided in the supplementary.

5. Conclusion

We address the problem of visual reaction in an interac-

tive and dynamic environment in the context of learning to

play catch with a drone. This requies learning to forecast the

trajectory of the object and to estimate a sequence of actions

to intercept the object before it hits the ground. We propose a

new dataset for this task, which is built upon the AI2-THOR

framework. We showed that the proposed solution outper-

forms various baselines and ablations of the model including

the variations that do not use forecasting, or do not learn a

policy based on the forecasting.
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