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Abstract

Texture recognition is a challenging visual task since
various primitives along with their arrangements can be
recognized from a same texture image when perceiving with
different contexts. Some recent work building on CNNs ex-
ploits orderless aggregating to provide invariance to spa-
tial arrangements. However, these methods ignore the in-
herent structural property of textures, which is a critical
cue for distinguishing and describing texture images in the
wild. To address this problem, we propose a novel Deep
Structure-Revealed Network (DSR-Net) that leverages spa-
tial dependency among the captured primitives as struc-
tural representation for texture recognition. Specifically, a
primitive capturing module (PCM) is devised to generate
multiple primitives from eight directional spatial contexts,
in which deep features are firstly extracted under the con-
strains of direction map and then encoded based on the sim-
ilarities of neighborhood. Next, these primitives are asso-
ciated with a dependence learning module (DLM) to gen-
erate structural representation, in which a two-way collab-
orative relationship strategy is introduced to perceive the
spatial dependencies among multiple primitives. At last,
the structure-revealed texture representations are integrated
with spatial ordered information to achieve real-world tex-
ture recognition. Evaluation on the five most challenging
texture recognition datasets has demonstrated the superior-
ity of the proposed model against state-of-the-art methods.
The structure-revealed performances of DSR-Net are fur-
ther verified on some extensive experiments, including fine-
grained classification and semantic segmentation.

1. Introduction

As texture is the fundamental microstructure of natural
images and the preattentive human visual cue for perceiv-
ing natural scene, it serves as a significant mid-level feature
representation for a wide variety of applications, such as
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Figure 1. The part (A) shows that textures usually have several
probable primitives. The part (B) shows there is an inherent spa-
tial dependency between them several probable primitives.

medical image analysis, industrial visual inspection, image
classification/retrieval [14, 27, 21, 20, 34, 30].

Texture refers to spatial organization of a set of basic
primitives (i.e. textons) [11], Therefore, a textured region
usually conforms to some statistical properties, exhibiting
periodically recurrent textons [14]. Some methods exploit
the statistical property and incorporate an orderless compo-
nent to obtain global compact feature representation. Re-
cently, the methods building upon convolutional neural net-
works (CNNs) inherit this property and utilize an orderless
aggregation of local texture features to achieve state-of-the-
art performance on texture recognition. For example, Zhang
et al. present Deep Texture Encoding Network [33] that
integrates dictionary learning and residual encoding into
CNN to form an end-to-end texture recognition network.
Leveraging DeepTEN as a texture encoding layer, J. Xue et
al. [27] further present a Deep Encoding Pooling Network
(DEP) to capture the orderless texture details together with
local spatial information for ground terrain recognition.

Although the existing texture recognition methods ex-
cel at providing invariance to spatial arrangement, they are
typically limited in capturing the inherent structure of tex-
ture primitives, resulting in incomplete description and in-
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accurate recognition. In this paper, we propose a Deep
Structure-Revealed Network (DSR-Net) that performs tex-
ture recognition by learning the inherent spatial dependency
of multiple primitives. Our method is based on the observa-
tion that, though various texture primitives can be perceived
with different spatial contexts (e.g. principal directions),
there exists a spatial dependency among these primitives,
which is invariant to spatial layout and reveals the inherent
structural properties of texture. For example, as shown in
Fig. 1 (a), multiple primitives can be identified from the
same texture image, which will bring interference to tex-
ture recognition. However, we can also find that there is
inherent spatial dependency among these primitives, which
is invariant to spatial transformation and brightness change.
It implies that this dependency is robust to the variability
in primitive appearance and spatial organizations, and can
serve as a structural representation of texture image.

Specifically, to leverage the dependency among primi-
tives for texture recognition, the proposed DSR-Net is de-
vised to consist of two modules, which are primitive cap-
turing module (PCM) and dependence learning module
(DLM). PCM first generates deep features under the guid-
ance and constraints of eight principal directional maps,
and then encodes them based on the similarities of neigh-
borhood to capture the robust representations for candidate
primitives. DLM associates these representations and per-
ceives the spatial dependencies among them by a two-way
collaborative relationship strategy. Inspired by the success
of DEP method, the dependency-based representations are
then integrated with spatial ordered information to achieve
texture recognition for images in the wild. The resultant
network shows excellent performance not only for texture
recognition, but also for general visual tasks, such as se-
mantic segmentation and fine-grained classification.

Our contributions are summarized as follows:

(1) This paper presents a Deep Structure-Revealed
Network (DSR-Net), which perceives spatial dependency
among multiple texture primitives and leverages it as inher-
ent structural property for texture recognition.

(2) This paper proposes a novel primitives dependency
learning method, in which multiple primitives are first gen-
erated from eight directional contexts by introducing a simi-
larity encoding scheme, and then associated together to gen-
erate structural dependencies by a two-way collaborative re-
lation modeling strategy.

(3) Extension evaluations show that the proposed net-
work not only excels at texture recognition, but also works
well on general visual tasks, such as fine-grained classifica-
tion and semantic segmentation.

2. Related Work

Texture representation is an important area of research in
computer vision for potential applications in classification,

segmentation and synthesis. Although the traditional goal
is to represent texture based on their perceptual differences
or material types, texture also has other characteristics that
reflect from the structure, such as the inherent structure of
primitives and structural dependence among primitives (As
shown in Fig. 1). Structural-related characteristics play a
crucial role in texture analysis, since they reflect the local
primitive characteristics along with its spatial layout.

The research of texture representation is mainly di-
vided into two classes: traditional methods and CNN-based
method (deep learning period method). In traditional meth-
ods, feature extraction are usually realized by methods like
gray level co-occurrence matrix [8], LBP [18], filter banks
method [25], SIFT [15] and HOG [6]. To get a com-
pact global representation, some studies such as BoWs [4],
VLAD [10], and FV [19] are presented to encode and aggre-
gate local features. Finally, some machine learning methods
(e.g. SVM) are used to generate global representations.

In deep learning period, previous methods such as
FVCNN [3] combine the deep network feature extrac-
tion with the BoWs method, LFV [24] directly use the
FV method to encode features extracted by deep network.
DeepTEN [33] uses the classic idea of residual dictionary
learning to encode features, embedding the coding layer
into the network for end-to-end training. To generate invari-
ance to spatial layout, orderless bilinear pooling [13, 5] is
introduced to polarize strong response and weak response
features. DEP [27] further integrates orderless texture de-
tails and local spatial information to achieve recognition for
texture in the wild. The advance of these existing meth-
ods is the powerful basic feature representation (CNN and
SIFT) and the ability to features encoding (FV method).

One of the main challenges of texture recognition is that
various primitives along with their arrangements can be rec-
ognized from a same texture image when perceiving with
different context. To eliminate this variability, most of the
existing methods use the orderless component to obtain the
invariance for the spatial arrangement of multiple primi-
tives. Unlike them, this paper aims to exploits the spatial
dependency among the recognized primitives, and leverage
it as inherent structural representation for texture recogni-
tion.

3. Deep Structure-Revealed Network
3.1. Architecture

In this paper, we propose a novel Deep Structure-
Revealed Network (DSR-Net) to capture and represent the
most probable structure of primitives by exploiting their in-
herent spatial dependency. The overall architecture of our
proposed method is illustrated in Fig. 2 (a). Our network
consists of two branches: structure revealed branch and spa-
tial ordered Branch. Similar to [33, 27, 31], we also use
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Figure 2. (a) The architecture of our proposed DSR-Net. Our network consists of two branches: Structure Revealed Branch and Spatial

Ordered Branch. (b) The details of the Structure-Revealed module.

resnet50 as our feature extractor. To comprehensively cap-
ture the local spacial features, we concatenate features of
different level together as a feature pool. Different feature
maps are then upsampled to obtain the same resolution as
the original feature map via bilinear interpolation. To de-
crease the computation cost, a 1 x 1 convolution layer is
used to reduce the number of channels to 2048. Similar to
[31], an adaptive avgrage pooling is exploited to adapt to
local features with different sizes, resulting in an orderless
aggregation. Texture images in the wild are rarely filled by
a single homogeneous surface but instead contain both or-
derless and ordered components. To address this problem,
we refer to the method in DEP [27] and apply a global av-
erage pooling operation to balance the orderless representa-
tions with spatial ordered information. In the last, to deal
with the nature texture without filling all in the image, the
structure-revealed features are merged with spatial ordered
features through an element-sum operation, just like [27].

3.2. Deep Structure-Revealed Module

For DSR module, a primitive capturing module (PCM) is
devised to generate the candidate primitives with eight prin-
cipal directional contexts, in which deep features are firstly
extracted under the constraint of directional map and then
encoded by the similarities of neighborhood. Next, these
candidates are associated by a dependence learning module
(DLM) to generate the structural representation, in which
a two-way collaborative relation modeling strategy is intro-
duced to perceive the spatial dependencies among candidate
primitives. Our proposed Deep Structure-Revealed Module
is illustrated in Fig. 2 (b).

Primitive Capturing Module. For primitives, elements

Figure 3. Primitive Capturing Module. We use directional map
as directional context guidance to capture candidate primitives
and improve the robustness of captured primitives by composition
weight. PCM is a new convolutional computing layer. ‘For each
position” means every step in the PCM calculation process.

in texture images, we need to capture them locally under
the guidance of different spatial context. Therefore, a new
primitive capturing module is devised to generate candidate
primitives with provided spatial context constraints. Specif-
ically, we mainly consider the contexts in eight directions
(up, down, left, right, left top, right upper, left bottom, right
bottom). A directional map with the same size as the con-
volution kernel is provided as the local context guidance in
the convolution process. In the experiment, to facilitate the
network convergence, we apply a final linear scaling of di-
rectional map values to make it falls in the range of [—1, 1].
However, there is a gap between directional map and origi-
nal feature space. Therefore, we devise a small convolution
network to map the direction information to the original fea-
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Figure 4. Dependence Learning Module. DLM is a new convo-
lutional computing layer. ‘For each position’ means every step in
the DLM calculation process.

ture space. It can be expressed as follows:

28 = cat(wp, f(Dy)), ()

where cat is the concatenation operation, x is the input fea-
ture, D is the directional map, p = (w, h), xp, is the fea-
ture with the size same as kernel, and fp is a embedding
function. To increase robustness to illumination change and
spatial distortion, a composition operation referred in [9] is
adopted, which is expressed as follows:

F( L «emw) =
P P (2)

SngOZd((I)(fp(xI?)v fpcente'r‘ (xz?wme,w)))?

where peenter 18 the center of p, sigmoid works as a nor-
malization operation, and ® is a measure of composabil-
ity between p and penter- In this paper, ®(p, peenter) =
—(p — Peenter)®. fp and fp..,,.. are the transformation
function. The primitives capturing process can be expressed
as follows:

1
Yprimitives = k’ < kn Z (117 pcemer) *Tp, 3)

where y is the output of one position in the convolution pro-
cess, (ky, kp) is the size of p. The complete PCM is illus-
trated in Fig. 3.
Dependence Learning Module. The dependency learn-
ing module is used to establish the dependency relation-
ship among multiple candidate primitives in the local scope
(as shown in Fig. 4). In dependence learning module, we
consider the feature xp, of local region as a set of feature
vectors V. € ReXOX1 we first feed it into a transforma-
tion to generate two new features V! and V2 respectively,
where {V', V2} € R*%*L Then we perform a matrix
multiplication between the transpose of V2 and V1, and
apply a softmax layer to calculate the dependence matrix
R € Rx9;

eV V) @

Y S eap(VL V)

where r;; measures the it" position’s impact on j** posi-
tion, 8 = k,, x kj, (Fig. 5 (a)). The more similar feature

f g T T
Primitives
Feature

(kn x kw) x €

Figure 5. (a) The calculation process of the dependence learning
module. (b) There is a coupling between the two-way connections
of primitives. (c) The implementation process of a two-way col-
laborative relationship strategy.

representations of the two elements are, the greater the cor-
relation between them is. It can be seen that the current ap-
proach is equivalent to establishing a two-way relationship
between two elements. Furthermore, to capture the correla-
tion between the two-way relationships as shown in Fig. 5
(b), we propose a two-way collaborative strategy as shown
in Fig. 5 (c), to improve the dependence modeling ability by
introducing correlations between the two-way relation. The
two-way collaborative strategy can be expressed as follows:

- exp(ry)
" Cap(ry) - exp(ry)’ ®
T = eoplrii) ©)

exp(rij) - exp(rji)

where 7;; and r;; are a pair of two-way relationship in R,
which are processed before the two-way collaborative oper-
ation. The r;; and r’j; are a pair of two-way relation, which
are processed after the two-way collaborative operation.

Meanwhile, we feed feature V into a convolution layer
to generate a new feature V3 € R°*9*1 Then we perform
a matrix multiplication between V3 and the transpose of R..
Finally, we apply an element-wise sum operation on the fea-
tures V to obtain the final output E € R*?*1 expressed
as follows:

0
= Z(HjV?) +Vi, @)

j=1

It can be inferred from Eq. (7) that each element at the
resulting feature E is a weighted sum of the features across
all elements and original features. Finally, the dependency
feature at each local scope can be expressed as follows:

1
Ydependence = 9 Z Ei~ (8)
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4. Experiments

In this section, we evaluate the proposed method on five
texture/material datasets and then analyze the effectiveness
of the method. Furthermore, we also present the testing re-
sults of applying our DSR module to fine-grained recogni-
tion and semantic segmentation tasks.

4.1. Datasets and implementation

Experimental data. We evaluate our model on five chal-
lenging texture/material recognition datasets. Describable
Texture Database (DTD) [2] is considered as the most
widely used benchmark for texture recongnition which con-
tains 47 texture categories with a total of 5640 images.
Flickr Material Dataset (FMD) [23, 22] consists of 10 ma-
terial categories, each of which contains 100 images. KTH-
TISP2b (KTH) [1, 17] dataset contains 11 material cate-
gories with a total of 4752 images. Ground Terrain in Out-
door Scenes (GTOS) [28] is a dataset of ground materials in
outdoor scene with 40 categories. GTOS-mobile [33] is col-
lected from GTOS dataset by mobile phone, which consists
of 31 material classes. For DTD, FMD and KTH datasets,
we randomly divide each dataset into 10 splits and report
the mean accuracy across splits. For GTOS and GTOS-
mobile datasets, the evaluation is based on provided train-
test splits. Similar to [33], the result accuracy mean =+ std%
are reported. The results on DTD, FMD, KTH and GTOS
datasets are based on 5-time statistics, and the results on
GTOS-mobile datasets are averaged over 2 runs.
Implementation details. We implement our model with
PyTorch, and two TITAN Xp GPUs are used for training.
Similar to [31], Resnet-50 is used as feature extractor, in
which res3, res4 and res5 are used as the source of feature
pool, the feature maps channels from feature pool are re-
duced to 2048 with 1 convolutional layer. We adopt a sim-
ilar training and data augmentation strategy to [31]. At the
testing phase, we use the resolution of 224 x 224 for all
datasets.

4.2. Ablation study

To evaluate DSR-Net, we conduct experiments with
several settings, including Feature Pool (FP), Primitives
Capturing Module (PCM), Dependence Learning Module
(DLM) and Spatial Order (SO).

Primitives Capturing module. In this section, we ex-
plore the effectiveness of primitives capturing module for
DSR-Net. The primitive capturing module is devised to
generate the candidate primitives under the constraints of
spatial contexts. As shown in Table 1, it outperforms the
baseline with an improvement of 3.1%/4.7% (Baseline —
Baseline+PCM) in terms of mean accuracy on DTD and
GTOS. We also conducted experiments on the number of
directions. In detail, we conducted experiments on two di-
rections (up and down), four directions (up, down, right

Model FP PCM DLM SO DTD GTOS
Resnet50 68.9+1.2 76.040.8
777777 Vo T T T T T T 702413 776428

v 72.0+0.9 80.7+2.5
v vE 74.3;t0 9 83.2;&2 3
v v v'E 75.7+0.8 83.6+2.3
v v VE v 76.3:{:0 7 84'2j:2 2
"DSRNet | v | VTV | V| 776106 85.3420

Table 1. Ablation study on DTD and GTOS datasets. ‘FP’ is Fea-
ture Pool. ‘PCM’ is Primitives Capturing Module. ‘DLM’ is De-
pendence Learning Module. ‘SO’ is Spatial Order. “*’ is when
‘DLM’ doesn’t use the two-way collaborative strategy. (Acc %)

Number of directions DTD GTOS
None (Baseline) 68.941.0 76.042.8
Two 74-910.8 83.1:|:2_0
Four 76.1:‘:0.6 84.2:|:2.()
E’Lght 77.6410.6 85.342.0

Table 2. Effectiveness of the number of directions on DTD and
GTOS. (Acc %)

Kernel size DTD GTOS
3x3 76.710.6 84.6:|:2.0
Hbx5b 77.3:|:0.7 85.3:&2,0
TxT7 77.6:|:0_6 84.3:‘:2.1
9x9 77-1:l:0.6 83.7:&2,1

Full image | 75.7410.7 82.149.5

Table 3. The effectiveness of kernel size in DLM. ‘Full image’
represents the kernel size is the same size as the input feature maps.
(Acc %)

and left), eight directions (up, down, right, left, up left,
down left, up right and down right) and none directions
(only Resnet50), respectively. The effectiveness of the num-
ber of directions is shown in Table 2. On the whole, the
growth rate of the final result decreases with the number
of directions increasing. It can be seen that multiple direc-
tional context guidances are helpful to extract more com-
plete potential primitives, and it can help successive DLM
learn more discriminative representations of structure de-
pendency. We find that 3 x 3 is the best choice for the size
of the kernel in PCM, which may be due to the fact that too
large kernel will extract the structure information irrelevant
to primitives. For the details on the selection of the kernel
size in PCM, please refer to our supplementary materials.

Dependence Learning module. In this part, we study the
effect of dependence learning module which is proposed
to model local structures and their relationships. To im-
prove dependence modeling, a two-way collaborative rela-

11014



Texture Dataset ~ Conference ~ Backbone DTD \ KTH-T2b FMD GTOS \ GTOS-mobile
Method mean  std mean  std mean  std mean  std  mean std
FV-VGGVD [3] | CVPR2015 | VGGVD 72.3 1.0 75.4 1.5 79.8 1.8 771 —— —— ——
FC-VGGVD [3] | CVPR2015 | VGGVD 62.9 0.8 81.8 2.5 77.4 1.8 —— —— —— ——
B-CNN [13] CVPR2016 | VGGVD 69.6 0.7 5.1 2.8 77.8 1.9 —— —— —— -
B-CNN [27] CVPR2016 | Resnetl8 —— - —— —— —— —— - —— 75.43 @ ——
LFV [24] ICCV2017 VGGVD 73.8 1.0 82.6 2.6 82.1 1.9 —— —— —— ——
FASON [5] CVPR2017 | VGGVD 72.3 0.6 76.5 2.3 —— —— —— —— —— ——
DeepTEN [33] CVPR2017 | Resnet50 69.6 —— 82.0 3.3 80.2 0.9 84.5 2.9 —— ——
DeepTEN [27] CVPR2017 | Resnetl8 —— —— —— —— —— —— —— —— 76.12 ——
DEP [27] CVPR2018 | Resnet50 73.2 —— —— —— —— —— —— —— —— ——
DEP [27] CVPR2018 | Resnetl8 —— - —— —— —— - - —— 8218 ——
MAP-net [31] ICCV2019 VGGVD 74.1 0.6 82.7 1.5 82.9 0.9 80.8 2.5 82.0 1.6
MAP-net [31] ICCV2019 | Resnetl8 69.5 0.8 80.9 1.8 80.8 1.0 80.3 2.6 82.98 1.6
MAP-net [31] ICCV2019 | Resnet50 76.1 0.6 84.5 1.3 85.2 0.7 84.7 2.2 86.64 1.5
" DSR-Net (ours) |~~~ [ VGGVD | 749 0.7 835 1.5 840 0.8 818 22 8294 1.6
DSR-Net (ours) Resnet18 71.2 0.7 81.8 1.6 81.3 0.8 81.0 2.1 83.65 1.5
DSR-Net (ours) Resnet50 77.6 0.6 85.9 1.3 86.0 0.8 85.3 20 87.03 1.5

Table 4. Compariing our method (DSR-Net) with state-of-the-arts methods on DTD, KTH-T2b, FMD, GTOS and GTOS-mobile. Here

‘VGGVD’ is VGG-19. (Acc %)

Method CUB Car
Resnet50 85.4 91.7
RAM 86.0 ——
DFL-CNN 87.4 93.1
NTS-Net 875 ——

" Resnet50 + DSR (ours) | 87.6  93.3

Table 5. Fine-grained recognition results on CUB and Stanford
Car196. ‘Resnet50 + DSR’ is our DSR-Net without spatial ordered
pathway. (Acc %)

tionship strategy is adopted to improve dependence learn-
ing. As shown in Table 1, the performance is improved
by 2.3%/2.5% (Baseline+PCM — Baseline+PCM+DLM*)
and 1.3%/1.1% (Baseline+FP+PCM+DLM* — DSR-Net).
It demonstrates that the two-way collaborative strategy ef-
fectively improves the performance of dependence learning
module, leading to better performance on perceiving lo-
cal structural properties. We also conducted experiments
to evaluate effectiveness of kernel size in DLM, which de-
termines the scope to establish local structural dependence.
We set the kernel size from 3 to full image and show the re-
sults in Table 3. For DTD dataset, when kernel size is 7 X 7,
the result is the best. For GTOS dataset, when kernel size is
5 x b, the result is the best. We also find that, when kernel
size is equal to the size of whole input feature map, the re-
sult is not ideal. The reason for this may be that modeling
structure dependence on a large scope is inevitably affected
by the structure of the non-textured region.

Feature Pool and Spatial Order. Here, we evaluate the ef-
fectiveness of feature pool and spatial order. As shown in
Table 1, the performance is improved by 1.4%/0.4% (Base-

Method pixAcc % mloU %
FCN 71.32 29.39
SegNet 71.00 21.64
DilatedNet 74.52 34.90
FCN (Resnet50) 74.57 34.38
EncNet (resnet50) 79.73 41.11
PSP (Resnet50) 80.04 41.68

* EncNet (Resnet50) + DSR (ours) | 80.13 ~ 41.85

PSP (Resnet50) + DSR (ours) 80.64 42.35

Table 6. Semantic segmentation results on the ADE20K validation
set. ‘EncNet + DSR’ is EncNet with a DSR module. ‘PSPNet +
DSR’ is PSPNet with a DSR module.

line+PCM+DLM?* — Baseline+FP+PCM+DLM*). The
feature pool provides a better foundation representation
to the successive tasks. Furthermore, the performance is
improved by 0.6%/0.6% (Baseline+FP+PCM+DLM#* —
Baseline+FP+PCM+DLM*+S0). It shows that the spatial
ordered provides important cue for the spatial layout of tex-
tured region and the other regions.

4.3. Comparisons against state-of-the-arts.

We compare the performance of our method with several
texture/material recognition methods on DTD, KTH-T2b,
FMD, GTOS and GTOS-mobile datasets. All the meth-
ods are listed as follows: FV-VGGVD: Fisher Vector CNN
[3]. FC-VGGYVD: General VGG-19 [3]. B-CNN: Bilinear-
CNN [13]. FASON: First And Second Order information
fusion Network [5]. DeepTEN: Deep Texture Encoding
Network [33]. LFV: Locally-Transferred Fisher Vectors
[24]. DEP: Deep Encoding Pooling Network [27]. MAP-
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Figure 6. Qualitative segmentation results from the ADE20K [36] validation set for PSPNet with and without the DSR module. Differences
are highlighted with red boxes. PSPNet with DSR module produces more accurate predictions.

Net: Multiple-Attribute-Perceived Network for real-world
texture recognition [31].

For a fair comparison, the texture/material recongition
results of other methods are obtained either directly from
results provided by the authors, or by generating them us-
ing implementations provided by the authors with recom-
mended parameter setting. Moreover, we perform exper-
iment on DSR-Net using different backbones (VGG-19,
Resnet-18 and Resnet-50). For Resnet-18 and Resnet-50,
res4 and res5 are combined as feature pool. The chan-
nels of feature maps from feature pool are transformed to
512 and 2048 with 1 x 1 convolutional layer, respectively.
For VGGVD, conv4_4 and conv5_4 are combined as feature
pool. The channels of feature maps from feature pool are
transformed to 512 with 1 x 1 convolutional layer. Table 4
reports the comparison results, where we can see that our
method is 1.5%/1.4%/0.8%/0.6%/0.49% higher than the
state-of-the-art in mean acc for five benchmark datasets.
Note that our DSR-Net improves most significantly on DTD
in which the appearance and arrangement of primitives vary
the most. It demonstrates that the structural properties re-
vealed by DSR-Net can provide robustness to the variability
of texture primitives.

4.4. Application.

To demonstrate the structure-revealed ability of our
method in general visual tasks, we conduct extend Deep
Structure-Revealed module into fine-grained recognition
and scene parsing tasks.

Fine-Grained Recognition. Recognizing fine-grained cat-

egories by computer vision techniques has attracted exten-
sive attention. Texture can serve as an important mid-level
representation for fine-grained recognition. We comprehen-
sively evaluate our DSR module on Caltech-UCSD Birds
(CUB-200-2011) [26] and Stanford Cars [12] datasets,
which are widely used benchmark for fine-grained im-
age classification. Note that we do not use any bounding
box/part annotations in all our experiments. CUB-200-2011
is a bird classification task with 11788 images from 200
wild bird species. The ratio of train data and test data is
roughly 1 : 1. It is generally considered one of the most
competitive datasets since each species has only 30 images
for training. Stanford Cars dataset contains 16185 images
over 196 classes, and each class has a roughly 50 /450 split.
The DSR-Net without Spatial ordered branch is adopted as
the model of this experiment. We adopt a similar parameter
setting as [29]. Please refer to supplementary material for
more implementation details. As shown in Table 5, our pro-
posed method that uses Resnet50 as backbone can achieve
better accuracy (87.6% / 93.3%) than main-stream meth-
ods. It indacates that the structure-revealed ability of our
DSR module is also beneficial for fine-grained recognition.
Scene Parsing. In the next, we extend DSR module
into the scene parsing, in which texture and material in
the scene are also important cues. Therefore, we introduce
the proposed DSR module to capture the structural prop-
erty of textures for scene parsing. We report the perfor-
mances on ADE20k [36] validation set. ADE20K dataset is
a recent scene parsing benchmark containing denese labels
of 150 stuff/object category labels. The dataset includes
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Figure 7. Visualization of features after dimension reduction by t-
SNE [16]. We trained DSR-Net and Resnet on DTD dataset and
used the vector output from AvgPooling layer as the feature repre-
sentation.
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Gatys et al.
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Figure 8. Comparison of texture synthesis results using different
models. Our texture templates come from natural images.

20K /2K /3K images for training, and validation. We in-
sert DSR module into the popular model [35, 32] of scene
parsing task for this experiment. Please refer to supple-
mentary material for implementation details. We adopt a
similar training setting to [35]. As shown in Table 6, the
baseline networks (encnet and pspnet) with DSR module
have achieved 0.40%,0.74% and 0.60%/0.77% improve-
ment compared with the previous. As shown in Fig. 6, after
inserting into DSR module, the texture/material regions can
be better distinguished as one category, leading to more vi-
sual consistent segmentation results.

4.5. Performance Analysis.

To verify the ability of DSR-Net to represent texture fea-
tures, we compared the distribution of the representations
learned from Resnet and DSR-Net in the feature space. Fig.
7 shown the visualization of features after dimension re-
duction by t-SNE [16]. Compared with Resnet, DSR-Net
shows a better feature distribution that exhibits smaller intr-
aclass differences and larger interclass variations. More dis-
criminative representation is obtained by using the inherent
structure dependence of texture by our DSR module.

To explicitly demonstrate the performance on structure
revealing, we apply our DSR module into texture synthe-
sis. We train our DSR-Net on DTD dataset by using the
convolutional layers of VGG-19 as the feature extraction

(2) (b)

Flecked Flecked | ] Gauzy
|\ Marbled ____ Freckled _J Swirly

Figure 9. Failure cases of our method. The red font represents
the ground truth label, and the blue font represents the prediction
result of our method.

component. For fair comparison, we use the convolutional
layers of VGG-19 as the feature extraction network in DSR-
Net. We train it on DTD dataset. At the test stage, conv1_1,
conv2_1, conv3_1 and conv4_1 layers are used for texture
synthesis. And we run L-BFGS for 512 iterations in all ex-
periments with learning rate 0.1. Fig. 8 shows the result of
texture synthesis comparing with the work of Gatys et al.
[7]. On the whole, our synthetic results are more delicate,
in which local structure of texture is more complete, and
texture arrangement is more regular. It shows that the con-
volutional layers of VGG-19 learn a detailed representation
under the constraint of DSR module.

Here we show some failure cases in Fig. 9. As can be
seen, our method fails in some extreme scenes: (a) When
the local structure is hard to be identified, the features in
deep layers lose the detail information for structural de-
pendence. (b) When there are multiple effective structures
in texture images, it is not possible to model structure at-
tributes well without semantic guidance. One feasible solu-
tion for these cases is to introduce high-level semantic in-
formation as a guidance, just like [31].

5. Conclusion

The variability of multiple primitives bring a great inter-
ference to texture recognition. This paper proposes a new
solution to utilize spatial dependency among the perceived
primitives as texture representation. Since the dependency
of primitives reveals the inherent structural properties of
texture, the generated texture representation shows good ro-
bustness to spatial deformations and brightness change. Ex-
tensive experiment results suggest that our proposed DSR-
Net approach is not only an effective solution for texture
recognition, but also shows great potential in many visual
applications. Incorporating with visual texture attributes
perceiving method, such as [31], will be our future work.
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