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Abstract

This paper contributes a novel realtime multi-person mo-

tion capture algorithm using multiview video inputs. Due

to the heavy occlusions and closely interacting motions in

each view, joint optimization on the multiview images and

multiple temporal frames is indispensable, which brings up

the essential challenge of realtime efficiency. To this end,

for the first time, we unify per-view parsing, cross-view

matching, and temporal tracking into a single optimiza-

tion framework, i.e., a 4D association graph that each di-

mension (image space, viewpoint and time) can be treated

equally and simultaneously. To solve the 4D association

graph efficiently, we further contribute the idea of 4D limb

bundle parsing based on heuristic searching, followed with

limb bundle assembling by proposing a bundle Kruskal’s

algorithm. Our method enables a realtime motion capture

system running at 30fps using 5 cameras on a 5-person

scene. Benefiting from the unified parsing, matching and

tracking constraints, our method is robust to noisy detec-

tion due to severe occlusions and close interacting mo-

tions, and achieves high-quality online pose reconstruction

quality. The proposed method outperforms state-of-the-art

methods quantitatively without using high-level appearance

information.

1. Introduction

Markerless motion capture of multi-person in a scene

is important for many industry applications but still chal-

lenging and far from being solved. Although the litera-

tures have reported single view 2D and 3D pose estima-

tion methods [41, 36, 11, 12, 18, 17, 28, 34, 44, 45, 33],

they suffer from heavy occlusions and produce low-fidelity

results. Comparably, multi-view cameras provide more

than one views to alleviate occlusion, as well as stereo

cues for accurate 3D triangulation, therefore are indispens-

able inputs for markerless motion capture of multi-person

∗Equal contribution

Figure 1. Our method enables multi-person motion capture sys-

tem working at 30fps for 5 persons using 5 RGB cameras, while

achieving high quality skeleton reconstruction results.

scenes. While remarkable advances have been made in

many kinds of multi-camera motion capture systems for hu-

man [30, 31, 24] or even animals [4], most of them fail to

achieve the goals of realtime performance and high quality

capture under extremely close interactions.

Given the 4D (2D spatial, 1D viewpoint and 1D tempo-

ral) multiview video input, the key to the success of real-

time and high quality multi-person motion capture is how

to leverage the rich data input, i.e., how to operate on the

4D data structure to achieve high accuracy while maintain-

ing realtime performance. Essentially, based on the human

body part features pre-detected in the separate 2D views us-

ing state-of-the-art CNN methods [11], three kinds of ba-

sic associations can be defined on this 4D structure. These

include single image association (i.e., parsing) [11, 20] to

form human skeletons in a single image, cross-view associ-

ation (i.e., matching) to establish correspondences among

different views, and temporal association (i.e. tracking) to

build correspondences between sequential frames.

Existing methods struggle to deal with all these associ-

ation simultaneously and efficiently. They consider only
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parts of these associations, or simply operate them in a

sequential manner, resulting in failure to be a high qual-

ity and realtime method. For example, the state-of-the-

art methods [14, 10, 39] share a similar high-level frame-

work by first performing per-view person parsing, followed

by cross-view person matching, and temporal tracking se-

quentially. They usually assume and rely on perfect per-

view person parsing results in the first stage. However,

this can not be guaranteed in crowded or close interac-

tion scenarios. Temporal extension [8, 7] of the 3D pic-

torial structure (3DPS) model [6] apply temporal tracking

[23], followed with cross-view parsing using the very time-

consuming 3DPS structure optimization. The Panoptic Stu-

dio [24] addresses these associations in a sequential manner,

by first matching (generate node proposals), then tracking

(generate trajectories), and finally assemble the 3D human

instances. As it tracks over the whole sequence, it is impos-

sible to achieve realtime performance.

In this paper, we formulate parsing, matching, and track-

ing in a unified graph optimization framework, called 4D

association graph, to simultaneously and equally address-

ing 2D spatial, 1D viewpoint and 1D temporal information.

By regarding the detected 2D skeleton joint candidates in

the current frame and the 3D skeleton joints in the former

frame as graph nodes, we construct edges by calculating

confidence weights between nodes. Such calculation jointly

takes advantage of feature confidences in each individual

image, epipolar constraints and reconstructed skeletons in

the temporal precedent frame. Compared with [14, 24, 8, 7]

which adopt sequential processing strategy on image space,

viewpoint, and time dimensions, our 4D graph formula-

tion enables unified optimization on all these dimensions,

thereby allowing better mutual benefit among them.

To realize realtime optimization on the 4D association

graph, we further contribute an efficient method to solve

the 4D association by separating the problem into a 4D limb

parsing step and a skeleton assembling step. In the former

step, we propose a heuristic searching algorithm to form 4D

limb bundles and a modified minimum spanning tree algo-

rithm to assemble the 4D limb bundles into skeletons. Both

of these two steps are optimized based on an energy func-

tion designed to jointly consider the image feature, stereo

and temporal cues, thus optimization quality is guaranteed

while realtime efficiency is achieved. We demonstrate a re-

altime multi-person motion capture system using only 5 to

6 multiview video cameras, see Fig. 1 and the supplemental

video. Benefiting from this unified strategy, our system suc-

ceeds even in the close interaction scenarios (Video 02:55-

03:30). Finally, we contribute a multiview multi-person

close interacting motion dataset synchronized with marker-

based motion capture system.

2. Related Work

We briefly overview literature on multi-person skeleton

estimation according to the dimension of input data.

2.1. Single Image Parsing

We restrict our single image parsing to the work that

addresses multi-person pose estimation in 2D and 3D. As

there are close interactions in the scene, they all need to

consider skeleton joint or body part detection and their

connection to form skeletons. Parsing methods can be

typically categorized into two classes: bottom-up method

and top-down method. In general, top-down methods

[26, 17, 12, 18, 43, 28] demonstrate higher average pre-

cision benefiting from human instance information, and

bottom-up methods [20, 11, 35, 27, 38] tend to propose

pixel-aligned low-level feature positions while assembling

them is still a great challenge. Typically, a state-of-the-art

bottom-up method, OpenPose [11], introduces part affinity

field (PAF) to assist parsing low-level keypoints on limbs,

obtaining realtime performance with high accuracy.

2.2. Cross­view Matching

Matching finds correspondences across views, no mat-

ter on high level features (human instances) or low-level

features (keypoints). Previous work [6, 8, 7, 16] implic-

itly solves matching and parsing using 3D pictorial struc-

ture model. However, such method is time-consuming due

to large state space and iterative belief propagation. Joo

et al. [24] utilize detected features from dense multi-view

images to vote for possible 3D joint positions, which does

matching in another implicit way. Such voting method

only works well with enough observation views. Most re-

cent work [14] matches per-view parsed human instances

cross view with convex optimization method constrained by

cycle-consistency. Though fast and robust, such method re-

lies on appearance information to ensure good results, and

could be affected by possible parsing error (e.g. false posi-

tive human instance and wrong joint estimation).

2.3. Temporal Tracking

Tracking is one key step towards continuous and smooth

motion capture, and helps solve current pose ambiguity ac-

cording to history results. Tracking could be done either

in 2D space or 3D space. Many works have addressed 2D

tracking, known as pose-tracking tasks [3, 37, 22, 19]. For

3D tracking, motion capture of multiple closely interact-

ing persons [31, 30] has been proposed through joint 3D

template tracking and multi-view body segmentation. Li et

al. [29] propose a spatio-temporal tracking for closely in-

teracting persons from multi-view videos. However, these

pure tracking algorithms are easy to fail because of tempo-

ral error accumulation. Elhayek et al. [15] track 3D artic-

ulated model to 2D human appearance descriptor (Sum of
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Gaussian), achieving markerless motion capture for both in-

door and outdoor scenes. However, it does not demonstrate

multi-person case (more than 3 persons). Belagiannis et

al. [8] also utilize tracking information, but they derive hu-

man tracks in advance as prior to reduce state space, instead

of solving tracking and matching simultaneously. Bridge-

man et al. [10] contribute a real time method, yet it adopt a

sequential processing of image parsing, cross-view correc-

tion and temporal tracking. In Panoptic Studio [24], after

temporal tracking of 3D joint proposals on the whole se-

quence, optimization is started for human assembling.

3. Overview

Our 4D association graph considers the information in

two consecutive frames. We first use the off-the-shelf

bottom-up human pose detector [11] on each input view

of the current frame to generate low-level human features

on each view. Our 4D association graph takes as input

multi-view human body part candidates (2D heatmaps po-

sition) and connection confidence (PAF [11] score ranging

between 0 and 1) between body parts (see Fig. 2(a)), to-

gether with the former reconstructed 3D skeletons. By re-

garding body parts and the 3D joints in the former frame as

graph nodes, we construct edges with significant semantic

meaning between nodes. Specifically, as shown in Fig. 2(b),

there exist three kinds of edges: per-view parsing edges

connecting adjacent body parts in each image view, cross-

view matching edges connecting the same body part across

views, and temporal tracking edges connecting history 3D

nodes and 2D candidates. The construction of these edges

will be elaborated in Sect. 4.

Based on the input graph in Fig. 2(b), this 4D associa-

tion problem can be described as a minimum-cost multi-cut

problem, i.e., a 0-1 integer programming problem to select

those edges that belong to the real skeletons and the phys-

ically real temporal and cross-view edges, see Fig. 2(c).

Actually, our graph model is similar to the available sin-

gle view association problem [11, 20], except that it is more

complex. As it is a NP-hard problem, we split it to 4D limb

parsing (Sect. 5.1) and a skeleton assembling (Sect. 5.2)

problems. Our proposed solving method can guarantee re-

altime performance while obtaining robust results. Here, it

is worth mentioning that, our graph model and the solving

method also work for special cases when there is no tempo-

ral edges, i.e., at the first frame of the whole sequence, or

when new persons entering the scene.

4. 4D Association Graph

For each image view c ∈ {1, 2, ..., N} at the current

frame t, the convolutional pose machine (CPM) model

[41, 11] is first applied to get the heatmaps of keypoints

and their part affinity fields (PAFs). Denote Dj(c) =

{dm
j (c) ∈ R

2} as the candidate positions of the skeleton

joints j ∈ {1, 2, ..., J}, with m as candidate index. Here, t
is ignored by default as processing the current frame. De-

note fmn
ij (c) as PAF score connecting d

m
i (c) and d

n
j (c),

where {ij} ∈ T is a limb on the skeleton topology tree T .

With both the candidate positions Dj(c) and the skeleton

joints reconstructed in former frame seen as graph nodes,

we have three kinds of edges: per-view parsing edges EP
connecting nodes in the same view, cross-view matching

edges EV connecting nodes in different views geometri-

cally, and temporal tracking edges ET connecting nodes

temporally. The solving of this association graph is equiva-

lent to determining bool variable z ∈ {0, 1} for each edge,

where z = 1 means connected nodes are associated in the

same human body, z = 0 otherwise. Note that z = 0 means

the two nodes are linked with two different bodies, or are

linked with a false position (a fake joint that is not on a

real body). The connecting weight on edges is written as

p(z) = p(z = 1). In the following, the weights of each

edge is defined in the 4D association graph.

4.1. Parsing Edges and Matching Edges

Without considering the temporal tracking edges intro-

duced by the former reconstructed 3D skeletons, the parsing

edges and the matching edges forms a 3D association graph

G3D. This case happens when processing the first frame

of the whole sequence or when a new person is entering

in the scene. The graph G3D directly extends the original

per-view multiple person parsing problem [11] with cross

view geometric matching constraints. With these geometric

constraints, false limb connections in single view case may

have good chance to be distinguished and corrected during

joint 3D association.

Denote zmn
ij (c1, c2) as bool variable on edge connect-

ing d
m
i (c1) and d

n
j (c2). Obviously, a feasible solution

{zmn
ij (c1, c2)} on G3D must conforms to the following in-

equalities

∀m,
∑

n

zmn
ij (c, c) ≤ 1

∀c2 6= c1,m,
∑

n

zmn
ii (c1, c2) ≤ 1

(1)

Specifically, the top one forces that no two edges share a

node, i.e., no two limbs of the same type (e.g., left forearm)

share a part. The bottom one forces that no joint from one

view connects to two joints of the same type from another

view. Note also here c1 and c2 represent all possible com-

binations of view pairs.

For the per-view parsing edge EP , we directly define the

input edge weight as its PAF score:

p(zmn
ij (c) = 1) = fmn

ij (c) (2)
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Figure 2. Method overview. (a) We input body part positions and connection confidence of different views at time t, together with 3D

person of last time. We use 3 views for example. (b) The 4D association graph. For clarity, we only highlight the association of the torso

limb with three types of edges (parsing edges, matching edges and tracking edges) with different colors. (c) From the initial graph (b),

our association method outputs the assembling results. (d) We optimize the assembled multiview 2D skeletons (c) to form 3D skeletons of

current frame t.

For cross-view matching edge EV , the weight is defined

based on the epipolar distance, written as line-to-line dis-

tance in 3D space:

p(zmn
ii (c1, c2)) = 1−

1

Z
d
m
i (c1)⊕ d

n
i (c2) (3)

d(c1)⊕ d(c2) = d(K−1

c1
d̃(c1),K

−1

c2
d̃(c2)) (4)

where d̃ = [dT, 1]T, Kc is intrinsic matrix of view c, d(·, ·)
means line-to-line distance between two rays emitting from

the camera centers of view c1 and c2. Z is an empiri-

cally defined normalization factor, which adjusts epipolar

distance to range [0, 1]. Note that we only build edges for

those cross-view nodes sharing the same joint index.

4.2. Tracking Edges

Although solving G3D at each time instant could pro-

vide good association in most cases, failures may happen

for very crowded scene or severe occlusions. To improve

skeleton reconstruction robustness, we take advantage of

the temporal prior, i.e., the reconstructed skeletons at the

former frame for regularization of the association problem,

which forms the 4D association graph G4D. We restrict

the connecting edge between the former frame skeletons

and the current frame joint features, by requiring the two

nodes of the edge to be the same skeleton joint (can be on

different persons). Denote zmk
i (c) as the final optimized

bool variable for edge connecting image joint feature dm
i (c)

and skeleton joint Xk
i . We define tracking edge connecting

probability as

p(zmk
i (c)) = 1−

1

T
d′(Xk

i ,K
−1

c d
m
i (c)) (5)

where d′(X,d) indicates point-to-line distance between 3D

point X and 3D line emitting from camera center to d, and

T is normalization factor, ensuring p(zmk
i (c)) to be in range

[0, 1]. Similarly, we have inequality conditions hold for the

feasible solution space:

∀i, c,
∑

m

zmk
i (c) ≤ 1,

∑

k

zmk
i (c) ≤ 1 (6)

This constraint forces that each 3D joint at the last frame

matches no more than one 2D joint on each view at the cur-

rent frame, and vice versa.

4.3. Objective Function

Based on the predefined probabilities for the parsing

edges, matching edges and tracking edges, our 4D associ-

ation optimization can be formulated as an edge selection

problem to maximize an objective function under condi-

tions 1 and 6. Specifically, let q(z) = p(z) · z denote the

final energy of an edge, where z is a boolean variable, and

then our objective function can be written as the summation

of energies of all the selected edges in EP , EM and ET :

E(Z) =wp

∑

q(zmn
ij (c, c)) + wm

∑

q(zmn
ii (c1, c2))

+ wt

∑

q(zmk
i (c))

(7)

Note here
∑

would traverse all the possible edges, i.e., all

feasible values of variables (i,j,m,n,k,c,c1,c2) by default.

wp, wm and wt are empirically defined weighting factors

for edges EP , EM and ET , respectively. With wt = 0, it

degenerates to the objective function for solving association

graph G3D. Notice that, both G3D and G4D can be solved

with the same procedure, as described in Sect. 5.

5. Solving 4D Association

Solving the 4D Association graph means maximizing

the objective function Eqn. 7 under constraints Eqn. 1 and
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Figure 3. Illustration of limb cliques. (a) A sample 4D graph on

limb {ij} denoted as Gij

4D . Two cliques are marked as red area and

blue area. (b) Limb cliques of different sizes could be proposed

from the 4D graph on limb. Joints of the same type (same color

in the above figure) on a limb clique form a clique, and joints of

different types on each view must share a green parsing edge.

Eqn. 6. Traversing the huge association space in a brute

force manner is infeasible for realtime systems. Instead, in-

spired by the realtime but high quality parsing method [11]

that assembles 2D human skeleton in a greedy manner, we

propose a realtime 4D association solver. The key differ-

ence between our 4D association and the previous 2D as-

sociation is that: the limb candidates scatter not only in a

single image but in the whole space and time, and some

limbs represent the same physical limbs. Therefore, we

need to first associate those limbs that are likely to be the

same limb bundle across views and times, before 4D skele-

tons assembling. Based on this idea, our realtime solution

can be divided into two steps: 4D limb bundle association

(Sect. 5.1), and 4D human skeleton association by the bun-

dle Kruskal’s algorithm (Sect. 5.2). It is worth noting that,

both of these two steps rely on the objective function Eqn. 7

for optimization.

5.1. 4D Limb Bundle Parsing

To extract limb bundles across view and time, we first

restrict G4D on a limb {ij} (two adjacent types of joint)

as Gij
4D. Since there are multiple persons in the scene, graph

Gij
4D may contain multiple real limb bundles. In theory, each

real limb bundle contains two joint cliques. For clarity, a

clique means a graph where every two nodes are connected

[42], see Fig. 3(a) for example. This implies that every

two joints of the same type in the limb bundle must share

a cross-view edge or a temporal edge. By further consider-

ing the parsing edges, a correct 4D limb bundle consists of

two joint clique connected with parsing edges on each view.

We call such limb bundle candidate as limb clique. Fig. 3(b)

enumerates all the possible limb cliques of Fig. 3(a). Con-

sequently, our goal in this step is to search all possible limb

cliques {GC |GC ⊂ Gij
4D} for the real limb bundles.

We measure each limb clique with E(ZGC
) based on the

objective function Eqn. 7. However, directly maximizing

E(ZGC
) would always encourage as many edges as possi-

ble to be selected in a clique, even false edges. Hence, we

Figure 4. Illustration of limb bundle parsing procedure. (a) Initial

graph Gij

4D . A square/cube represents a limb (2D or 3D), and each

grey dash line means an edge. (b) A best clique (limb bundle)

detected from (a) is shown in blue. (c) Then, we remove both

limbs and edges related to the best clique, and extract next best

one. (d) Finally, all cliques are detected. We could extract cliques

without temporal edges, like the orange one.

normalize E(ZGC
) with clique size |VC | of GC , and add a

penalty term to balance the clique size and the average prob-

ability. Overall, the objective function for a limb clique is

E(GC) = E(ZGC
)/|VC |+ wvρ(|VC |) (8)

where wv is balancing weight, and ρ is a Welsch robust

loss[13, 5] defined as

ρ(x) = 1− exp

(

−
1

2
(x/c)2

)

(9)

Here, c = (N − 1)/2 is a parameter depending on the total

number of views.

Fig. 4 illustrates the limb bundle parsing procedure. Af-

ter selecting a limb clique and marking it as a limb bundle,

we remove it from Gij
4D (Fig. 4(b)), together with all other

edges connected with any joint in this clique (Fig. 4(c)). By

doing this, our solution always conforms to feasibility in-

equalities (1,6). This selection process is iterated until Gij
4D

is empty (Fig. 4(d)).

5.2. 4D Skeleton Assembling

After generating all the 4D limb bundles, we need to

assemble them into multiple 4D human skeletal structures.

We first sort all the 4D limb bundles based on their scores,

and build a priority queue to store them. In each iteration,
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we pop a 4D limb bundle from the queue with the maximum

score (based on Eqn. 8), and merge it into the 4D skele-

tons. In this merging process, all the 2D joints (belongs

to this bundle, from different views) should have a same

labeled person ID. However, since a newly added limb bun-

dle may share the same 4D joint as some limb bundles that

are already assigned, conflicts would arise when these 2D

joints have already been labeled with different person IDs

on different views in the previous iterations, see Fig. 5(a).

To eliminate this conflict, we propose a simple yet effective

way by splitting the newly added limb bundles to small limb

bundles according to the persons whose joints are assigned

to (Fig. 5(b)). We then re-compute the objective function of

each small bundle and push back to the prior queue for fur-

ther assembling. If there is no conflict, we merge the bundle

into the skeleton and label the 2D joints. We iterate popping

and merging until the queue is empty (Fig. 5(c)).

We call the above method bundle Kruskal’s algorithm.

In the single view case, there would be no conflicts, and

our method degenerates to traditional Kruskal’s algorithm,

which is a famous minimum spanning tree (MST) algorithm

used in OpenPose [11].

5.3. Parametric Optimization

Based on 4D skeleton assembling results on the 2D view

images, we can further optimize the full 3D body pose by

embedding a parametric skeleton. We minimize the energy

function

E(Θ) = w2DE2D + wshapeEshape + wtempEtemp (10)

where E2D is the data term aligning 2D projections on each

view to the detected joints, Eshape penalizes human shape

prior (e.g. bone length and symmetry), and Etemp is tempo-

ral smoothing term (w2D, wshape and wtemp are balancing

weights, wtemp = 0 if no temporal information exists). As

this fitting process is a classic optimization step, please re-

fer to [9, 44, 29] for details. Temporally, we track each per-

son and use the average bone lengths of the first five frames

with high confidence (visible in more than 3 cameras) as the

bone length prior for the person in the later frames. If the

person is lost and re-appear, we simply regard him/her as a

new person and re-calculate the bone lengths.

6. Results

In Fig. 6, we demonstrate the results of our system. Us-

ing only geometry information from sparse view points,

our method enables realtime and robust multi-person mo-

tion capture under severe occlusions (Fig. 6(a)), challenging

poses (Fig. 6(b)) and subtle social interactions (Fig. 6(c)).

6.1. Implementation Details

The multi-view capture system consists of 5 synchro-

nized industrial RGB cameras (with resolution 2048×2048)

Figure 5. Conflicts handling in our skeleton assembling step. (a)

A limb bundle to be added. It contains 3 parsing edges on 3 views.

In this case, each parsing edge contains a joint to be assembled

(black node) and a joint already assembled (blue or red nodes) in

previous iterations. Here conflict arises as blue and red belong to

different person IDs. (b) We split original limb bundle into small

bundles according to the existing person IDs. (c) A possible final

assembling result.

and a single PC with one 3.20 GHz CPU and one NVIDIA

TITAN RTX GPU. Our system achieves 30 fps motion cap-

ture for 5 persons. Specifically, for each frame, the pre-

processing step (including demosaicing, undistortion and

resizing for multi-view inputs) takes less than 1 ms, the

CNN inference step takes 22.9 ms in total for 5 images, the

4D association step takes 11 ms, and the parametric opti-

mization step takes less than 4 ms. Moreover, we ping-pong

the CNN inference and the 4D association for achieving re-

altime performance with affordable delay (60 ms). More

details about the optimization parameters are provided in

the supplementary material.

Note that the 4D association pipeline is fully imple-

mented on CPU. Also, in the CNN inference step, the in-

put RGB images are resized to 368 × 368, and the CNNs

for keypoints and PAFs are re-implemented using Ten-

sorRT [40] for further acceleration.

6.2. Dataset

We contribute a new evaluation dataset for multi-person

3D skeleton tracking with ground truth 3D skeletons cap-

tured by commercial motion capture system, OptiTrack [1].

Compared with previous 3D human datasets [25, 21, 32, 24,

8, 2], our dataset is mainly focusing on the more challeng-

ing scenarios like close interactions and challenging mo-

tion. Our dataset contains 5 sequences with each around

20-second long capturing a 2-4 person scene using 6 cam-

eras. Our actors all wear black marker-suit for ground truth

skeletal motion capture. With ground truth 3D skeletons,

our dataset enables more effective quantitative evaluations

for both 2D parsing and 3D tracking algorithms. Note that

besides evaluating our method using the proposed dataset,

we also provide evaluation results using Shelf and Panoptic

Studio dataset following previous works [8, 7, 14].
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Figure 6. Results of our system. From top to bottom: input images, reprojection of 3D human, and 3D visualization respectively. (a)

Our live captured data with fast motion (left), severe occlusion (middle) and crowded scene (right). 5 views used. (b) Our dataset with

textureless clothing and rich motion. 6 views used. (c) Panoptic studio dataset with natural social interaction. 7 views used.

6.3. Quantitative Comparison

We compare with state-of-the-art methods quantitatively

using both the Shelf dataset and our testing dataset. The

quantitative comparison on Shelf dataset is shown in Ta-

ble. 1. Benefiting from our 4D association formulation, we

achieve more accurate results than both temporal tracking

methods based on 3DPS ([8, 6, 7, 16]) and appearance-

based global optimization methods [14].

We also compare with [14] on our testing dataset accord-

ing to ‘precision’ (the ratio of correct joints in all estimated

joints) and ‘recall’ (the ratio of correct joints in all ground

truth joints). A joint is correct if its Euclidean distance to

the ground truth joint is less than threshold 0.2m. As shown

in Tab. 2, our method outperforms [14] under both metrics.

Shelf A1 A2 A3 Avg

Belagiannis et al. [6] 66.1 65.0 83.2 71.4

†Belagiannis et al. [8] 75.0 67.0 86.0 76.0

Belagiannis et al. [7] 75.3 69.7 87.6 77.5

Ershadi-Nasab et al. [16] 93.3 75.9 94.8 88.0

Dong et al. [14] 97.2 79.5 96.5 91.1

*Dong et al. [14] 98.8 94.1 97.8 96.9

†# Tanke et al. [39] 99.8 90.0 98.0 96.0

†Ours(final) 99.0 96.2 97.6 97.6

Table 1. Quantitative comparison on Shelf dataset using percent-

age of correct parts (PCP) metric. ‘*’ means method with appear-

ance information, ‘†’ means method with temporal information,

‘#’ means accuracy without head. ‘A1’-‘A3’ correspond to the re-

sults of three actors, respectively. The averaged result is in column

‘Avg’.

Our Dataset Dong[14] Ours(final)

Precision(%) 71.0 88.5

Recall(%) 80.2 90.2

Table 2. Comparison with [14] using our testing dataset.

Figure 7. Comparison with two-step pipeline. Top figures are asso-

ciation result, bottom figures are reprojection of 3D pose. Notice

that, reprojection of 3D pose generated by two-step pipeline obvi-

ously deviates from correct position due to false parsing.

6.4. Qualitative Comparison

To further demonstrate the advantages of our bottom-

up system, we perform qualitative comparison with the

state-of-the-art method [14], which utilizes top-down hu-

man pose detector [12] to perform single view parsing. The

qualitative results is shown in Fig. 8, from which we can see

that top-down method depends heavily on instance propos-

als, and may generate false positive human pose detection to

deteriorate the cross-view matching performance (left case).

Furthermore, per-view parsing would fail to infer correct

human poses under severe occlusion, deteriorating pose re-

construction results (right). Instead, thanks to relatively pre-

cise low-level features (e.g. keypoints) and robust 4D asso-
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Figure 8. Qualitative comparison with Dong[14] on Shelf (left figure) and our captured data (right figure), both with 5 cameras. For each

case, we show association results and reprojection of 3D pose on two sample views. For 3D visualization, we show a side view rendering

and a top view rendering for clear comparison.

ciation algorithm, the joints are associated more accurately

in our results.

Shelf A1 A2 A3 Avg

two-step 98.1 83.8 97.6 93.1

w/o tracking 96.5 86.8 97.0 93.4

Ours(final) 99.0 96.2 97.6 97.6

Table 3. Ablation study on Shelf dataset. ‘two-step’ means first

per-view parsing and then cross-view matching. ‘w/o tracking’

means we solve G3D in each frame. Both ‘two-step’ and ‘w/o

tracking’ use triangulation to infer 3D poses. Numbers are per-

centage of correct parts(PCP).

6.5. Ablation Study

With/Without tracking. We first evaluate tracking edges

in the 4D graph. By triangulating 2D bodies into 3D skele-

tons directly using G3D, we eliminate the usage of track-

ing edges. The result is labeled as ‘w/o tracking’ in Ta-

ble. 3. Without using tracking edges, our method still

exhibits competent result and out-performs state-of-the-art

method [14] (93.4% vs 91.1%). Moreover, our 4D associ-

ation method is more robust in messy scenes (‘Ours(final)’

as shown in Table. 3).

Compare with two-stage pipeline. We implement a two-

step pipeline for comparison, by using [11] to parse human

in each view, followed with human matching using clique

searching method with objective function defined on the

parsed bodies. Note that no temporal information is used,

and 3D poses are obtained by triangulation. Result is shown

as ‘two-step’ in Table. 3. As shown in Table. 3, our per-

frame G3D solution ‘w/o tracking’ performs better than two-

step pipeline, especially on actor ‘A2’. To show our robust-

ness to per-view parsing ambiguity, we use only 3 views

to reconstruct 2 persons (Fig. 7). Wrong parsing result on

one view would harm the inferred 3D pose, especially when

very sparse views are available.

7. Conclusion

We proposed a realtime multi-person motion capture

method with sparse view points. Build on top of the

low-level detected features directly, we formulated parsing,

matching and tracking problem simultaneously into a uni-

fied 4D graph association framework. The new 4D associ-

ation formulation not only enabled realtime motion capture

performance, but also achieved state-of-the-art accuracy, es-

pecially for crowded and close interaction scenarios. More-

over, we contributed a new testing dataset for multi-person

motion capture with ground truth 3D poses. Our system nar-

rowed the gap between laboratory markerless motion cap-

ture system and industrial applications in real world scenar-

ios. Finally, our novel 4D graph formulation may stimulate

future research in this topic.
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