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Abstract

Semi-supervised video object segmentation aims to sep-

arate a target object from a video sequence, given the mask

in the first frame. Most of current prevailing methods uti-

lize information from additional modules trained in other

domains like optical flow and instance segmentation, and

as a result they do not compete with other methods on com-

mon ground. To address this issue, we propose a simple

yet strong transductive method, in which additional mod-

ules, datasets, and dedicated architectural designs are not

needed. Our method takes a label propagation approach

where pixel labels are passed forward based on feature sim-

ilarity in an embedding space. Different from other prop-

agation methods, ours diffuses temporal information in a

holistic manner which take accounts of long-term object

appearance. In addition, our method requires few addi-

tional computational overhead, and runs at a fast ∼37 fps

speed. Our single model with a vanilla ResNet50 back-

bone achieves an overall score of 72.3% on the DAVIS

2017 validation set and 63.1% on the test set. This sim-

ple yet high performing and efficient method can serve

as a solid baseline that facilitates future research. Code

and models are available at https://github.com/

microsoft/transductive-vos.pytorch.

1. Introduction

Video object segmentation addresses the problem of ex-

tracting object segments from a video sequence given the

annotations in the starting frame. This semi-supervised set-

ting is challenging as it requires the system to generalize

to various objects, deformations, and occlusions. Never-

theless, video object segmentation has received consider-

able attention because of its broad practical applications in

surveillance, self-driving cars, robotics, and video editing.

Despite the simplicity of the formulation, video ob-

ject segmentation is closely related to many other visual

problems, such as instance segmentation [19], object re-

identification [13], optical flow estimation [15], and object

⋆Equal contribution. Work done when Yizhuo was an intern at MSRA.
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Figure 1: A comparison of performance and speed for

semi-supervised video object segmentation methods on the

DAVIS 2017 validation set. Ours performs comparably

to the state-of-the-art methods, while running at an online

speed ( > 30 fps).

tracking [5]. As these tasks share similar challenges with

video object segmentation, previous efforts [29, 30] attempt

to transfer the modules trained for such tasks into video ob-

ject segmentation pipeline. More specifically, optical flow

and tracking encourage local dependencies by estimating

displacements in nearby frames, while instance segmenta-

tion and object re-identification enforces global dependen-

cies by learning invariances to large appearance changes.

The integration of such modules allows a significant perfor-

mance improvement in video object segmentation.

The idea of enforcing local and global dependencies

has been a central topic in general semi-supervised learn-

ing [49, 14] (also known as transductive inference). The

basic assumptions are: 1) nearby samples tend to have the

same label and 2) samples that lie on the same manifold

should should have the same label. The local and global de-

pendencies describe a sufficiently smooth affinity distribu-

tion, so that label propagation on the unlabeled data gives

reliable estimates. Prior classical approaches that realize

this idea include random walk [37], graph-cut [6] and spec-

tral methods [4].

This inspires us to explore a unified approach for semi-

supervised video object segmentation without the integra-

tion of the modules derived from other domains. We model
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the local dependency through a spatial prior and a motion

prior. It is based on the assumption that spatially nearby pix-

els are likely to have same labels and that temporally distant

frames weakens the spatial continuity. On the other hand,

we model the global dependency through visual appear-

ance, which is learned by convolutional neural networks on

the training data.

The inference follows the regularization framework [49]

which propagates labels in the constructed spatio-temporal

dependency graph. While label propagation algorithms

have been explored in the recent literature for video object

segmentation [41, 9, 22, 36, 34], the manner in which they

learn and propagate affinity is sparse and local, i.e., learning

pixel affinities either between adjacent frames or between

the first frame and a distant frame. We observe that there

exists much smooth unlabeled structure in a temporal vol-

ume that these methods do not exploit. This may cause fail-

ures when handling deformations and occlusions. In con-

trast, our label propagation approach attempts to capture all

frames which span the video sequence from the first frame

to the frame preceding the current frame. To limit the com-

putational overhead, sampling is performed densely within

the recent history and sparsely in the more distant history,

yielding a model that accounts for object appearance varia-

tion while reducing temporal redundancy.

In its implementation, our model does not rely on any

other task modules, additional datasets, nor dedicated ar-

chitectural designs beyond a pretrained ResNet-50 model

from the ImageNet model zoo [20]. During inference, per-

frame prediction involves only a feed-forward pass through

the base network plus an inner product with the prediction

history. Thus the inference is fast and also not affected by

the number of objects. Experimentally, our model runs at a

frame rate of 37 per second, achieving an overall score of

72.3% on Davis 2017 validation set, as well as 63.1% on

Davis 2017 test set. Our model also achieves a competitive

overall score of 67.8% on the recent Youtube-VOS valida-

tion set. Our method is competitive to current prevailing

methods while being substantially simpler and faster. We

hope the model can serve as a simple baseline for future

works.

2. Related Work

We review related work on video object segmentation in

the semi-supervised setting. For an overview of unsuper-

vised and interactive video object segmentation, we refer

readers to other papers [11, 12, 2, 39, 27, 28].

Single frame models. In the past few years, methods

with leading performance have been based on finetuning

the model on the single annotated frame and performing in-

ference on individual test frames. These methods basically

learn an objectness prior and spatial continuity without con-

sidering temporal information. The convolutional neural

network architecture plays an important role for finetuning

on a single frame to be effective. OSVOS [7] is the pioneer-

ing work in this direction. Lucid [25] seeks to augment the

data specifically for each video from only a single frame

of ground truth. OnAVOS [42] mines confident regions

in the testing sequence to augment the training data. The

later work of OSVOS-S [31] integrates semantic informa-

tion from an instance segmentation model to boost perfor-

mance. PReMVOS [30], CNN-MRF [3], and DyeNet [29]

also build on top of single frame models.

The effectiveness of single frame models demonstrates

that optimizing a domain-specific spatial smoothness term

greatly enhances performance. However, finetuning via gra-

dient descent generally takes tens of seconds per video,

which can make it impractical for many applications.

Propagation-based models. Propagation-based meth-

ods embed image pixels into a feature space and utilize

pixel similarity in the feature space to guide label propa-

gation. In methods such as VideoMatch [22, 9], only pix-

els in the first frame are used for reference in computing

pixel similarity. Since no finetuning at run time is involved,

propagation-based models run much faster than the afore-

mentioned single frame models, but the lack of domain-

specific finetuning leads to performance that is much worse.

Later works [36, 45, 34, 41] explore adding the preceding

frame to the first frame as reference, which significantly im-

proves performance and leads to greater temporal smooth-

ness. However, this local and sparse propagation scheme

suffers from the drifting problem [16].

Long-range spatio-temporal models. There are two lines

of work which attempt to optimize over a dense long-range

spatio-temporal volume. The first [45, 21] builds a recur-

rent neural network which uses the estimate from the previ-

ous frame to predict the object segmentation in the current

frame. The whole model is learned via backpropagation

through time. However, such models are sensitive to esti-

mation errors in the previous frame.

The second direction is based on graphical models [17,

38, 26, 48, 8, 32] (i.e., Markov Random Fields) defined

over the spatio-temporal domain. These works were pop-

ular prior to deep learning, and employed edge potentials

defined by handcrafted features such as SIFT. The models

are computationally expensive and no longer competitive to

learning-based methods.

Relation to other vision problems. As the above methods

suggest, video object segmentation is closely related to a va-

riety of computer vision problems such as instance segmen-

tation, object re-identification, and optical flow estimation

and tracking. Many recent methods integrate components

for these other tasks into the video object segmentation

pipeline. For example, OSVOS-S [31] includes a instance
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Figure 2: We pose video object segmentation from a transductive inference perspective, where dense long-term similarity

dependencies are constructed to discover structures in the spatio-temporal volume. a) Previous induction model transfers

knowledge from the first frame to other frames. b) Our transduction model considers holistic dependencies in the unlabeled

spatio-temporal volume for joint inference.

segmentation module; PReMVOS [30] and DyeNet [29] in-

corporate a object re-identification module; CNN-MRF [3],

MaskTrack [34] and MaskRNN [21] rely on optical flow

estimation. The integration of other modules heavily de-

pends on transfer learning from other datasets. Though

performance improvement is observed, it usually involves

further complications. For example, instance segmentation

becomes less useful when the video encounters a new ob-

ject category which is not present in instance segmentation

model. Optical flow [15] suffers from occlusions which

would mislead label propagation.

Most relevant works. Space-time memory network

(STM) [33] is a significant work and most similar with ours.

Ours is developed independently from STM, while STM

is published earlier than ours. The insight that exploiting

dense long-term information is similar. However, the trans-

ductive framework in the proposed approach, which stems

from the classical semi-supervised learning, brings theoret-

ical foundations to video object segmentation. Moreover,

in the implementation, ours is much simpler and more effi-

cient which does not require additional datasets, and infers

all objects simultaneously.

3. Approach

In contrast to much prior work on finetuning a model

on a single annotated frame or transferring knowledge from

other related tasks, our approach focuses on fully exploiting

the unlabeled structure in a video sequence. This enables us

to build a simple model that is both strong in performance

and fast in inference.

We first describe a generic semi-supervised classification

framework [49] and then adapt it to online video object seg-

mentation in a manner that follows our ideas.

3.1. A Transductive Inference Framework

Let us first consider a general semi-supervised classi-

fication problem. Suppose that we have a dataset D =
{(x1, y1), (x2, y2), (xl, yl), xl+1, ..., xn}, which contains l
labeled data pairs and n − l unlabeled data points. The

task is to infer the labels {ŷi}ni=l+1
for the unlabeled data

{xl+1, ..., xn} based on all the observation D. Inference

of the unlabeled data is formulated in prior work [49] as a

transductive regularization framework,

Q(ŷ) =
n
∑

i,j

wij ||
ŷi√
di

− ŷj
√

dj
||2 + µ

l
∑

i=1

||ŷi − yi||2, (1)

where wij encodes the similarity between data points

(xi, xj), and di denotes the degree di =
∑

j wij for pixel i.
The first term is a smoothness constraint that enforces sim-

ilar points to have identical labels. The second term is a fit-

ting constraint, which penalizes solutions that deviate from

the initial observations. The parameter µ balances these two

terms. Semi-supervised classification amounts to solve the

following optimization problem,

ŷ = argmin Q(y). (2)

It is shown [49] that the above energy minimization

problem can be solved by iterative algorithm as follows.

Let S = D−1/2WD−1/2 be the normalized similarity ma-

trix constructed from wij . Iteratively solve for ŷ(k) until
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convergence, as 1

ŷ(k + 1) = αSŷ(k) + (1− α)y(0), (3)

where α = µ/(µ + 1), and y(0) = [y1, y2, ..., yn]
T is the

initial observation of the label clamped with supervised la-

bels. The typical value of α is 0.99. The power of this trans-

duction model comes from the globalized model it builds

over the dense structures in the unlabeled data.

3.2. Online Video Object Segmentation

Based on this general framework [49], we build a trans-

ductive model for semi-supervised video object segmenta-

tion that accounts for dense long-range interactions.

This gives rise to three challenges. First, video frames

stream sequentially, so the model must work in an online

fashion, where the inference of one frame should not de-

pend on future frames. Second, the number of pixels in

one video can scale into the tens of millions. A similarity

matrix over all the pixels would thus be intractable to com-

pute. Third, an effective similarity measure W needs to be

learned between pixels in a video sequence.

For the algorithm to run online, it is assumed that the

predictions on all prior frames have been determined when

the current frame t arrives. We therefore approximate the

Eqn 3 by expanding the inference procedure through time,

ŷ(t+ 1) = S1:t→t+1ŷ(t). (4)

S1:t→t+1 represents the similarity matrix S that is only con-

structed between pixels up to the t-th frame and the pixels

in the t + 1-th frame. Since no labels are provided beyond

the first frame, the prior term y(0) is omitted for the frame

t+ 1.

For time t+1, the above propagation procedure is equiv-

antly minimizing a set of smoothness terms in the spatio-

temporal volume,

Qt+1(ŷ) =
∑

i

∑

j

wij ||
ŷi√
di

− ŷj
√

dj
||2, (5)

where i indexes the pixels at the target time t+1, j indexes

the pixels in all frames prior to and including time t.

3.3. Label Propagation

Given the annotations on the starting frame of a video,

we process the remaining frames sequentially, propagating

labels to each frame based on Eqn. 4. The quality of video

object segmentation heavily depends on the similarity met-

ric S, whose core component is the the affinity matrix W.

1Note that there exists a closed-form solution to the Eqn 2 shown

in [49]. However, this requires the inverse of matrix S which is often

computationally demanding when S is a large matrix.
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Figure 3: Sampling strategy for label propagation. We sam-

ple densely in the recent history, and more sparsely in the

distant history.

Similarity metric. In order to build a smooth classi-

fication function, the similarity metric should account for

global high-level semantics and local low-level spatial con-

tinuity. Our similarity measure wij includes an appearance

term and a spatial term,

wij = exp(fT
i fj) · exp(−||loc(i)− loc(j)||2

σ2
), (6)

where fi, fj are the feature embeddings for pixels pi, pj
through a convolutional neural network. loc(i) is the spa-

tial location of pixel i. The spatial term is controlled by a

locality parameter σ. Learning of the appearance model is

described in the next section.

Frame sampling. Computing a similarity matrix S

over all the previous frames is computationally infeasible,

as long videos can span hundreds of frames or more. In-

spired by Temporal Segment Networks [43], we sample a

small number of frames in the observance of the temporal

redundancy in videos.

Specifically, as in Figure 3, we sample a total of 9 frames

from the preceding 40 frames: the 4 consecutive frames be-

fore the target frame to model the local motion, and 5 more

frames sparsely sampled from the remaining 36 frames to

model long-term interactions. We find this sampling strat-

egy to strike a good balance between efficiency and effec-

tiveness. Detailed ablations about the choice of frame sam-

pling are presented in the experiments.

A simple motion prior. Pixels that are more distant

in the temporal domain have weaker spatial dependencies.

To integrate this knowledge, we use a simple motion prior

where a smaller σ = 8 is used when the temporal references

are sampled locally and densely, and a larger σ = 21 is

employed when the reference frames are distant. We find

this simple motion model to be effective for finding long-

term dependencies.
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Methods Architecture Optical Proposal Tracking Re-ID

DyeNet [29] ResNet 101 ✓ ✓ ✓ ✓

CNN-MRF [3] Deeplab ✓ ✗ ✗ ✗

PReMVOS [30] Deeplab-V3+ ✓ ✓ ✓ ✓

FEELVOS [41] Deeplab-V3+ ✗ ✗ ✗ ✗

STM [33] 2×ResNet-50 ✗ ✗ ✗ ✗

TVOS (ours) ResNet-50 ✗ ✗ ✗ ✗

Table 1: A brief overview of leading VOS methods with

dependent modules for other related vision tasks.

3.4. Learning the appearance embedding

We learn the appearance embedding in a data-driven

fashion using a 2D convolutional neural network. The em-

bedding aims to capture both short-term and long-term vari-

ations due to motion, scale and deformations. The embed-

ding is learned from the training data in which each frame

from the video is annotated with the segmented object and

the object identity.

Given a target pixel xi and we consider all pixels in the

prior frames as references. Denote fi and fj the feature

embeddings for pixel xi and a reference pixel xj . Then the

predicted label ŷi of xi is given by

ŷi =
∑

j

exp(fT
i fj)

∑

k exp(fT
i fk)

· yj , (7)

where the reference indexes j, k span the temporal his-

tory before the current frame. We show detailed ablations

on how sampling the historical frames affects the learning

quality.

We optimize the embedding via a standard cross-entropy

loss on all pixels in the target frame,

L = −
∑

i

logP (ŷi = yi|xi). (8)

3.5. Implementation Details

We use a ResNet-50 to train the embedding model. The

convolution stride of the third and the fourth residual blocks

is set to 1 to maintain a high-resolution output. We add one

additional 1 × 1 convolutional layer to project the feature

to a final embedding of 256 dimensions. The embedding

model produces a feature with a total stride of 8.

During training, we take the pretrained weights from

the ImageNet model zoo, and finetune the model on the

Davis 2017 [35] training set for 240 epochs and Youtube-

VOS [46] for 30 epochs. We apply the standard augmen-

tations of random flipping and random cropping of size

256 × 256 on the input images. We use a SGD solver

with an initial learning rate of 0.02 and a cosine annealing

scheduler. The optimization takes 16 hours on 4 Tesla P100

GPUs, with a batch size of 16, each containing 10 snippets

from a video sequence.

Without Motion With Motion

Figure 4: The effect of our simple motion model. Distant

frames have weaker spatial priors on the location of objects,

thus reducing the drifting problem.

During tracking, we extract features at the original im-

age resolution of 480p. The results of each video frame are

predicted sequentially online.

4. Results

In this section, we first describe our experimental set-

tings and datasets. Then we show detailed ablations on

how the transductive approach takes advantage of unlabeled

structures in the temporal sequence to significantly improve

the performance. Results are conducted on various datasets

to compare with the state-of-the-art. Finally, we discuss

temporal stability and the relationship to optical flow. Our

method is abbreviated as TVOS in the result tables.

4.1. Experimental Setup

Datasets. We evaluate our method on the Davis

2017 [35], and Youtube-VOS [46] datasets. Our model is

trained on the respective training set and evaluated on the

validation set. For Davis 2017, we also train our model on

the combined train-val set, and submit the results on the

testing set on the evaluation server.

Davis 2017 contains 150 video sequences and it involves

multiple objects with drastic deformations, heavy and pro-

longed occlusions, and very fast motions. High-definition

annotations are available for all frames in the training se-

quences. Youtube-VOS is the largest dataset for this task

to-date, containing 4453 training sequences and 474 valida-

tion sequences. It captures a comprehensive collection of

94 daily object categories. However, the frame rate of the

video is much lower than videos in Davis (5 fps compared

to 24 fps).

Evaluation metrics. We use the standard evaluation

metric of mean intersection over union (mIoU), averaged

across objects and summed over all frames. The mIoU is

evaluated on both the full objects (J measure) and only on

the object boundaries (F measure). The global metric (G

measure) is the average of the J and F measures. Youtube-
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Figure 5: Using dense long-range dependencies improves the tracking performance. The spatial term smooths the object

boundaries, while long-term dependencies up to 40 frames help to re-detect objects.

train / tracking
1

frame

3

frames

9

frames

uniform

sample

sparse

sample

sparse +

motion

1 frame 55.8 60.4 63.4 63.8 64.0 64.3

3 frames 56.0 61.4 65.4 65.5 66.1 66.7

9 frames 60.7 63.4 68.6 68.6 69.0 69.9

uniform sample 55.8 60.2 64.4 65.0 65.1 65.3

sparse sample 59.9 62.9 66.2 67.2 68.5 68.6

Supervised 47.5 52.2 53.8 54.0 54.5 54.8

InstDisc[44] 42.4 47.3 51.3 51.3 52.1 52.2

MoCo[18] 43.5 48.7 53.0 53.2 53.8 54.0

Table 2: Ablation study on the range of temporal depen-

dencies and the simple motion component. The mean J
measure on the Davis 2017 validation set is reported. See

text for details.

VOS also includes a separate measure of seen objects and

unseen objects to measure the generalization ability. In Sec-

tion 4.4, we provide a discussion of temporal stability.

4.2. Ablation Study

Dense local and global dependencies. While most

prior works focus on optimizing single frame models, the

key idea of this paper is to build dense long-term mod-

els over the spatio-temporal volume. In Table 2, we sum-

marize the effect of such long-term potentials which cap-

ture both local and global dependency. Each row is an ap-

pearance embedding model trained with different reference

frame sampling strategies. Each column corresponds to a

tracking sampling strategy. We study the following set-

tings: one reference frame preceding the target frame, 3

consecutive frames preceding the target frame, 9 consec-

utive frames preceding the target frame, uniform sampling

of 9 frames in the preceding 40 frames, and our sparse sam-

pling of 9 frames in the preceding 40 frames as in Figure 3.

We find that tracking over a longer term generally improves

the performance, and denser sampling near the target frame

is helpful. For learning the appearance embedding, training

with 9 consecutive frames produces the best results, while

longer ranges do not always lead to improvements. This

may be due to very long ranges covering almost the entire

video reduces the variations in the dataset, which leads to

worse generalization for training.

In Figure 5, we show some qualitative examples for long

range tracking. Using 9 consecutive frames yields more sta-

ble predictions than using only the previous frame. Adding

the spatial term smooths the object boundaries. A long

range of 40 frames enables the model to re-detect objects

after heavy occlusions.

Transferred representations. In the last rows of Ta-

ble 2, we also test the tracking performance for models

pretrained on ImageNet but without further training on the

DAVIS dataset. The transferred ImageNet model obtains

a mean J measure of 54.8%, which is actually better than

some prior methods [47, 10] trained with additional Davis

data. Also, even an unsupervised pretrained model on im-

ages obtains performance competitive to network modula-

tion [47] using our transductive inference algorithm. Two

recent unsupervised pretrained models on ImageNet are in-

vestigated [44, 18]. Since no domain-specific training is

involved for the appearance embedding, the evaluation of

transferred representations clearly validates the effective-
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Methods FT J F J&F Speed

OnAVOS [42] ✓ 61.0 66.1 63.6 0.08

DyeNet [29] ✓ 67.3 71.0 69.1 0.43

CNN-MRF [3] ✓ 67.2 74.2 70.7 0.03

PReMVOS [30] ✓ 73.9 81.7 77.8 0.03

Modulation [47] ✗ 52.5 57.1 54.8 3.57

FAVOS [10] ✗ 54.6 61.8 58.2 0.83

VideoMatch [22] ✗ 56.5 68.2 62.4 2.86

RGMP [45] ✗ 64.8 68.8 66.7 3.57

FEELVOS [41] ✗ 65.9 72.3 69.1 1.96

STM [33] ✗ 69.2 74.0 71.6 6.25

STM [33]+Pretrain ✗ 81.7 79.2 84.3 6.25

TVOS ✗ 69.9 74.7 72.3 37

Table 3: Quantitative evaluation on the Davis 2017 valida-

tion set. FT denotes methods that perform online training.

ness of dense long-term modeling.

The simple motion prior. As a weak spatial prior for

modeling the dependency between distant frames, our sim-

ple motion model reduces noise from the model predictions

and leads to about 1% improvement. Figure 4 displays two

concrete examples. More complicated motion models, such

as a linear motion model [1], may be even more effective.

4.3. Quantitative Results

In Table 1, we first give a brief overview of the cur-

rent leading methods, including those that use first-frame

finetuning (CNN-MRF [3], DyeNet [29], PReMVOS [30])

and those that do not (FEELVOS [41], STM [33] and our

TVOS). For DyeNet and PReMVOS, their sub-modules are

learned on dedicated datasets such as optical flow on Flying

Chairs, object proposal on MSCOCO, and object segmen-

tation on PASCAL VOC. Since Davis is much smaller than

the large-scale datasets, it remains unknown how much of

the gains can be attributed to knowledge transfer or to the

methods themselves. Therefore, the mentioned methods are

not directly comparable with our method. FEELVOS, STM

and ours are much simpler, as they do not rely on additional

modules for this problem. STM additionally requires heavy

pretraining on large-scale image datasets.

It is also important to note that for PreMVOS, DyeNet,

CNN-MRF, they are not able to run tracking in an online

fashion. They use information from future frames to sta-

bilize prediction for the target frame. Also, instead of us-

ing the first frame from the given video for training, they

use the first frames from the entire test-dev set for train-

ing. Propagation-based methods are able to track objects

sequentially online.

DAVIS 2017. We summarize our results on the Davis

2017 validation set in Table 3, and on the Davis 2017 test-

dev set in Table 4. On the validation set, our method per-

forms slightly better than STM [33] under the same amount

Methods FT J F J&F Speed

OnAVOS [42] ✓ 53.4 59.6 56.5 0.08

DyeNet [29] ✓ 65.8 70.5 68.2 0.43

CNN-MRF [3] ✓ 64.5 70.5 67.5 0.02

PReMVOS [30] ✓ 67.5 75.7 71.6 0.02

RGMP [45] ✗ 51.4 54.4 52.9 2.38

FEELVOS [41] ✗ 51.2 57.5 54.4 1.96

TVOS ✗ 58.8 67.4 63.1 37

Table 4: Quantitative evaluation on the Davis 2017 test-dev

set. FT denotes methods that perform online training.

Methods Overall
Seen Unseen

J F J F

RGMP [45] 53.8 59.5 - 45.2 -

OnAVOS [42] 55.2 60.1 62.7 46.6 51.4

RVOS [40] 56.8 63.6 67.2 45.5 51.0

OSVOS [7] 58.8 59.8 60.5 54.2 60.7

S2S [46] 64.4 71.0 70.0 55.5 61.2

PreMVOS [30] 66.9 71.4 75.9 56.5 63.7

STM [33]+Pretrain 79.4 79.7 84.2 72.8 80.9

TVOS 67.8 67.1 69.4 63.0 71.6

TVOS (from DAVIS) 67.4 66.7 69.8 62.5 70.6

Table 5: Quantitative evaluation on the Youtube-VOS vali-

dation set.

of training data, while surpassing other propagation-based

methods which do not need fine-tuning, by 4% for mean J
and 3% for mean J&F . In comparison to finetuning based

methods, our TVOS also outperforms DyeNet and CNN-

MRF by 2% while being significantly simpler and faster.

We train our model on the combined training and vali-

dation set for evaluating on the test-dev set. We find that

there is a large gap of distribution between the Davis 2017

test-dev and validation sets. Heavy and prolonged occlu-

sions among objects belonging to the same category are

more frequent in the test-dev, which favors methods with

re-identification modules. As a result, we are 4− 5% lower

than DyeNet and CNN-MRF on the test-dev set. FEELVOS

is even more negatively affected, performing 8% lower than

ours in terms of mean J&F . STM [33] does not provide an

evaluation on the test set.

Youtube-VOS. We summarize the results on youtube-

VOS validation set in Table 5. Ours surpasses all prior

works except STM [33], which relies on heavy pretraining

on a variety of segmentation datasets such as saliency detec-

tion and instance segmentation. Without pretraining, STM

obtains a comparable result of 68.1%. We also test the gen-

eralization ability of our model trained on DAVIS train-val

and test on Youtube-VOS val. The transferred model shows

great generalization ability with an overall score of 67.4%

Speed analysis. During tracking, we cache the appear-

ance embeddings for a history up to 40 frames. Inference
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Figure 6: Per-frame IoU over time for PreMVOS and our method on a example video sequences from the DAVIS validation

set. PreMVOS switches object identities frequently, while our predictions are temporally smooth. The color of each IoU

curve matches its corresponding object segment.

Overlaid Image Pair FlowNet2

Ours Ours + Smoothness Constraint

Figure 7: An example of optical flow computed from our

model compared to FlowNet2.

per frame thus only involves a feed-forward pass of the tar-

get frame through the base network, and an additional dot

product of target embeddings to prior embeddings. Compu-

tation is also constant of any number of objects. This makes

our algorithm extremely fast, with a runtime of 37 frames

per second on a single Titan Xp GPU. Figure 1 compares

current algorithms on their trade-off between speed and per-

formance. Ours is an order of magnitude faster than prior

methods, while achieving the results comparable to state-

of-the-art methods.

4.4. Discussions

Temporal stability. Temporal stability is often a desir-

able property in video object segmentation, as sharp incon-

sistencies may be disruptive to downstream video analy-

sis. However, temporal stability is typically not included

as an evaluation criterion. Here, we give qualitative exam-

ples showing the difference in temporal stability between

our model and the state-of-the-art PreMVOS [30].

In Figure 6, we show examples of per-frame evaluation

along video sequences. Although the state-of-the-art inte-

grates various temporal smoothing modules, such as opti-

cal flow, merging and tracking, we observe the detection-

based method to be prone to noise. For example, objects

are lost suddenly, or being tagged with a different identity.

Our method, on the other hand, makes temporally consis-

tent predictions.

Does our model learn optical flow? Our method learns

a soft mechanism for associating pixels in the target frame

with pixels in the history frames. This is similar to opti-

cal flow where hard correspondences are computed between

pixels. We examine how much our learned model aligns

with optical flow.

We take two adjacent two frames and calculate the op-

tical flow from our model as ∆di =
∑

j sij∆dij , where

sij is the normalized similarity, and ∆dij is the displace-

ment between i, j. Figure 7 shows an example visualiza-

tion of the flow. Compared to the optical flow computed by

FlowNet2 [23], our flow makes sense on objects that would

be segmented, but is much more noisy on the background.

We have further added a spatial smoothness constraint on

the computed optical flow for jointly learning the embed-

dings, as widely used for optical flow estimation [15, 24].

We observe that the constraint smooths the optical flow on

the background, but fails to regularize the model for track-

ing. Adding the term consistently hurts the performance of

video object segmentation.

5. Conclusion

We present a simple approach to semi-supervised video

object segmentation. Our main insight is that much more

unlabeled structure in the spatio-temporal volume can be

exploited for video object segmentation. Our model finds

such structure via transductive inference. The approach is

learned end-to-end, without the need of additional modules,

additional datasets, or dedicated architectural designs. Our

vanilla ResNet50 model achieves competitive performance

with a compelling speed of 37 frames per second. We hope

our model can serve as a solid baseline for future research.
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