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Abstract

Co-saliency detection aims to discover the common and

salient foregrounds from a group of relevant images. For

this task, we present a novel adaptive graph convolutional

network with attention graph clustering (GCAGC). Three

major contributions have been made, and are experimen-

tally shown to have substantial practical merits. First,

we propose a graph convolutional network design to ex-

tract information cues to characterize the intra- and inter-

image correspondence. Second, we develop an attention

graph clustering algorithm to discriminate the common ob-

jects from all the salient foreground objects in an unsu-

pervised fashion. Third, we present a unified framework

with encoder-decoder structure to jointly train and optimize

the graph convolutional network, attention graph cluster,

and co-saliency detection decoder in an end-to-end man-

ner. We evaluate our proposed GCAGC method on three co-

saliency detection benchmark datasets (iCoseg, Cosal2015

and COCO-SEG). Our GCAGC method obtains significant

improvements over the state-of-the-arts on most of them.

1. Introduction

Human is able to exhibit visual fixation to attend to the

attractive and interesting regions and objects for future pro-

cessing [7]. Co-saliency detection model simulates the hu-

man visual system to perceive the scene, and searches for

the common and salient foregrounds in an image group.

Co-saliency has been used in various applications to im-

prove the understanding of image/video content, such as

image/video co-segmentation [55, 13, 14, 59], object co-

localization [25, 53], and image retrieval [47, 68].

In co-saliency detection, the semantic categories of the
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common salient objects are unknown. Thus, the designed

algorithm needs to infer such information from the specific

content of the input image group. Therefore, the co-saliency

detection algorithm design usually focuses on addressing t-

wo key challenges: (1) extracting informative image feature

representations to robustly describe the image foreground-

s; and (2) designing effective computational framework-

s to formulate and detect the co-saliency. Conventional

hand-engineered features, such as Gabor filters, color his-

tograms and SIFT descriptors [43] have been widely used in

many co-saliency detection methods [12, 41, 69]. Howev-

er, hand-crafted shallow features usually lack the ability to

fully capture the large variations of common object appear-

ances, and complicated background textures [57]. Recent-

ly, researchers improve co-saliency detection using deep-

learning-based high-level feature representations, and have

shown promising results [75, 73, 76]. Nonetheless, these

approaches separate the representation extraction from co-

saliency detection as two distinct steps, and lose the ability

to tailor the image features towards inferring co-salient re-

gions [24]. End-to-end algorithms adopting convolutional

neural networks (CNNs) [24, 57, 64] have been developed

to overcome this problem, and demonstrated state-of-the-art

performance. Although CNN is able to extract image rep-

resentations in a data-driven way, it is the sub-optimal solu-

tion to model long-range dependencies [61]. CNN captures

long-range dependencies by deeply stacking convolution-

al operations to enlarge the receptive fields. However, the

repeated convolutional operations cause optimization diffi-

culties [61, 21], and make multi-hop dependency modeling

[61]. Moreover, it becomes even more challenging for the

CNN to accurately modeling the inter-image non-local de-

pendencies for the co-salient regions in the image group.

To address the aforementioned challenges, we develop a

novel adaptive graph convolutional network with attention

graph clustering (GCAGC) for co-saliency detection. We

first utilize a CNN encoder to extract multi-scale feature

representations from the image group, and generate com-

bined dense feature node graphs. We then process the dense
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graphs with the proposed adaptive graph convolutional net-

work (AGCN). Compared with only depending on the pro-

gressive behavior of the CNN, the AGCN is able to capture

the non-local and long-range correspondence directly by

computing the interactions between any two positions of the

image group, regardless of their intra- and inter-image po-

sitional distance. The output from AGCN is further refined

by an attention graph clustering module (AGCM) through

generated co-attention maps. A CNN decoder is employed

in the end to output the finally predicted co-saliency maps.

A unified framework is designed to jointly optimize all the

components together.

The main contributions of this paper are threefold:

• We provide an adaptive graph convolutional network

design to simultaneously capture the intra- and inter-

image correspondence of an image group. Compared

with conventional approaches, this AGCN directly

computes the long-range interactions between any two

image positions, thus providing more accurate mea-

surements.

• We develop an attention graph clustering module to

differentiate the common objects from salient fore-

grounds. This AGCM is trained in an unsupervised

fashion, and generates co-attention maps to further re-

fine the estimated co-salient foregrounds.

• We present an end-to-end computational framework

with encoder-decoder CNN structure to jointly opti-

mize the graph clustering task and the co-saliency de-

tection objective, while learning adaptive graph depen-

dencies.

2. Related Work

Image Co-saliency Detection. This task identifies com-

mon distinct foregrounds and segments them from multi-

ple images. Various strategies have been developed for

this task. Bottom-up approaches first score each pixel/sub-

region in the image group, and then combine similar regions

in a bottom-up fashion. Hand-crafted features [12, 15, 35,

41, 69] or deep-learning-based features [75, 74] are usual-

ly employed to score such sub-regions. Fu et al. [12] uti-

lize three visual attention priors in a cluster-based frame-

work. Liu et al. [41] define background and foreground

cues to capture the intra- and inter-image similarities. Pre-

trained CNN and restricted Boltzmann machine are used

in [75] and [74] to extract information cues to detect com-

mon salient objects, respectively. In contrast, fusion-based

algorithms [54, 5, 26] are designed to discover useful in-

formation from the predicted results generated by several

existing saliency or co-saliency detection methods. These

methods fuse the detected region proposals by region-wise

adaptive fusion [26], adaptive weight fusion [5] or stacked-

autoencoder-enabled fusion [54]. Learning-based methods

are the third category of co-saliency detection algorithms,

and developed to learn the co-salient pattern directly from

the image group. In [24], an unsupervised CNN with t-

wo graph-based losses is proposed to learn the intra-image

saliency and cross-image concurrency, respectively. Zhang

et al. [76] design a hierarchical framework to capture co-

salient area in a mask-guided fully CNN. Wei et al. [64]

design a multi-branch architecture to discover the interac-

tion across images and the salient region in single image

simultaneously. A semantic guided feature aggregation ar-

chitecture is proposed to capture the concurrent and fine-

grained information in [57]. Although many methods have

been developed, this field still lacks of research on address-

ing the limitations of CNN for capturing long-range intra-

and inter-image dependencies.

Graph Neural Networks (GNNs). GNNs [18, 49] are

the models for capturing graph dependencies via message

passing between the nodes of graphs. Different from s-

tandard neural network, GNNs retain a state that can rep-

resent information from its neighborhood with arbitrary

depth [78]. Convolutional graph neural networks (GCN-

s) [4, 8, 29, 31, 1, 45, 16] are a variant of GNNs, and aim

to generalize convolution to graph domain. Algorithms in

this direction are often categorized as the spectral-based

approaches [4, 8, 29, 31], and the spatial-based approach-

es [1, 45, 16]. The former ones work with a spectral repre-

sentation of the graphs; and the latter ones define the opera-

tion directly on graph, and extract information from groups

of spatially connected neighbours. Recently, GNN and GC-

N have demonstrated promising results in various computer

vision tasks, including scene graph generation [67, 36, 19],

point clouds classification and segmentation [30, 63], se-

mantic segmentation [58, 48], action recognition [66] and

visual reasoning and question answering [6, 44]. More

comprehensive review of GNNs can be found in [78, 65].

Graph Clustering. This task divides the graph nodes in-

to related groups. Early works [17, 52] develop shallow ap-

proaches for graph clustering. Girvan et al. [17] use central-

ity indices to discover boundaries of different nodes groups.

Wang et al. [60] develop a modularized non-negative matrix

factorization approach to incorporate the community struc-

ture into the graph embedding, and then perform traditional

clustering methods on the embedded features. The limita-

tions of these works are that they only handle partial graph

structure or shallow relationships between the content and

the structure data [56]. In contrast, deep-learning-based ap-

proaches [46, 56] are developed recently to improve graph

clustering. Pan et al. [46] present an adversarially regular-

ized framework to extract the graph representation to per-

form graph clustering. Wang et al. [56] develop a goal-

directed deep learning approach to jointly learn graph em-
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Figure 1. Pipeline of the proposed GCAGC for co-saliency detection. Given a group of images as input, we first leverage a backbone CNN

as encoder (a) to extract the multi-scale features of each image, and then we adopt the feature pyramid network (FPN) [38] to fuse all the

image features from top to down. Next, the lateral output features as node representations are fed into the AGCN (b). The output features

of AGCN via two-layer GCNs are then fed into the AGCM (c), generating a set of object co-attention maps. Finally, the co-attention

maps and the output features of AGCN are concatenated and fed into the decoder (d), producing corresponding co-saliency maps. +©:

element-wise addition; c©: concatenation; G(V, E ,A): graph of nodes V , edges E and adjacency matrix A; Pk
1 , Pk

2 : learnable projection

matrices for graph learning; Wk
1 and Wk

2 : learnable weight matrices in the adopted two-layer GCNs.

bedding and graph clustering together. More detailed re-

view of graph clustering is provided in [2].

3. Proposed Approach

3.1. Method Overview

Given a group of N relevant images I = {In}Nn=1, the

task of co-saliency detection aims to highlight the shared

salient foregrounds against backgrounds, predicting the cor-

responding response maps M = {Mn}Nn=1. To achieve this

goal, we learn a deep GCAGC model to predict M in an

end-to-end fashion.

Figure 1 illustrates the pipeline of our approach, which

consists of four key components: (a) Encoder, (b) AGC-

N, (c) AGCM and (d) Decoder. Specifically, given in-

put I, we first adopt the VGG16 backbone network [51]

as the encoder to extract their features by removing the

fully-connected layers and softmax layer. Afterwards, we

leverage the FPN [38] to fuse the features of pool3, pool4

and pool5 layers, generating three lateral intermediate fea-

ture maps X = {Xk}3k=1 as the multi-scale feature rep-

resentations of I, Then, for each Xk ∈ X , we design

a sub-graph Gk with a learnable structure that is adaptive

to our co-saliency detection task, which is able to well

capture the long-range intra- and inter-image correspon-

dence while preserving the spatial consistency of the salien-

cy. Meanwhile, to fully capture multi-scale information

for feature enhancement, the sub-graphs are combined in-

to a multi-graph G = ∪kG
k. Then, G is integrated into

a simple two-layer GCNs Fgcn [29], generating the pro-

jected GC filtered features Fgcn(X ) = {Fgcn(X
k)}3k=1.

Recent works [32, 33] show that the GC filtering of GC-

Ns [29] is a Laplacian smoothing process, and hence it

makes the salient foreground features of the same category

similar, thereby well preserving spatial consistency of the

foreground saliency, which facilitates the subsequent intra-

and inter-image correspondence. Afterwards, Fgcn(X )
are fed into a graph clustering module Fgcm, producing a

group of co-attention maps Mcatt, which help to further re-

fine the predicted co-salient foregrounds while suppressing

the noisy backgrounds. Finally, the concatenated features

Mcatt c©Fgcn(X ) are fed into a decoder layer, producing

the finally predicted co-saliency maps.

3.2. Adaptive Graph Convolution Network

As aforementioned, the AGCN is to process features

as Laplacian smoothing [32] that can benefit long-range

intra- and inter-image correspondence while preserving s-

patial consistency. Numerous graph based works for co-

saliency detection [24, 55, 77, 23, 27, 37] have been devel-

oped to better preserve spatial consistency, but they perform

intra-saliency detection and inter-image correspondence in-

dependently, which cannot well capture the interactions be-

tween co-salient regions across images that are essential to

co-saliency detection, thereby leading to sub-optimal per-

formance. Differently, our AGCN constructs a dense graph

that takes all input image features as the node representa-

tions. Meanwhile, each edge of the graph models the in-

teractions between any pair-wise nodes regardless of their

positional distance, thereby well capturing long-range de-

pendencies. Hence, both intra-saliency detection and inter-

image correspondence can be jointly implemented via fea-

ture propagation on the graph under a unified framework

without any poster-processing, leading to a more accurate

co-saliency estimation than those individually processing

each part [24, 55, 77, 23, 27, 37].
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Figure 2. Illustration of the effect of GC filtering. The GC fil-

tered signal projections Zk preserve better spatial consistency of

the salient foregrounds than the input graph signals Xk that high-

light more noisy backgrounds. Afterwards, the co-attention maps

Mcatt generated by our AGCM in § 3.3 further reduce the noisy

backgrounds existing in Zk.

Notations of Graph. We construct a multi-graph

G(V, E ,A) = ∪3
k=1G

k(Vk, Ek,Ak) that is composed of

three sub-graphs Gk, where node set V = {Vk}, edge set

E = {Ek}, adjacent matrix A =
∑

k Ak, Vk = {vki } de-

notes the node set of Gk with node vki , Ek = {ekij} de-

notes its edge set with edge ekij , Ak denotes its adjacent

matrix, whose entry A
k(i, j) denotes the weight of edge

ekij . Xk = [xk1 , . . . , xkNwh]
⊤ denotes the feature matrix of

Gk, where xki ∈ R
dk

is the features of node vki with dimen-

sion dk.

Adjacency Matrix A. The vanilla GCNs [29] construc-

t a fixed graph without training, which cannot guarantee

to be best suitable to a specific task [22]. Recently, some

works [22, 34, 27] have investigated adaptive graph learn-

ing techniques through learning a parameterized adjacency

matrix tailored to a specific task. Inspired by this and the

self-attention mechanism in [61], for sub-graph k, to learn

a task-specific graph structure, we define a learnable adja-

cency matrix as

Ak = σ(XkPk
1(X

kPk
2)

⊤), (1)

where σ(x) = 1
1+e−x denotes the sigmoid function,

Pk
1 ,Pk

2 ∈ R
dk

×r are two learnable projection matrices

that reduce the dimension of the node features from dk to

r < dk.

To combine multiple graphs in GCNs, as in [62], we sim-

ply element-wisely add the adjacency matrices of all Gk to

construct the adjacency matrix of G as

A = A1 + A2 + A3. (2)

Graph Convolutional Filtering. We employ the two-

layer GCNs proposed by [29] to perform graph convolu-

Figure 3. The schematic diagram of our AGCM Fgcm. Please

refer to the text part for details.

tions as

Zk = Fgcn(X
k)

= Fsoftmax(ÂReLU(Fgcf (Â,Xk)Wk
1)W

k
2),

(3)

where the GC filtering function is defined as [33]

Fgcf (Â,Xk) = ÂXk, (4)

Wk
1 ∈ R

dk
×ck

1 , Wk
2 ∈ R

ck
1
×ck denote the learnable weight

matrices of two fully-connected layers for feature projec-

tions, Â = D̃
− 1

2 ÃD̃
− 1

2 , where Ã = A + I, A is defined by

(2) and I denotes the identity matrix, D̃(i, i) =
∑

j Ã(i, j)

is the degree matrix of Ã that is diagonal.

Recent work [33] has shown that the GC filtering Fgcf

(4) is low-pass and hence it can make the output signal pro-

jections Zk smoother in the same cluster, so as to well p-

reserve the spatial consistency of the salient foregrounds

across images as illustrated by Figure 2. However, some

intra-consistency but non-salient regions have also been

highlighted. To overcome this issue, in the following sec-

tion, we will present an attention graph clustering technique

to further refine Zk to focus on co-salient regions.

3.3. Attention Graph Clustering Module

Figure 3 shows the schematic diagram of our AGCM

Fgcm. Specifically, given the GC filtering projections Zk ∈

R
Nwh×ck , k = 1, 2, 3 in (3), we obtain a multi-scale fea-

ture matrix by concatenating them as Z = [Z1,Z2,Z3] =
[z1, . . . , zNwh]

⊤ ∈ R
Nwh×d, where the multi-scale node

features zi ∈ R
d, d =

∑

k c
k. Next, we reshape Z to tensor

Z ∈ R
N×w×h×d as input of Fgcm. Then, we define a group

global average pooling (gGAP) function FgGAP as

u = FgGAP (Z) =
1

Nwh

∑

n,i,j

Z(n, i, j, :), (5)

which outputs a global statistic feature u ∈ R
d as the

multi-scale semantic saliency representation that encodes

the global useful group-wise context information. After-

wards, we correlate u and Z to generate a group of attention

maps that can fully highlight the intra-saliency:

Matt = u ⊗ Z, (6)
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where Matt ∈ R
N×w×h, ⊗ denotes correlation operator.

Then, we use sigmoid function σ to re-scale the values of

Matt to [0, 1] as

W = σ(Matt). (7)

From Figure 3, we can observe that Matt discovers intra-

saliency that preserves spatial consistency, but some noisy

non-co-salient foregrounds have also been highlighted. To

alleviate this issue, we exploit an attention graph cluster-

ing technique to further refine the attention maps, which are

able to better differentiate the common objects from salient

foregrounds. Motivated by the weighted kernel k-means ap-

proach in [10], we define the objective function of AGCM

as

Lgc =
∑

zi∈πf

wi‖zi − mf‖
2 +

∑

zi∈πb

wi‖zi − mb‖
2, (8)

where πf and πb denote the clusters of foreground and

background respectively, mf =

∑
zi∈πf

ziwi
∑

zi∈πf
wi

and similar for

mb, wi denotes the i-th element of W in (7).

Following [10], we can readily show that the minimiza-

tion of the objective Lgc in (8) is equivalent to

min
Y

{Lgc = −trace(Y⊤KY)}, (9)

where K = D
1

2 ZZ⊤D
1

2 , D = diag(w1, . . . , wNwh), Y ∈
R

Nwh×2 satisfies Y⊤Y = I.

Let y ∈ {0, 1}Nwh denote the indictor vector of the clus-

ters, and y(i) = 1 if i ∈ πf , else, y(i) = 0. We choose

Y = [y/
√

|πf |, (1− y)/
√

|πb|] that satisfies Y⊤Y = I and

put it into (9), yielding the loss function of our AGCM

Lgc = −

(

y⊤Ky

y⊤y
+

(1 − y)⊤K(1 − y)

(1 − y)⊤(1 − y)

)

. (10)

Now, we show the relationship between the above loss

Lgc and graph clustering. We first construct the graph

of GC as Ggc(Vgc, Egc,K), which is made up of node set

Vgc = Vf ∪Vb, where Vf is the set of foreground nodes and

Vb is the set of background nodes, Egc denotes the edge set

such that the weight of edge between nodes i and j is equal

to K(i, j), where K is its adjacency matrix defined in (9).

Let us denote links(Vl,Vl) =
∑

i∈Vl,j∈Vl
K(i, j), l = f, b,

then, it is easy to show that minimizing Lgc (10) is equiv-

alent to maximizing the ratio association objective [50] for

graph clustering task

max







∑

l=f,g

links(Vl,Vl)

|Vl|







. (11)

where |Vl| denotes the cardinality of set Vl.

Directly optimizing Lgc (10) yields its continuous re-

laxed solution ŷ. Then, we reshape ŷ into a group of

N co-attention maps Mcatt ∈ R
N×w×h. Finally, the

learned co-attention maps Mcatt and the input features Z ∈
R

N×w×h×d of the AGCM are concatenated, yielding the

enhanced features F ∈ R
N×w×h×(d+1):

F = Mcatt c©Z, (12)

where c© denotes concatenation operator, which serves as

the input of the following decoder network.

3.4. Decoder Network

Our decoder network has an up-sampling module that is

consist of a 3 × 3 convolutional layer to decrease feature

channels, a ReLU layer and a deconvolutional layer with

stride = 2 to enlarge resolution. Then, we repeat this mod-

ule three times until reaching the finest resolution for ac-

curate co-saliency map estimation, following a 1 × 1 con-

volutional layer and a sigmoid layer to produce a group of

co-saliency map estimations.

Given the features F computed by (12) as input, the

decoder network generates a group of co-saliency maps

M = {Mn ∈ R
w×h}Nn=1. We then leverage a weighted

cross-entropy loss for pixel-wise classification

Lcls = −
1

P ×N

N
∑

n=1

P
∑

i=1

{ρnMn(i) log(Mn
gt(i))

−(1− ρn)(1− Mn(i)) log(1− Mn
gt(i))},

(13)

where Mn
gt denotes the ground-truth mask of image In ∈ I,

P denotes the pixel number of image In and ρn denotes the

ratio of all positive pixels over all pixels in image In.

All the network parameters are jointly learned by mini-

mizing the following multi-task loss function

L = Lcls + λLgc, (14)

where Lgc is the attention graph clustering loss defined by

(10), λ > 0 is a trade-off parameter. We train our network

by minimizing L in an end-to-end manner, and the learned

GCAGC model is directly applied to processing input im-

age group, predicting the corresponding co-saliency maps

without any post-processing.

4. Results and Analysis

4.1. Implementation Details

The training of our GCAGC model includes two stages:

Stage 1. For fair comparison, we adopt the VGG16 net-

work [51] as the backbone network, which is pre-trained on

the ImageNet classification task [9]. Following the input

settings in [64, 57], we randomly select N = 5 images as

one group from one category and then select a mini-batch

groups from all categories in the COCO dataset [39], which

are sent into the network at the same time during training.
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Figure 4. Visual comparisons of our GCAGC method compared with other state-of-the-arts, including CBCS [12], ESMG [35], CSMG [76]

and RCGS [57].

All the images are resized to the same size of 224× 224 for

easy processing. The model is optimized by the Adam algo-

rithm [28] with a weight decay of 5e-4 and an initial learn-

ing rate of 1e-4 which is reduced by a half every 25, 000
iterations. This training process converges until 100, 000
iterations.

Stage 2. We further fine-tune our model using MSRA-B

dataset [40] to better focus on the salient areas. All the pa-

rameter settings are the same as those in Stage 1 except for

the training iterations =10, 000. Note that when training, to

match the size of input group, we augment the single salien-

t image to N = 5 different images as a group using affine

transformation, horizontal flipping and left-right flipping.

During testing, we divide all images into several mini-

groups to produce the final co-saliency map estimations.

The network is implemented in PyTorch with a RTX 2080Ti

GPU for acceleration.

4.2. Datasets and Evaluation Metrics

We conduct extensive evaluations on three popular

datasets including iCoseg [3], Cosal2015 [72] and COCO-

SEG [57]. Among them, iCoseg is the most widely used

dataset with totally 38 groups of 643 images, among which

the common objects in one group share similar appearance

or semantical characteristics, but have various pose or color

changes. Cosal2015 is a large-scale dataset which is con-

sist of 2, 015 images of 50 categories, and each group suf-

fers from various challenging factors such as complex en-

vironments, occlusion issues, target appearance variations

and background clutters, etc. All these increase the diffi-

culty for accurate co-saliency detection. Recently, to meet

the urgent requirement of large-scale training set for deep-

learning-based co-saliency detection approaches, COCO-

SEG has been proposed which are selected from the CO-

CO2017 dataset [39], of which 200, 000 and 8, 000 images

are for training and testing respectively from all 78 cate-

gories.

We compare our GCAGC method with existing state-

of-the-art algorithms in terms of 6 metrics including the

precision-recall (PR) curve [70], the receive operator char-

acteristic (ROC) curve [70], the average precision (AP)

score [70], F-measure score Fβ [70], S-measure score
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Figure 5. Comparisons with state-of-the-art methods in terms of PR and ROC curves on three benchmark datasets

Table 1. Statistic comparisons of our GCAGC with the other state-of-the-arts. Red and blue bold fonts indicate the best and second best

performance, respectively.

Methods
iCoseg Cosal2015 COCO-SEG

AP↑ Fβ↑ Sm↑ MAE↓ AP↑ Fβ↑ Sm↑ MAE↓ AP↑ Fβ↑ Sm↑ MAE↓

CBCS [12] 0.7965 0.7408 0.6580 0.1659 0.5859 0.5579 0.5439 0.2329 0.3043 0.3050 0.4710 0.2585

CSHS [42] 0.8454 0.7549 0.7502 0.1774 0.6198 0.6210 0.5909 0.3108 - - - -

ESMG [35] 0.8336 0.7773 0.7677 0.1261 0.5116 0.5120 0.5446 0.2581 0.3387 0.3592 0.4931 0.2349

SACS [5] 0.8399 0.7978 0.7523 0.1516 0.7076 0.6927 0.6938 0.1920 0.4176 0.4234 0.5229 0.3271

CODW [72] 0.8766 0.7990 0.7500 0.1782 0.7437 0.7051 0.6473 0.2733 - - - -

DIM [71] 0.8773 0.7919 0.7583 0.1739 0.6305 0.6162 0.5907 0.3123 0.3043 0.3353 0.4572 0.3871

UMLF [20] 0.7881 0.7148 0.7033 0.2389 0.7444 0.7016 0.6604 0.2687 0.4347 0.4309 0.4872 0.3953

UCSG [24] 0.9112 0.8503 0.8200 0.1182 0.8149 0.7589 0.7506 0.1581 - - - -

RCGS [57] 0.8269 0.7730 0.7810 0.0976 0.8573 0.8097 0.7959 0.0999 0.7309 0.6814 0.7185 0.1239

CSMG [76] 0.9097 0.8517 0.8208 0.1050 0.8569 0.8216 0.7738 0.1292 0.6309 0.6208 0.6517 0.1461

GCAGC 0.8867 0.8532 0.8205 0.0757 0.8799 0.8428 0.8224 0.0890 0.7323 0.7092 0.7294 0.1097

Sm [11] and Mean Absolute Error (MAE) [57].

4.3. Comparisons with Stateofthearts

We compare our GCAGC approach with 10 state-of-the-

art co-saliency detection methods including CBCS [12], C-

SHS [42], ESMG [35], SACS [5], CODW [72], DIM [71],

UMLF [20], UCSG [24], RCGS [57], CSMG [76]. For fair

comparisons, we directly report available results released

by authors or reproduce experimental results by the public

source code for each compared method.

Qualitative Results. Figure 4 shows some visual com-

parison results with 4 state-of-the-art methods including

CBCS [12], ESMG [35], CSMG [76] and RCGS [57]. Our

GCAGC can achieve better co-saliency results than the oth-

er methods when the co-salient targets suffer from signif-

icant appearance variations, strong semantic interference

and complex background clutters. In Figure 4, the two left

groups of images are selected from iCoseg. Among them,

for the group of Red Sox Players, the audience in the back-

ground share the same semantics with those foreground co-

salient players, which makes it very difficult to accurately

differentiate them. Notwithstanding, our GCAGC can ac-
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Table 2. Ablative studies of our model on iCoseg and Cosal2015.

Here GCAGC-N, GCAGC-M, GCAGC-P denote our GCAGC in

absence of AGCN, AGCM and the projection matrices P in (1),

respectively. Red bold font indicates the best performance.

Datasets GCAGC-N GCAGC-M GCAGC-P GCAGC

AP↑ 0.8799 0.8606 0.8796 0.8867

iCoseg Fβ↑ 0.8504 0.8123 0.8463 0.8532

Sm↑ 0.8175 0.8203 0.8122 0.8205

MAE↓ 0.0831 0.0796 0.0790 0.0757

AP↑ 0.8577 0.8779 0.8737 0.8799

Cosal2015 Fβ↑ 0.8156 0.8373 0.8375 0.8428

Sm↑ 0.8167 0.8145 0.8156 0.8224

MAE↓ 0.0967 0.0901 0.0851 0.0890

curately highlight the co-salient players due to its two-steps

filtering processing from GC filtering to graph clustering

that can well preserve spatial consistency while effectively

reducing noisy backgrounds. However, the other compared

methods cannot achieve satisfying results, which contain ei-

ther some noisy backgrounds (see the middle columns of

RCGS, ESMG, CBCS) or the whole intra-salient areas in-

cluding non-co-salient regions (see the left-most column of

RCGS, the left-fourth columns of ESMG and CBCS). The

co-saliency maps in the middle groups (Apple and Monkey)

are generated from the image groups selected from Cos-

al2015. The Apple group suffers from the interferences of

other foreground semantic objects such as hand and lemon

while the Monkey group undergoes complex background

clutters. It is obvious that our GCAGC can generate better

spatially coherent co-saliency maps than the other methods

(see the two bottom rows of ESMG and CBCS, the left-

most columns of RCGS and CSMG). The two right-most

groups are selected from COCO-SEG, which contain a va-

riety of challenging images with targets suffering from the

interferences of various different categories and complicate

background clutters. Notwithstanding, our GCAGC can ac-

curately discover the co-salient targets even when they suf-

fer from extremely complicate background clutters (see the

Broccoli group). The experimental results show that our

GCAGC can achieve favorable performance against vari-

ous challenging factors, validating the effectiveness of our

GCAGC model that can adapt well to a variety of compli-

cate scenarios.

Quantitative Results. Figure 5 shows the PR and the

ROC curves of all compared methods on three benchmark

datasets. We can observe that our GCAGC outperform-

s the other state-of-the-art methods on three datasets. E-

specially, all the curves on the largest and most challeng-

ing Cosal2015 and COCO-SEG are much higher than the

other methods. Meanwhile, Table 1 lists the statistic analy-

sis, among which the RCGS is a representative end-to-end

deep-learning-based method that achieves state-of-the-art

performance on both Cosal2015 and COCO-SEG with the

F-scores of 0.8097 and 0.6814, respectively. Our GCAGC

achieves the best F-scores of 0.8428 and 0.7092 on Cos-

al2015 and COCO-SEG, respectively, outperforming the

second best-performing CSMG by 3.31% on Cosal2015

and RCGS by 2.78% on COCO-SEG. All the qualitative re-

sults further demonstrate the effectiveness of jointly learn-

ing the GCGAC model that is essential to accurate co-

saliency detection.

4.4. Ablative Studies

Here, we conduct ablative studies to validate the effec-

tiveness of the proposed two modules (AGCN and AGCM)

and the adaptive graph learning strategy in the AGCN. Ta-

ble 2 lists the corresponding quantitative statistic results in

terms of AP, Fβ , Sm and MAE.

First, without AGCN, the GCAGC-N shows obvious per-

formance drop on Cosal2015 in terms of all metrics, espe-

cially for both AP and Fβ , where the former drops from

0.8799 to 0.8577 by 2.22% and the latter drops from 0.8428
to 0.8156 by 2.72%. Besides, the performance of GCAGC-

N on iCoseg also suffers from drop in terms of all metrics.

Second, without AGCM, the GCAGC-M suffers from

obvious performance drop in terms of all metrics on both

datasets, especially for AP and Fβ on iCoseg, where the AP

score and the Fβ decline from 0.8867 to 0.8606 by 2.61%
and from 0.8532 to 0.8123 by 4.09%, respectively. The

results validate the effectiveness of the proposed AGCM

that can well discriminate the co-objects from all the salient

foreground objects to further boost the performance.

Finally, without adaptive graph learning in AGCN, all

metrics in GCAGC-P have obvious decline on both datasets,

further showing the superiority of proposed AGCN to learn

an adaptive graph structure tailored to the co-saliency detec-

tion task compared with the fixed graph design in the vanilla

GCNs [29].

5. Conclusion

This paper has presented an adaptive graph convolution-
al network with attention graph clustering for co-saliency
detection, mainly including two key designs: an AGC-
N and an AGCM. The AGCN has been developed to ex-
tract long-range dependency cues to characterize the intra-
and inter-image correspondence. Meanwhile, to further re-
fine the results of the AGCN, the AGCM has been de-
signed to discriminate the co-objects from all the salient
foreground objects in an unsupervised fashion. Finally, a
unified framework with encoder-decoder structure has been
implemented to jointly optimize the AGCN and the AGCM
in an end-to-end manner. Extensive evaluations on three
largest and most challenging benchmark datasets including
iCoseg, Cosal2015 and COCO-SEG have demonstrated su-
perior performance of the proposed method over the state-
of-the-art methods in terms of most metrics.
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