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Abstract

As a typical cross-modal problem, image-text bi-

directional retrieval relies heavily on the joint embedding

learning and similarity measure for each image-text pair.

It remains challenging because prior works seldom explore

semantic correspondences between modalities and seman-

tic correlations in a single modality at the same time. In this

work, we propose a unified Context-Aware Attention Net-

work (CAAN), which selectively focuses on critical local

fragments (regions and words) by aggregating the global

context. Specifically, it simultaneously utilizes global inter-

modal alignments and intra-modal correlations to discover

latent semantic relations. Considering the interactions be-

tween images and sentences in the retrieval process, intra-

modal correlations are derived from the second-order atten-

tion of region-word alignments instead of intuitively com-

paring the distance between original features. Our method

achieves fairly competitive results on two generic image-

text retrieval datasets Flickr30K and MS-COCO.

1. Introduction

Associating vision with language and exploring the rela-

tions between them have attracted great interest in the past

decades. Many tasks have efficiently combined these two

modalities and made significant progress, such as visual

question answering (VQA) [1, 2, 33, 25], image caption-

ing [1, 9], and person search with natural language [22, 23].

Image-text bidirectional retrieval [40, 44] is one of the most

popular branches in the field of cross-modal research. It

aims to retrieve images given descriptions or find sentences

from image queries. Due to the large discrepancy between

these two modalities, the main challenge is how to learn

joint embeddings and accurately measure the image-text

similarity.

While describing a target image, people tend to make
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A bunch of different fruits sitting 
in baskets and on a table .

(a)

Pineapples , bananas and oranges 
are in crates near smoothies .

(b)

Figure 1. Illustration of the adaptive retrieval process with differ-

ent contexts. An image is annotated with two different sentences.

The regions highlighted with green in (a) correspond to ”fruits” in

the left sentence. However, they correspond to ”pineapples”, ”ba-

nanas” and ”oranges” in the right sentence, highlighted with blue,

yellow and red in (b), respectively.

frequent references to salient objects and depict their at-

tributes and actions. Based on the observation, some ap-

proaches [15, 16, 33] map regions in images and words

in sentences into a latent space and explore alignments be-

tween them. Although validating the efficacy of exploring

region-word correspondences, they ignore the different im-

portance of each local fragment. Recently, attention-based

methods [19, 20, 26, 41] have taken steps toward attending

differently to the specific regions and words and shown very

promising results in the image-text retrieval task. SCAN

[19] is a typical one to decide the importance of fragments

based on fragments from another modality, aiming to dis-

cover full region-word alignments. Nevertheless, it ignores

semantic correlations (common or exclusive attributes, cat-

egories, scenes etc.) between fragments in a single modal-

ity. Furthermore, some works [20, 26] have been proposed

to either learn visual relation features with pre-trained neu-

ral scene graph generators or eliminate irrelevant fragments

based on intra-modal relations, which alleviate the prob-

lems mentioned above to some extent.
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However, most previous attention-based methods [19,

20, 26, 41] ignore the fact that a word or region might have

different semantics in different global contexts. Specifi-

cally, the global context refers to both interaction and align-

ments between two modalities (inter-modal context) and

semantic summaries and correlations in a single modality

(intra-modal context). As shown in Figure 1, people some-

times automatically summarize high-level semantic con-

cepts (such as fruits) based on the relationships between

objects in Figure 1(a), and sometimes describe each ob-

ject separately (such as pineapple, banana, orange) in Fig-

ure 1(b). Therefore, it is beneficial to take into account

intra-modal and inter-modal contexts simultaneously and

perform image-text bidirectional retrieval with adaptation

to various contexts.

To address the problems above, we first propose a uni-

fied Context-Aware Attention Network (CAAN) to selec-

tively attend to local fragments based on the global con-

text. It formulates the image-text retrieval as an atten-

tion process, which integrates both the inter-modal attention

to discover all possible alignments between word-region

pairs and intra-modal attention to learn semantic correla-

tions of fragments in a single modality. By exploiting the

context-aware attention, our model can simultaneously per-

form image-assisted textual attention and text-assisted vi-

sual attention. As a result, the attention scores assigned for

fragments aggregate the context information.

Instead of intuitively using feature-based similarities, we

further propose Semantics-based Attention (SA) to explore

latent intra-modal correlations. Our semantics-based atten-

tion is formulated as the second-order attention of region-

word alignments, which explicitly considers interactions

between modalities and effectively utilizes region-word re-

lations to infer the semantic correlations in a single modal-

ity. It is aware of the current input pair, and the comprehen-

sive context from the image-text pair can directly influence

the computation of each other’s responses in the retrieval

process. Therefore, it achieves the actual adaptive matching

according to the given context.

In summary, the main contributions of our work are

listed as follow:

• We propose a unified Context-Aware Attention Net-

work to adaptively select informative fragments based

on the given context from a global perspective, includ-

ing semantic correlations in a single modality and pos-

sible alignments between region and words.

• We propose the Semantics-based Attention to capture

latent intra-modal correlations. It is the interpretable

second-order attention of region-word alignments.

• We evaluate our proposed model on two benchmark

datasets Flickr30K [46] and MS-COCO [24] and it

achieves fairly competitive results.

2. Related Work

Most existing methods for image-text retrieval either em-

bed whole images and full sentences into a shared space or

consider latent correspondences between local fragments.

Some recent approaches further adopt the attention mecha-

nism to focus on the most important local fragments.

2.1. ImageText Retrieval

Global embeddings based methods. A common solution

is to learn joint embeddings for images and sentences. De-

ViSE [10] made the first attempt to unify image features and

skip-gram word features by a linear mapping. Wang et al.

[39] combined the bi-directional ranking constraints with

neighborhood structure preservation constraints in a single

modality. Li et al. [22] used identity-level annotations and a

two-stage framework to learn better feature representations.

More recent works focus on the design of objective func-

tions. Zheng et al. [47] learned the dual-path convolutional

image-text embeddings with the proposed instance loss.

Although these methods have achieved a certain degree

of success, image-text retrieval remains challenging due to a

lack of detailed understanding of the fine-grained interplay

between images and sentences.

Local fragments based methods. Different from the meth-

ods above, many efforts have been devoted to addressing

the problem of image-text retrieval on top of local frag-

ments. DVSA [16] first adopted R-CNN to detect salient

objects and inferred latent alignments between words in

sentences and regions in images. Ma et al. [30] proposed

to learn relations between images and fragments composed

from words at different levels. sm-LSTM [13] attempted

to jointly predict instance-aware saliency maps for both im-

ages and sentences and use their similarities within several

timesteps. HM-LSTM [33] exploited hierarchical relations

between sentences and phrases, and between whole images

and image regions, to jointly establish their representations.

Huang et al. [14] proposed a semantic-enhanced image and

sentence matching model, which learns semantic concepts

and organizes them in a correct semantic order.

In this paper, we adopt the same local fragments based

strategy to consider the contents of images and text at a finer

level instead of using a rough overview.

2.2. Attention Mechanism

Attention mechanism recently has gained popularity and

been applied to various applications, including image clas-

sification [31, 38], image captioning [29, 43] and question

answering [36, 42, 45]. Benefiting from its great power,

many attention-based methods have been proposed in the

image-text retrieval task. DAN [32] introduced Dual At-

tention Networks to attend to specific regions in images

and words in text through multiple steps. SCAN [19] used
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Figure 2. The pipeline of our proposed context-aware attention network (CAAN). It consists of three modules, (a) extracting and encod-

ing regions in images and words in sentences, (b) context-aware attention with adaptation to the dynamic global context and (c) joint

optimization of the final representations with the bi-directional ranking loss.

Stacked Cross Attention to perform either image-to-text at-

tention or text-to-image attention at a time. CAMP [41]

proposed Cross-Modal Adaptive Message Passing to at-

tend to fragments. Considering visual relations between re-

gions, recent approach [20] adopted cross-modal attention

and learned visual relation features with pretrained neural

scene graph generators.

In addition to methods above, there some recent methods

extend the popular BERT [5] architecture to jointly learn vi-

sual and textual representations. These methods [21, 4, 28]

either use a single-stream model to fuse textual and visual

data as input, or take a two-stream model to process each

modality separately and then fuse them. Benefiting from

the self-attention module of BERT, they have achieved the

state-of-the art performance.

3. Method

In this section, we will present an overview of our

proposed Context-Aware Attention Network (CAAN). As

shown in Figure 2, given an image-text pair, we first em-

bed regions in images and words in sentences into a shared

space. Concretely, the bottom-up attention [1] is utilized

to generate image regions and their representations. Mean-

while, we encode words in sentences along with the sen-

tence context. In the association module, we perform our

context-aware attention network on the extracted features

of local fragments, which captures semantic alignments be-

tween region-word pairs and semantic correlations between

fragments in a single modality. Finally, the model is trained

with image-text matching loss.

Next, we will introduce details of our proposed method

from the following aspects: 1) visual representations, 2)

textual representations, 3) context-aware attention network

for global context aggregation, 4) objective function to op-

timize image-text retrieval.

3.1. Visual Representations

Given an image, we observe that people tend to make fre-

quent references to salient objects and describe their actions

and attributes, etc. Instead of extracting the global CNN

feature from a pixel-level image, we focus on local regions

and take advantage of bottom-up attention [1]. Following

[1, 19, 20], we detect objects and other salient regions in

each image utilizing a Faster R-CNN [34] model in con-

junction with ResNet-101 [12] in two stages, which is pre-

trained on Visual Genome [18]. In the first stage, the model

uses greedy non-maximum suppression with an IoU thresh-

old to select the top-ranked box proposals. In the second

stage, the extracted features of those bounding boxes are ob-

tained after the mean-pooled convolutional layer. The fea-

tures are used to predict both instance and attribute classes,

in addition to refining bounding boxes. For each region i,

xi denotes the original mean-pooling convolutional feature

with 2048 dimensions. The final feature vi is transformed

by a linear mapping of xi into a D-dimensional vector as

follows:

vi = Wxxi + bi. (1)

3538



Therefore, the target image v can be presented as a set of

features of selected ROIs with the highest class detection

confidence scores.

3.2. Textual Representations

In order to discover region-word correspondences, words

in sentences are mapped into the same D-dimensional space

as image regions. Instead of processing each word indi-

vidually, we consider to encode the word and its context

at a time. Given one-hot encodings W = {w1, ..., wm}
of m input words in a sentence, we first embed them into

300-dimensional vectors by the word embedding layer as

xi = Wewi, where We is a parametric matrix learned end-

to-end. We then feed vectors into a bi-directional GRU

[3, 35], which is written as:

−→
hi =

−−−→
GRU(xi,

−−→
hi−1), i ∈ [1,m], (2)

←−
hi =

←−−−
GRU(xi,

←−−
hi+1), i ∈ [1,m], (3)

where
−→
hi and

←−
hi denote hidden states from the forward and

backward directions, respectively. The final word embed-

ding ui is the mean of bi-directional hidden states, which

collects the context centered in the word wi:

ui =

−→
hi +

←−
hi

2
, i ∈ [1,m]. (4)

3.3. Contextaware Attention

3.3.1 Formulation

The attention mechanism aims to focus on the most perti-

nent information of the corresponding task rather than us-

ing all available information equally. We first provide a

general formulation of attention mechanism designed for

the cross-modal retrieval problem. For image v and text

u, their feature maps are formulated as V = [v1, ..., vn] and

U = [u1, ..., um], respectively. We define the attention pro-

cess for image-text retrieval as:

v̂ = V f(V, U) =

n∑

i=1

[f(V, U)]ivi, (5)

û = Ug(V, U) =

m∑

j=1

[g(V, U)]juj , (6)

where f(·) and g(·) are attention functions to calculate

scores for each local fragment vi and uj , respectively. The

final image and text features v̂ and û are computed as the

weighted sum of local fragments. Following [?, 29], we

calculate similarities between region-word pairs for the tar-

get image and text. The similarity matrix H is written as:

H = tanh(V TKU), (7)

where K ∈ R
d×d is a weight matrix. Attentive Pooling

Networks [6] performs column-wise and row-wise max-

pooling based on the assumption that the importance of each

fragment is represented as its maximal similarity over frag-

ments of another modality. It is an alternative version of

the proposed attention process when f(V, U) becomes the

softmax computation after applying row-wise max-pooling

operation on H . Furthermore, we not only calculate the

similarity matrix but use it as a feature to predict the at-

tention map. To be more specific, the importance score of

a fragment is decided by all the relevant fragments, taking

into account intra-modal correlations in a single modality

and inter-modal alignments between all region-word pairs.

Based on the consideration, the normalized attention func-

tion f(V, U) for regions can be formulated as follows:

f̃(V, U) = tanh(HvV TQ1 +HuvUTQ2), (8)

f(V, U) = softmax(W v f̃(V, U)), (9)

where W v ∈ R
z is a projection vector. Q1, Q2 ∈ R

d×z

are parametric matrices to do dimension-wise fusion. Hv ∈
R

n×n is the attention matrix capturing intra-modal corre-

lations for regions. Huv ∈ R
n×m is the attention matrix

for word-to-region re-weighting. Likewise, the normalized

attention function g(V, U) for words is written as follows:

g̃(V, U) = tanh(HuUTQ3 +HvuV TQ4), (10)

g(V, U) = softmax(Wug̃(V, U)), (11)

where Q3, Q4 ∈ R
d×z and Wu ∈ R

z are learned weights.

The designed attention functions f(V, U) and g(V, U)
selectively attend to those informative fragments according

to the global context, applying both inter-modal attention

and intra-modal attention.

3.3.2 Inter-modal Attention: Huv, Hvu

The matrix H calculates similarities of local region-word

pairs. Following [15, 19, 20], we threshold the similarities

to zero and normalize them to obtain alignment scores. The

word-to-region attention Huv is computed as:

Huv
ij =

[Hij ]+√∑n

k=1
[Hkj ]2+

, (12)

where [x]+ ≡ max(0, x). Each element Huv
i,j in the word-

to-region attention matrix Huv represents the relative pair-

wise correspondences of two local fragments region vi and

word uj . Similarity, the region-to-word attention Hvu is

computed as:

Hvu
ij =

[Hij ]+√∑m

k=1
[Hik]2+

, (13)

Both Huv and Hvu infer fine-grained interplay between im-

ages and sentences by aligning regions and words.

3539



column-wise 

normalization

row-wise 

normalization

 

 
!

 
"

Figure 3. Detailed illustration of the semantics-based intra-modal

attention process. The intra-modal affinity matrices H
v and H

u

are designed to capture latent region-to-region and word-to-word

relations, respectively. They are calculated by fully utilizing the

inter-modal alignments.

3.3.3 Intra-modal Attention: Hv, Hu

Next, we will discuss two versions of Hv and Hu, which

model intra-modal correlations from two different perspec-

tives.

Feature-based attention (FA). A natural choice of measur-

ing intra-modal correlations is to calculate feature similari-

ties. That is, the intra-modal attention matrices Hv and Hu

can be defined as:

Hv = V TM1V, (14)

Hu = UTM2U, (15)

where M1,M2 ∈ R
d×d are learned weight parameters.

When they are equal to identity matrices, elements in Hv

and Hu denote dot-product similarities between local frag-

ments in a single modality. The matrix product of a

learned matrix and its transpose is another alternative ver-

sion, which projects U into a new space. It not only al-

lows the calculated intra-modal attention matrices to rep-

resent the cosine similarities between normalized features,

but also preserves the model capacity.

However, it ignores that the semantic summary (intra-

modal context) in one modality varies for different queries.

Therefore, the semantic correlation mining between frag-

ments in a single modality should be conducted in an inter-

active way.

Semantics-based attention (SA). Considering the interac-

tions and message passing across two modalities in the re-

trieval process, we propose the semantics-based attention to

explore intra-modal correlations based on region-word re-

lations. In our work, we use the interpretable second-order

attention of inter-modal alignments. The detailed procedure

of SA is illustrated in Figure 3. The intra-modal attention

matrices Hv and Hu are defined as:

Hv =




norm(Huv
1· )

norm(Huv
2· )

...

norm(Huv
n· )







norm(Huv
1· )

norm(Huv
2· )

...

norm(Huv
n· )




T

, (16)

Hu =




norm(Hvu
1· )

norm(Hvu
2· )

...

norm(Hvu
m·)







norm(Hvu
1· )

norm(Hvu
2· )

...

norm(Hvu
m·)




T

, (17)

where norm(·) means the l2-normalized operation on the

input vector. As the i-th row of the inter-modal attention

matrix Huv , Huv
i· is considered to be the word-to-region

affinity distribution or response vector for all words with

respect to the given vi. It measures the distance between vi
and the entire word features set {u1, ..., um}. Therefore,

each element Hv
ij is the cosine similarity of two region-

word response vectors Huv
i· and Huv

j· . The intra-modal at-

tention matrix Hv calculates pairwise relations of any two

affinity distributions.

The intra-modal summaries and correlations are related

to the global context in the retrieval process, and they im-

plicitly contain both statistics and semantic information, i.e.

co-existence, dependencies and affiliation. When two re-

gions vi and vj have similar responses to the same sentence,

they are viewed as a high-correlated pair. Accordingly, SA

focuses more on region vi in the process of assigning atten-

tion scores with respect to region vj . It comprehensively

takes into account the similarity of two responses, which

models the relationship between the movement of similari-

ties of fragments between two modalities.

To summarize, the adaptive intra-modal attention pro-

cess is driven by the global semantic information. It re-

quires discrimination on semantics based on the given con-

text rather than original context-free features.

3.4. Objective Function

The hinge-based bi-directional ranking loss [8, 16, 19] is

the most popular objective function for image-text retrieval,

which can be formulated as follows:

L(v̂, û) =
∑

v̂−,û−

{max[0,m− S(v̂, û) + S(v̂, û−)]

+max[0,m− S(v̂, û) + S(v̂−, û)]},

(18)

where m is a margin constraint, (v̂, û−) and (v̂−, û) are

negative pairs. S(·) is a matching function, which is de-

fined as the inner product in our experiments. The objec-

tive function attempts to pull positive image-text pairs close
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Methods

MS-COCO 5-fold 1K Test Images Flickr30K 1K Test Images

Sentence Retrieval Image Retrieval Sentence Retrieval Image Retrieval

R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10

(R-CNN, AlexNet)

DVSA [16] 38.4 69.9 80.5 27.4 60.2 74.8 22.2 48.2 61.4 15.2 37.7 50.5

(VGG)

VQA-A [25] 50.5 80.1 89.7 37.0 70.9 82.9 33.9 62.5 74.5 24.9 52.6 64.8

sm-LSTM [13] 53.2 83.1 91.5 40.7 75.8 87.4 42.5 71.9 81.5 30.2 60.4 72.3

2WayNet [7] 55.8 75.2 - 39.7 63.3 - 49.8 67.5 - 36.0 55.6 -

(ResNet)

RRF-Net [27] 56.4 85.3 91.5 43.9 78.1 88.6 47.6 77.4 87.1 35.4 68.3 79.9

VSE++ [8] 64.6 90.0 95.7 52.0 84.3 92.0 52.9 80.5 87.2 39.6 70.1 79.5

DAN [32] - - - - - - 55.0 81.8 89.0 39.4 69.2 79.1

DPC [47] 65.6 89.8 95.5 47.1 79.9 90.0 55.6 81.9 89.5 39.1 69.2 80.9

GXN [11] 68.5 - 97.9 56.6 - 94.5 56.8 - 89.6 41.5 - 80.

SCO [14] 69.9 92.9 97.5 56.7 87.5 94.8 55.5 82.0 89.3 41.1 70.5 81.1

(Faster-RCNN, ResNet)

SCAN-single [19] 70.9 94.5 97.8 56.4 87.0 94.8 67.9 89.0 94.4 43.9 74.2 82.8

R-SCAN [20] 70.3 94.5 98.1 57.6 87.3 93.7 66.3 90.6 96.0 51.4 77.8 84.9

CAMP [41] 72.3 94.8 98.3 58.5 87.9 95.0 68.1 89.7 95.2 51.5 77.1 85.3

BFAN-single [26] 73.7 94.9 - 58.3 87.5 - 64.5 89.7 - 48.8 77.3 -

CAAN (ours) 75.5 95.4 98.5 61.3 89.7 95.2 70.1 91.6 97.2 52.8 79.0 87.9

Table 1. Results of the cross-modal retrieval on MS-COCO 5-fold 1K test set and Flickr30K 1K test setre. The best performance is denoted

with bold text. ’-’: the result is not provided.

and push negative ones away. Despite widely used in the

cross-modal task, it suffers from high redundancy and slow

convergence caused by the random triplet sampling process.

Rather than summing over all the negative pairs in a mini-

batch, bi-directional ranking loss with the hardest negatives

is often adopted for computational efficiency. It focuses

on the hardest samples which are the negative ones clos-

est to positive pairs. Given a positive pair (v̂, û), the hardest

negatives are formulated as vh = argmaxp 6=v̂ S(p, û) and

uh = argmaxk 6=û S(v̂, k). Therefore, the bi-directional

ranking loss with the hardest negatives is written as:

Lhard(v̂, û) = max[0,m− S(v̂, û) + S(v̂, û−
h )]

+max[0,m− S(v̂, û) + S(v̂h, û)].
(19)

4. Experiments

4.1. Datasets and Metrics

Datasets. We evaluate our model on the Flickr30K [46]

and MS-COCO [24] datasets. Flickr30K contains 31,000

images and each image is associated with five sentences.

We adopt the same protocol in [8, 16] to split the dataset

into 1,000 test images, 1,000 validation images, and 29,000

training images. MS-COCO contains 123,287 images and

each is annotated with five descriptions. In [16], MS-COCO

is split into 82,783 training images, 5000 validation images

and 5,000 test images. We follow [8, 19] to use other 30,504

images as part of the training set, which were originally in

the validation set but have been left out in the split.The ex-

periments are conducted on both 5K and 1K test images,

where the result of 1K test images is reported by averaging

over 5-fold on the full 5K test images.

Evaluation Metrics. We use R@K and mR to evaluate our

models. R@K is the percentage of correct matchings in

the top-K lists. R@1, R@5 and R@10 are adopted in the

experiments. mR is the mean value of R@K (K=1,5,10).

4.2. Implementation Details

The Adam optimizer [17] is employed for optimization.

In the MS-COCO, we set the initial learning rate to 0.0005

for the first 10 epochs and then decay it by 10 times in the

following 10 epochs. In the Flickr30K, the learning rate is

0.0002 in the first 15 epochs, and reduced to 0.00002 in the

next 15 epochs. The best model is chosen based on the sum

of recalls on the validation set.

4.3. Quantitative Results

4.3.1 Comparisons with non-BERT Methods

We compare our model with several recent state-of-the-

art non-BERT methods on the MS-COCO and Flickr30K

datasets. As shown in Table 1, CAAN outperforms other

methods by a large margin. For fair comparisons, we only

report single model results of SCAN [19] and BFAN [26]
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MS-COCO 5K Test Images

Methods Sentence Retrieval Image Retrieval

R@1 R@5 R@10 R@1 R@5 R@10

(R-CNN, AlexNet)

DVSA [16] 16.5 39.2 52.0 10.7 29.6 42.2

(VGG)

VQA-A [25] 23.5 50.7 63.6 16.7 40.5 53.8

(ResNet)

VSE++ [8] 41.3 69.2 81.2 30.3 59.1 72.4

GXN [11] 42.0 - 84.7 31.7 - 74.6

SCO [14] 42.8 72.3 83.0 33.1 62.9 75.5

(Faster-RCNN, ResNet)

PVSE [37] 45.2 74.3 84.5 32.4 63.0 75.0

SCAN-single [19] 46.4 77.4 87.2 34.4 63.7 75.7

R-SCAN [20] 45.4 77.9 87.9 36.2 65.6 76.7

CAMP [41] 50.1 82.1 89.7 39.0 68.9 80.2

CAAN (ours) 52.5 83.3 90.9 41.2 70.3 82.9

Table 2. Comparisons of the cross-modal retrieval results on the

MS-COCO full 5K test set.

on the two datasets rather than using the ensemble version.

On the 1K test set, CAAN gives R@10=98.5 and 95.2 with

image and text as queries, respectively. It achieves the per-

formance with R@1=61.3 for image retrieval, which is a

3% relative improvement compared to the current state-of-

the-art non-BERT methods, i.e., BFAN-single [26]. On

the Flickr30K dataset, CAAN achieves better R@1 at 70.1

and 52.8 with sentence and image retrieval, respectively.

The results on the MS-COCO 5K test set are summarized

in Table 2. CAAN significantly outperforms the current

non-BERT methods on all metrics, which verifies the ef-

fectiveness of our proposed method. As illustrated in the

section 3.3, our introduced attention process explores both

region-word alignments and semantic correlations in a sin-

gle modality. The performance gain compared with other

non-BERT methods demonstrates the superior to consider

the specific context in the adaptive retrieval process.

Sentence Retrieval Image Retrieval

R@1 R@10 mR R@1 R@10 mR

ViLBERT†[28] - - - 45.5 85.0 69.1

UNITER†[4] - - 83.3 - - 73.9

ViLBERT‡[28] - - - 58.2 91.5 78.2

Unicoder-VL†[21] 73.0 94.1 85.4 57.8 88.9 76.3

CAAN (ours) 70.1 97.2 86.3 52.8 87.9 73.2

UNITER‡[4] - - 92.2 - - 83.1

Unicoder-VL‡[21] 86.2 99.0 93.8 71.5 94.9 85.8

Table 3. Comparisons with BERT-based methods on the Flickr30k

dataset. CAAN (ours) is the baseline model, which uses Faster

R-CNN pre-trained on Visual Genome, without pre-training the

language model. † indicates methods using both pre-trained visual

features and language model (BERT) initialization with text-only

data. ‡ indicates methods pre-trained with extra out-of-domain

(Vision-Language) data.

4.3.2 Comparisons with BERT-based Methods

We additionally make comparisons with other BERT-based

methods, which achieve the state-of-art performance on the

Flickr30K and MS-COCO datasets. As shown in Table 3,

our method has fairly comparable results compared with the

BERT-based methods, even without introducing and fine-

tuning on a pre-trained language model.

Besides, our method is much faster and smaller, com-

pared to BERT-based ones. Taking ViLBERT as an ex-

ample, computing similarity between a text-image pair

takes around 0.5 s, while ours is around 45 µs, using 1

GTX1080Ti. ViLBERT has parameters of 275 M, while

ours is only 11 M. Considering the speed and model size

requirements of the real-world scenes, our method is more

convenient and practical for deployment and application.

Image Query Sentence Query

R@1 R@10 R@1 R@10

baseline 58.1 90.0 42.0 79.7

baseline+IA 60.6 92.4 45.2 81.5

baseline+FA 62.3 93.2 46.6 83.0

baseline+SA 64.5 93.8 48.8 83.4

baseline+IA+FA 62.6 93.0 45.0 82.9

CAAN 70.1 97.2 52.8 87.9

Table 4. Results of ablation studies on the Flickr30K test set.

4.4. Ablation Studies on Attention Mechanism

In this section, we perform ablation studies to quantify

the effect of our proposed attention mechanism, including

intra-modal and inter-modal attention. We first provide the

baseline model with bottom-up attention [1], denoted as

”baseline” in Table 4. It takes the average of all local fea-

tures as final representations. We can see that it achieves a

fairly competitive result compared to the methods extract-

ing global features shown in Table 1. It shows the reason-

ability to focus on local fragments rather than using a rough

overview of a whole image or a full sentence.

Baseline with Inter-modal Attention. We implement

inter-modal attention in the baseline model, denoted as

”baseline+IA” in Table 4. It achieves R@1=60.6 and 45.2

with image and text as queries, respectively. Compared with

”baseline”, CAAN demonstrates its effectiveness of consid-

ering full alignments between region-word pairs.

Baseline with Intra-modal Attention. Table 4 illustrates

the impact of preforming intra-modal attention. Both ”base-

line+FA” and ”baseline+SA” use only relations of frag-

ments in a single modality. The difference between them

is the way to measure fragment affinities. Although ”base-

line+FA” introduces additional parameters M1 and M2 to

fit data, ”baseline+SA” still achieves better results, which

shows the superior of inferring semantic correlations by
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A white couch a brown 

table with a bottle and glass.

Black bags sitting on top 

of a white couch in a living 

room.

A bench near a grassy area 

near a parked car .

A park at night is shown, 

with an empty bench 

centered.

(a) Inter-modal Alignments

a 
Three dogs play together in the field.

A boy and a girl are standing on the edge of a lake at sunset. 

baseline+IA+FA CAAN

(b) Intra-modal Correlations

Figure 4. Visualization of the attention weights of each image region with respect to sentence query on MS-COCO and Flickr30K datasets.

The left sub-figure (a) shows the qualitative examples of text-to-image retrieval with different sentences. The right sub-figure (b) compares

”baseline+IA+FA” and our CAAN, which shows that the similar semantics shared by different objects affect the attention process. It is

beneficial to consider both inter-modal alignments and intra-modal correlations in an interactive way. (Best viewed in color)

adaptively measuring the distance of response vectors in-

stead of original features.

Baseline with both Inter-modal and Intra-modal Atten-

tion. We further integrate inter-modal and intra-modal at-

tention into the baseline modal. Results are denoted as

”baseline+IA+FA” and ”CAAN” shown in Table 4. ”base-

line+IA+FA” even has a slightly worse result compared

to ”baseline+FA”. It shows that without careful designs,

combing inter-modal alignments and intra-modal correla-

tions might hurt the performance. While ”CAAN” out-

performs ”baseline+IA+FA” and ”baseline+SA”, indicating

that it is a better solution to consider the global context and

conduct semantic correlation mining in an interactive way.

5. Visualization

To better understand the effectiveness of our proposed

model, we visualize the attention assignment of the text-to-

image retrieval process in Figure 4. For the qualitative ex-

amples in Figure 4(a), we can observe that attention weights

are assigned to different regions for different image-text

pairs. As shown in the first row of Figure 4(a), the region

”bottle” receives more attention in the left sub-figure while

the region ”bags” is the focus in the right sub-figure. It in-

dicates that our model infers inter-modal alignments based

on the global context. For the qualitative examples in Fig-

ure 4(b), we provide comparisons with ”baseline+FA+IA”.

As shown in the second row of Figure 4(b), the region

”boy” is assigned more attention weight with the proposed

CAAN compared with the model ”baseline+IA+FA”. It is

notable that different objects with similar semantics affect

the matching process.

6. Conclusion

In this paper, we propose a unified Context-Aware At-

tention Network (CAAN) to formulate the image-text re-

trieval as an attention process to selectively focus on the

most informative local fragments. By incorporating intra-

modal and inter-modal attention, our model aggregates the

context information of alignments between word-region

pairs (inter-modal context) and semantic correlations be-

tween fragments in a single modality (intra-modal con-

text). Furthermore, we perform the semantic-based at-

tention to model intra-modal correlations, which is the

interpretable second-order attention of region-word align-

ments. The model demonstrates its effectiveness by achiev-

ing fairly competitive results on the Flickr30K and MS-

COCO datasets.
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