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Abstract

Graph convolutional models have gained impressive

successes on skeleton-based human action recognition task.

As graph convolution is a local operation, it cannot fully

investigate non-local joints that could be vital to recogniz-

ing the action. For example, actions like typing and clap-

ping request the cooperation of two hands, which are dis-

tant from each other in a human skeleton graph. Multiple

graph convolutional layers thus tend to be stacked together

to increase receptive field, which brings in computational

inefficiency and optimization difficulty. But there is still no

guarantee that distant joints (e.g. two hands) can be well

integrated. In this paper, we propose a context aware graph

convolutional network (CA-GCN). Besides the computation

of localized graph convolution, CA-GCN considers a con-

text term for each vertex by integrating information of all

other vertices. Long range dependencies among joints are

thus naturally integrated in context information, which then

eliminates the need of stacking multiple layers to enlarge re-

ceptive field and greatly simplifies the network. Moreover,

we further propose an advanced CA-GCN, in which asym-

metric relevance measurement and higher level representa-

tion are utilized to compute context information for more

flexibility and better performance. Besides the joint fea-

tures, our CA-GCN could also be extended to handle graphs

with edge (limb) features. Extensive experiments on two

real-world datasets demonstrate the importance of context

information and the effectiveness of the proposed CA-GCN

in skeleton-based action recognition.

1. Introduction

Considering various applications ranging from video

surveillance and virtual reality to human-computer inter-

action and robotics, human action recognition has become

one of the most important and challenging tasks in com-

puter vision. Traditionally, only monocular RGB videos

are investigated to conduct action recognition [40, 30, 35,

36, 16, 20, 12, 6, 25, 9]. However, with the fast develop-

Figure 1. Context aware graph convolution at the red vertex. Green

and purple arrows denote integration of context information and

graph convolution along spatial and temporal dimensions. Yellow

vertices are convolution participants

ment of low-cost 3D data capturing devices such as camera

arrays and Kinect, 3D action recognition is attracting in-

creasingly more attention from both academia and industry

[34, 5, 22, 38, 43]. As a concise and high-level abstraction

of human action, skeletal data is invariant to viewpoint or

appearance. Human skeletons are naturally in the form of

graph, and thus it is straightforward to apply graph neural

networks on skeleton-based human action recognition task.

Inspired by the success of convolutional neural network

(CNN) in the Euclidean domain, different models have been

proposed recently to generalize convolutional network to

graph structured data [2, 10, 17, 24, 33]. [2] firstly for-

mulated CNNs on graph by using the definition of CNN in

spectral domain. This work contributes a lot conceptually,

but is not practically useful due to significant computational

drawbacks. Followup works [10, 7] addressed these draw-

backs, and gradually, graph convolutional networks (GCN)

can achieve state-of-the-art results on some tasks including

skeleton-based human action recognition [42].

Though some effective variants of graph convolution

have been made, they mostly accomplish the convolution

in a local manner. Features are only extracted from a small

neighborhood of the centered vertex, but local movements

conducted by a few adjacent joints could be rather ambigu-

ous in practice. For example, action ‘writing’ and ‘typing

on a keyboard’ are accomplished with the cooperation of

both hands, which are distant from each other in the skele-
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ton graph. Locally investigating movement of a single hand

without considering the other hand is therefore difficult for a

comprehensive understanding of the action. A large recep-

tive field can be beneficial to understanding joints’ move-

ments as a whole. Stacking multiple graph convolutional

layers is straightforward for increasing receptive field, but

its disadvantages could easily outweigh the target advan-

tages. Long-range dependencies have to be addressed dur-

ing stacking multiple layers, which is computationally in-

efficient and increases the difficulty in network optimiza-

tion. Most importantly, distant joints can only be implic-

itly connected with each other through intermediate joints

across convolutional layers, which hampers the information

exchange and brings in redundant computation.

In this paper, we propose a context aware graph convolu-

tion to enrich local response of each body joint with infor-

mation from all other joints. We devise different approaches

to calculate relevance between joints, which is then embed-

ded into the procedure of graph convolution. Long range

dependencies between joints can therefore be explicitly cap-

tured without stacking multiple convolution layers. In other

words, the resulting context aware graph convolutional neu-

ral network (CA-GCN) requests significantly less param-

eters (e.g. 2/3 reduced network depth in experiments) to

achieve comparable performance as classical GCNs. The

computation speed is improved as well. The proposed con-

text aware graph convolution is of general purpose, and can

be building blocks to upgrade different GCNs, including

models only considering vertex features and models con-

sidering both vertex and edge features. Besides, we also

propose an advanced version model, which uses more ab-

stract representations for relevance measuring and context

computation. Experimental results on Kinetics and NTU-

RGB+D demonstrate the advantages of the proposed CA-

GCN over traditional GCNs in terms of effectiveness and

efficiency, and also shows that the advanced model can fur-

ther improve the performance.

2. Related Work
In this section, we give brief reviews on GCNs, skeleton-

based human action recognition, and context aware models.

2.1. Graph Convolutional Network
CNNs have gained impressive successes on Euclidean

data like images, but can not directly process non-Euclidean

data like graphs. Thus generalizing CNNs from images

to graphs is becoming increasingly active [2, 10, 17, 24].

GCNs mainly fall into two flows: 1) Spectral perspective

- Convolution is conducted on graph spectrum. For exam-

ple, [2] designed a spectral convolutional layer for apply-

ing filters in the frequency domain. [10] extended spectral

networks by incorporating a graph estimation procedure.

Works in this stream are prosperous [8, 19, 14]. However,

the spectral construction is restricted to a single domain

as the learnt filter coefficients are dependent with chosen

bases. 2) Spatial perspective - Works in this stream directly

design convolution by weighted summation of vertices on

spatial domain [19, 26]. Lots of work have applied spa-

tial GCNs on computer vision tasks: [31] designed filters

with polynomials of the graph adjacency matrix. [15] pro-

posed depth-wise separable graph convolution. [4] devel-

oped structure-aware convolution, which generalizes filters

with univariate functions for aggregating local inputs with

diverse topological structures.

2.2. SkeletonBased Action Recognition

The prosperity of high-accuracy depth sensors and pose

estimation algorithms [37, 3] boosts the development of

skeleton-based action recognition. Researches on this topic

fall into two flows including hand-crafted features based

models and deep-learning approaches. The former one in-

vestigates the dynamics of human action by designing dif-

ferent features. For example, covariance matrix of joint lo-

cations over time is used in [11] as a discriminative descrip-

tor for a skeleton sequence. [39] used an actionlet ensemble

obtained by data mining to represent actions, and designed

an LOP feature to deal with intraclass variance due to the

imperfectness of raw data. In contrast, deep learning mod-

els extract features automatically in an end-to-end manner.

[17] proposed a two-stream CNN with one stream for raw

coordinates and the other for motion data obtained by sub-

tracting the joint coordinates in consecutive frames. [32]

divided the skeleton graph into four subgraphs with shared

joints and learned a recognition model using a part-based

GCN. [28] represented the skeleton data as directed acyclic

graphs and accordingly built directed graph neural networks

for action recognition. A relevant model for skeleton-based

action recognition is AS-GCN [18]. It first infer A-links

from input data for capturing actional dependencies and

then refine them during training, while our CA-GCN enrich

convolution at each joint with context from the entire graph,

with actional collaborations learnt implicitly. Besides A-

links, AS-GCN also proposed S-links to capture multi-hop

dependencies. In our model, each joint in each layer could

flexibly focus on any relevant joints in the entire graph.

2.3. Context Aware Models

So far, models concerning context information mainly

lie in NLP field. [1] introduced ‘global context’ into basic

encoder-decoder model by summing up all source hidden

states. In contrast to the ‘global context’, [23] proposed a

local context to focus on a subset of source positions for

each target word. Besides RNN models, context is also

considered for convolutional models. [44] extended context

scope of convolution and derived higher level features of a

word from both local and non-local information. Another

context related work is the non-local neural network [41],

which computes the response at a position as weighted sum

of features of all positions. Recently, some works extend the

concept of context into graph processing models. To focus
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more on the informative joints and ignore the noisy joints,

[21] proposed GCA-LSTM that integrates all joints in spa-

tial temporal dimension as a global context, which is used

to scale the contribution of each joint to the cell state. [29]

overlaid an adaptive matrix to the fixed adjacency matrix for

learning non-local relationship between joints.

In this work, we also focus on context information.

Non-local network [41], GCA-LSTM [21], and 2s-AGCN

[29] are relevant to our work. Unlike non-local network

that measures the pixel relationship symmetrically on im-

ages, we capture asymmetric relationship between joints on

graphs, which is prominent for skeleton data. For example,

in activity ‘brushing teeth’, hand movements with respect

to head is crucial as it is the dominant movement of ‘brush-

ing teeth’. But head movement with respect to hands is less

important as the head is almost stable. GCA-LSTM main-

tains a sequence-level global context to assist the selection

of informative joints, while we compute context term for

each joint and merge it into graph convolution to enable di-

rect communication between distant joints. 2s-AGCN [29]

uses one set of weights and feature representations for local

and non-local feature extraction, but we separately generate

weights and representations for non-local feature capturing.

3. Method
We aim to enrich local convolution operation with global

context, which corresponds to facilitating local motion ex-

tracted by graph convolution with a context term collect-

ing information from other joints in skeleton-based action

recognition task. In this section, we first introduce a light

version of CA-GCN, and then propose an advanced version.

We denote a graph by G = (V, E). V = {vi |i = 1 , ...,Nv}
contains Nv vertices, and E = {eij |vi , vj are connected} is

the edge set. In the l-th layer, each vertex vi corresponds

to a feature vector zli ∈ Rdl , and the corresponding feature

map [zl1, ..., z
l
i, ..., z

l
N ] is denoted as H l ∈ RNv×dl . Be-

sides vertices, each edge eij may also have a feature vector

e
l
ij ∈ Rdl in layer l, and the corresponding feature map is

H l
e ∈ RNe×dl . Moreover, each graph is associated with an

adjacency matrix A ∈ R
Nv×Nv , with Aij ∈ {0, 1} denot-

ing whether an edge exists between vertex vi and vj .

3.1. Light CAGCN:
Context Generation Context aware graph convolution

aims to enrich the traditional local graph convolution, so

that the centered vertex will not only focus on its surround-

ing neighbors, but also be aware of distant vertices. To in-

tegrate vertices from the entire graph for global context in-

formation, we first design different relevance functions to

measure the relevance scores between current centered ver-

tex and all other vertices. Specifically, we have three differ-

ent functions as follows:

(i) Inner product: A straightforward approach to define

relevance between two vertices by their affinity.

Rele(zli, z
l
j) = (zli)

T · zlj . (1)

Inner product is simple and without new parameters

to optimize. However, determining relevance between

vertices solely by affinity could be improper in some

circumstances, which would be explained latter.

(ii) Bi-linear form: Euclidean distance may not always

be optimal to measure relevance, thus a new metric

W l
b ∈ Rdl×dl is introduced for a bi-linear form rele-

vance function.

Rele(zli, z
l
j) = (zli)

TW l
bz

l
j . (2)

(iii) Trainable relevance score: Instead of determining

the relevance between vertices by their feature vec-

tors, we can also explicitly learn the relevance scores

{rlij |vi, vj ∈ V }.

These functions have unique characteristics and are suit-

able for different situations. In our task, trainable relevance

score is the most flexible and performs the best in most ex-

periments. But it only fits for graphs with fixed structure,

while other two functions are independent of graph struc-

ture and the trained model could be transferred between

datasets with different graph structures. The bi-linear rel-

evance function generally performs better than the inner

product relevance function. And the advantage of inner

product is that it does not induce extra training burden and

is more efficient than the other two relevance functions.

With the relevance scores, in each layer l, we generate a
context term cli for each vertex vi by summing up features
of all vertices across the graph according to their relevance:

c
l
i = σ

(

∑

vj∈V

softmax(Rele(zli, z
l
j)) · z

l
j ·W

l
c + b

l
c

)

, (3)

where W l
c ∈ R

dl×dc
l is a trainable matrix to convert the

dimension of context term, blc ∈ R
dc
l is a trainable bias vec-

tor, and σ is a non-linear function. For trainable relevance

score situation, Rele(zli, z
l
j) should be replaced with rlij .

The softmax function is applied over all vertices, and we

omit other participating vertices for notation simplicity. We

denote the concatenation of context terms [cl1, ..., c
l
i, ..., c

l
N ]

as the context map Cl ∈ R
N×dc

l for the lth layer.

Context Aware Convolution: After getting context map

Cl, we apply an integration function Inte(·, ·) to merge the

context information and aforementioned vertex feature map

H l into a context aware feature map H l
c so that the global

context information is integrated when conducting convolu-

tion. In our experiments, we implement two different inte-

gration functions by either adding the context into the fea-

ture map or concatenating the context map and feature map.

Then our context aware graph convolution can be conducted

by multiplying H l
c with a normalized adjacency matrix, and
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finally a trainable matrix W is utilized to change the dimen-

sion of the result. The whole process can be formulated as:

H l
c = Inte(H l, Cl) (4)

H l+1 = σ(D−
1

2 ÃD−
1

2H l
cW ). (5)

In Eq. 4, Ã is the adjacency matrix with added self connec-

tions so that the convolution at a specific vertex vi will also

include vi itself. Formally Ã is defined as:

Ã = A+ INv
, (6)

where INv
∈ R

Nv×Nv is an identity matrix. D ∈ R
Nv×Nv

is the diagonal degree matrix denoting the number of con-

nections between each vertex and the other vertices:

Dij =







∑

vk∈V

Ãik if i = j

0 if i 6= j,
(7)

so we see that multiplying D−
1

2 on both sides of Ã normal-

ize Ã symmetrically. Finally, W ∈ R
din×dout is a train-

able matrix which converts the output of Inte(·, ·) with din
channels into a tensor with desired channel dimension dout.

Although experiments show that our light model is capa-

ble enough to significantly improve the classic GCN model,

there are still several aspects that can be improved.

First, with inner product or bi-linear relevance function,

the relevance score between two vertices is calculated di-

rectly with their feature vectors without any modification,

which lacks flexibility, especially for the inner product func-

tion that determines the relevance totally on the affinity of

feature vectors. In our task, vertex feature vectors in the

first layer are spatial coordinates of the joints. So even if

two joints are highly correlated in an action, their relevance

score is close to zero if their coordinate vectors are nearly

orthogonal, which is obviously improper. Also, when com-

puting the context for vi, the roles of vi and other vertices

being integrated for context information are different, so the

relevance measurement between vertices should be asym-

metric. This consideration is specially for inner product and

bi-linear relevance functions. The trainable score does not

depend on node features and directly finds the optimal rele-

vance by minimizing the classification loss.

Second, the context term is computed by summing up

the feature vectors of vertices in a graph, which means the

same set of feature vectors will participate in both convo-

lution and context computation. However, the representa-

tions required by convolution and context computation may

not be same, so the vectors that fit convolution computation

best may not also be the best representations for context

computation. Thus each vertex may need two separate rep-

resentations for the computing context and convolution.

Given these two considerations, we present a more elab-

orated model, which is advanced CA-GCN.

3.2. Advanced CAGCN
For the first consideration, we propose two higher level

representations for inner product and bi-linear relevance

functions. During a context aware convolution, we denote

the centered vertex, for which the context is computed, as

a receiver, and the vertices being integrated as senders.

To insert more flexibility and asymmetry into the relevance

score, we first extract two higher level vectors R(zli) ∈ R
dR

and S(zli) ∈ R
dS for each vertex,

R(zli) = W l
R · zli + blR (8)

S(zli) = W l
S · zli + blS , (9)

where W l
R ∈ R

dR×dl and W l
S ∈ R

dS×dl are trainable

matrices. blR ∈ R
dR and blS ∈ R

dS are biases. The

relevance score between two vertices vi and vj in the lth

layer is reformulated as Rele(R(zli), S(z
l
j)), where the rel-

evance function Rele(·, ·) remains unchanged. The asym-

metry is introduced by the fact that Rele(R(zli), S(z
l
j) 6=

Rele(R(zlj), S(z
l
i)). Thus given a certain pair of vertices,

the relevance score between them is also determined by who

is the receiver and who is the sender. Also, with higher level

representations generated by R(·) and S(·), more flexibility

is added into the relevance measuring procedure. The first

When relevance function is chosen as inner product form,

then dR and dS are required to be equal. But for bi-linear

form relevance function, with a new W l
b ∈ R

dR×dS (Eq. 2),

we can set dR and dS to be unequal for more flexibility.

For the second consideration mentioned in Sec 3.1, we

generate another representation specially for context term

computation. Formally, we have:

G(zli) = W l
G · zli + blG. (10)

Above all, the context computation can be rewritten as:

cli = σ
(

∑

vk∈V

softmax(Rele(R(zli), S(z
l
k)) ·G(zlk) + blc

)

,

where the W l
c in Eq. 3 is missing because function G(·)

has already converted the channel dimension of feature vec-

tors into desired dc. Still, for trainable relevance score, the

Rele(R(zli), S(z
l
k)) is replaced by rik.

Higher level representations generated by R(·), S(·), and

G(·) increase the flexibility compared to directly using the

feature vectors. And the asymmetry introduced in relevance

measurement makes it possible to consider a vertex dif-

ferently when it serves as a receiver or sender vertex. As

demonstrated in experiments, our advanced version model

can significantly improve the performance.

3.3. Context aware graph convolution for edge fea
ture based GCNs

Most GCNs are vertex-based and perform convolution
on vertices with edges denoting connections. But there are
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GCNs performing convolution on edges or both vertices and
edges. For example, [45] proposed GECNN to conduct con-
volution on edges corresponding to human limbs in skeleton
graphs. We have explained how to implement our context
aware convolution into vertex-based GCNs. In this part, we
introduce how could our method be also applied to GCNs
based on edges or both vertices and edges. Generally we
reformulate the context computation as:

wx,zl
k
= softmax(Rele(R(x), S(zlk)) (11)

wx,el
ij
= softmax(Rele(R(x), S(el

ij)) (12)

c
l
x = σ

(

∑

vk∈V

wx,zl
k
·G(zlk) +

∑

eij∈E

wx,el
ij
·G(el

ij) + b
l
c

)

,

(13)

where x could be a vertex or an edge, denoting we could

generate context term for either vertices or edges, or both.

wx,zl
k

and wx,el
ij

are the weights to integrate vertex and edge

features respectively, implying that we could choose to gen-

erate context term by vertex or edge features or both. The

first summation of Eq. 13 is same as Eq. 11 except that the

receiver of the context term could also be an edge. The sec-

ond summation in Eq. 13 is newly added, and corresponds

to integration of all edge features. Eq. 13 is the extension

of the advanced context computation, and the extension of

the light version could be obtained by referring to Eq. 3.

4. Experiments
We evaluated models on the Kinetics human action

dataset [13] and NTU-RGB+D dataset [27] We first ex-

plore the optimal kernel size for temporal convolution, and

then analyze CA-GCN with different relevance and integra-

tion functions. After that, we decrease our network size

to demonstrate that with help of context aware convolu-

tion, CA-GCN can achieve better performance compared

to baseline more efficiently.

On NTU-RGB+D, we first conduct study on advanced

CA-GCN to explore how the improvements influence the

performance, and then investigate classification perfor-

mance on each class and analyze the confusion matrices.

Moreover, we analyze the learnt context weights to investi-

gate the improvement gained by our model in details.

Finally, we apply context aware graph convolution to

upgrade different state-of-the-art models including models

considering edge features, and test them on both datasets.

4.1. Implementation Details

Our CA-GCN is set to 9-layer except for studies in sec-

tion 4.4. Input data is processed by a batch norm layer,

and then fed into the 9-layer context aware convolution net-

work. dl is set to 96 in the first 3 layers, 192 in the fol-

lowing 3 layers, and 384 in the last 3 layers. Average pool-

ing is then applied to obtain a tensor composed of N vec-

tors, where N is number of samples. Finally, classification

score of each sequence is generated via a fully connected

Figure 2. Results of models with different K.

layer. We use ReLU activation function, and adopt cross

entropy loss function. Stochastic gradient decent is used

for training. The initial learning rate is 0.1, and will be de-

cayed with training. As for our advanced CA-GCN, we set

dR = dS = 1

4
dl, dc = dl when integration function is

addition, and dc =
1

3
dl when integration is concatenation.

4.2. Datasets

Kinetics contains 300,000 videos and the skeletal data is

obtained by [42]. The data can be obtained at ST-GCN. The

skeletal data contains 266,440 sequences, with 250-1,150

samples for each class. 246,534 samples are set for training,

and 19,906 samples are set for testing.

NTU-RGB+D [27] contains 56,880 samples from 60

classes. Following [27], we split the dataset by cross-

subject (x-sub) and cross-view (x-view). In x-sub, 40,320

samples generated by one group of people serve as training

set, and the other 16,560 samples by the other group of peo-

ple are for testing. In x-view, 37,920 samples captured by

one set of cameras are used for training, and 18,960 samples

captured by the other set of cameras are used for testing.

4.3. Ablation Study

We first conduct experiments on models with different

number (K) of frames included in temporal convolution.

Here we choose trainable relevance score and concatenation

integration function, and Kinetics dataset is used.

From Figure 2, we see models perform worse if K is too

small, and the performance reaches a peak when K = 9.

With larger K, the performance drops and then becomes

stable. So it is necessary to include enough number of

frames for convolution. But including too many frames may

cause distant frames to affect the extraction of short-term

temporal dynamics around the current frame. Above all, we

choose K = 9 for our following experiments.

Then we conduct ablation study on different relevance

and integration functions on our light CA-GCN. As shown

in Table 1, as long as we consider context information,

whatever approach we choose to generate and integrate con-

text map, CA-GCN always outperforms baseline model.

Even the lowest top-1 accuracy obtained by CA-GCN

(32.0%) outperforms baseline by 1.3%. Similar experi-

ments on advanced CA-GCN is in supplementary materials.

Among all relevance functions, the highest accuracies

are obtained by CA-GCNs with trainable relevance scores

14337



Model Rele func Inte func top-1 top-5

ST-GCN - - 30.7% 52.8%

CA-GCN inner-product addition 32.0% 54.8%

CA-GCN inner-product concat 32.9% 55.6%

CA-GCN bi-linear addition 32.2% 54.7%

CA-GCN bi-linear concat 33.0% 55.8%

CA-GCN trainable addition 33.1% 55.8 %

CA-GCN trainable concat 33.3% 55.4%

Table 1. Ablation study on different relevance functions and dif-

ferent integration functions on Kinetics.

in the last two rows. The best CA-GCN in the last row ob-

tains a 2.6% increase in top-1 accuracy compared to base-

line. Performance of bi-linear relevance function in the 3-rd

and 4-th rows is slightly lower than trainable score. But un-

like trainable score, bi-linear function based model is not re-

stricted to fixed graph structure and trained models could be

transferred between different datasets with different graph

structures. Inner product in the first two rows performs

slightly worse than bi-linear function but still much better

than baseline. Also, inner product is the most efficient rele-

vance as it does not induce any extra parameters to train.

We also see that concatenation integration function per-

forms better than addition. For inner product based models

in the first two rows, choosing concatenation increases per-

formance by 0.9%. For bi-linear and trainable score based

models, the increase is 0.8% and 0.2%. This validates our

speculation that context term is different from local motion

features, and thus should be processed differently.

4.4. Studies on Network Size

As global context information could eliminate the neces-

sity to extend receptive field by stacking multiple convolu-

tional layers, in this section, we test CA-GCNs and baseline

with reduced depths. In this part, trainable relevance score

and concatenation integration are used.

Model #layer top-1 top-5 #para time/s

A-CA-GCN 9 34.1% 56.6% 5.38 ×106 2580

CA-GCN 9 33.3% 55.4% 3.11×106 1590

CA-GCN 6 31.4% 53.8% 1.87×106 1080

CA-GCN 4 30.7% 53.1% 1.75×106 720

CA-GCN 3 29.9% 52.2% 1.52×106 660

CA-GCN 2 27.1% 48.6% 2.89×105 540

ST-GCN 9 30.7% 52.8% 1.96×106 1200

ST-GCN 6 28.7% 51.1% 1.85×106 820

ST-GCN 4 26.4% 48.7% 1.63×106 610

ST-GCN 3 25.3% 47.6% 1.48×106 590

ST-GCN 2 23.3% 45.0% 0.37×106 480

Table 2. Performance of CA-GCN and ST-GCN with different

number of layers on Kinetics. Time costs are seconds per epoch.

From Table 2, we see that 6-layer CA-GCN outper-

forms 9-layer baseline with fewer parameters, and less time,

demonstrating that context aware convolution can indeed

shrink the model size but improve performance at the same

time. Performance of 4-layer CA-GCN drops, but is also

comparable to baseline, with fewer parameters and signifi-

cantly less time cost. With about 77.5% percent of parame-

ters and nearly half time cost, our 3-layer CA-GCN model

obtains a top-1 accuracy that is only 0.8% lower than base-

line. 2-layer CA-GCN performs 3.6% worse than baseline.

But the impressive part is that it requires less than 15% pa-

rameters and less than 50% time cost, but achieves more

than 88% performance of baseline model. For fair compar-

ison, we also provide the performance of ST-GCN with dif-

ferent depth, and the results are shown in Table 2. We see

the performance of ST-GCN decreases significantly with-

out our method when the network depth decreases. Also,

CA-GCNs equipped with context aware graph convolution

significantly outperform ST-GCNs with same depth.

4.5. Effectiveness of advanced CAGCN

To show that the advanced CA-GCN, although inducing

more computational cost, but is capable of further increas-

ing the performance, we compare the performance of light

and advanced version CA-GCN, as well as baseline model

ST-GCN on both Kinetics and NTU-RGB+D datasets. For

Kinetics and NTU-RGB+D with cross-subject protocol, re-

sults are obtained with trainable relevance score and con-

catenation integration. For NTU-RGB+D with cross-view,

the result is obtained with inner product relevance function

and concatenation integration function.

Model name data top-1 top-5

ST-GCN Kinetics 30.7% 52.8%

Light CA-GCN Kinetics 33.3% 55.4%

Advanced CA-GCN Kinetics 34.1% 56.6%

ST-GCN cross-subject 81.5% 96.8%

Light CA-GCN cross-subject 83.2% 97.1%

Advanced CA-GCN cross-subject 83.5% 97.0 %

ST-GCN cross-view 88.3% 99.0%

Light CA-GCN cross-view 90.8% 99.0%

Advanced CA-GCN cross-view 91.4% 99.1%

Table 3. Comparison between baseline, light version and advanced

version models

From the upper part of Table 3, we see that on Kinetics

our light CA-GCN is capable enough to gain an improve-

ment of 2.6%, and advanced version model further extend

this improvement to 3.4%. The following part of Table 3

shows similar results on NTU-RGB+D with two protocols:

Light version model could achieve significant performance

improvement, which is 1.7% on cross-subject protocol and

2.5% on cross-view protocol. And advanced model further

extends the performance to 2.0% and 3.1% respectively.

4.6. Models with context aware graph convolution

Our method is of general purpose, and can be plugged

into different GCNs. Thus we integrate it with different
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Figure 3. Classification accuracy comparison of each class on NTU-RGB+D between CA-GCN and ST-GCN. We only denote each class

with a digital number, for names of classes, please refer to the official site of NTU-RGB+D

Figure 4. Matrices generated from experimental results of cross-view protocol on NTU-RGB+D dataset. (a): confusion matrix of baseline

model. (b): confusion matrix of advanced CA-GCN. (c): obtained by subtracting (a) from (b).

Model name top-1 top-5

ST-GCN [42] 30.7% 52.8%

GECNN [45] 31.4% 53.9%

GECNN+Context 32.6% 55.0%

ST-GCN+Context 34.1% 56.6%

Table 4. Models upgraded by context aware convolution on Kinet-

ics. ‘+context’ denotes updated mdoels.

ST-GCN [42] GECCN [45] BPLHM [45]

81.5% 84.0% 85.4%

ST-GCN+Context GECCN+Context BPLHM+Context

83.5 % 85.3 % 86.5%

Table 5. Models upgraded by context aware convolution on NTU-

RGB+D dataset with cross-subject protocol.

models including ST-GCN, GECNN, SLHM, BPLHM, and

2s-AGCN, and show the improvement. ST-GCN [42] ap-

plied standard GCN to skeletal data. GECNN [45] proposed

convolution on graph edges. Based on GECNN, hybrid

models SLHM and BPLHM integrating vertex and edge

convolution were constructed in [45]. 2s-AGCN [29] con-

sists of two independent models Js- and Bs-AGCN. Among

them, ST-GCN and Js-AGCN only consider vertex features,

GECNN and Bs-AGCN consider edge features, and SLHM

and BPLHM consider both vertices and edges. Thus apply-

ing context aware graph convolution to these models could

show its capability to boost performance of different GCNs.

Experiments are done on Kinetics and NTU-RGB+D with

trainable relevance score and concatenation integration.

On Kinetics, we integrate context aware graph convo-

lution with ST-GCN and GECNN. From Table 4, we see

that our method improves the performance of ST-GCN and

GECNN by 3.4% and 1.2%, demonstrating the effective-

ness of our proposed context aware graph convolution.

On NTU-RGB+D, we implement context aware graph

convolution to all the models above. From Tables 5 and 6,

we see that all models get significantly improved, includ-

ing ST-GCN (2.0% and 3.1% increase on cross-subject and

cross-view), GECNN (1.3% and 1.1% on cross-subject and

cross-view), BPLHM (1.1% increase on cross-subject), Bs-
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ST-GCN [42] GECCN [45] SLHM [45] Bs-AGCN [29] Js-AGCN [29]

88.3% 89.4% 89.7% 93.2% 93.7%

ST-GCN+Context GECCN+Context SLHM+Context Bs-AGCN+Context Js-AGCN+Context

91.4% 90.5% 90.8% 94.0% 94.1%
Table 6. Models upgraded by context aware convolution on NTU-RGB+D dataset with cross-view protocol.

AGCN (0.8% on cross-view), and Js-AGCN (0.4% on cross

view). These results demonstrate that our proposed con-

text aware graph convolution does have the ability to signif-

icantly boost performance of different GCN models.

Figure 5. Context weight distribution for joint 8 and 12 in the first

CA-GCN layer.

4.7. Classification Analysis on Each Class

On NTU-RGB+D with x-view, we compare accuracy of

advanced CA-GCN and baseline on each class (Figure 3).

CA-GCN outperforms baseline in most cases, and even in-

creases accuracy by more than 10% in classes like 10, 30,

44, and 53, which are circled by black rectangles.

Figure 4 shows confusion matrices of advanced CA-

GCN and baseline on NTU-RGB+D. Diagonal pixels of

(a) and (b) denote accuracy on each class, and off-diagonal

ones denote misclassification rates. Compared to (a), most

diagonal pixels are redder in (b), denoting the accuracy in-

crease on each class. Some greatly redder ones are circled

by yellow boxes. Apparently dimmer off-diagonal pixels

are circled by red boxes, denoting the decrease of misclas-

sification rates. Some light blue off-diagonal pixels in (a)

are invisible in (b), indicating the corresponding misclassi-

fication rates decrease to 0. (c) is obtained by subtracting

(a) from (b) to more clearly illustrate color changes. In (c),

apparent dark blue pixels are circled by red boxes, denoting

5% or more decrease of misclassification rates. Obvious

yellow and orange pixels are circled by yellow boxes, de-

noting 10% or more increase in accuracies.

To further validate effectiveness of CA-GCN, we ana-

lyze the learnt context weights. Context term enables com-

munication between distant joints, which is impossible in

shallow layers of classic GCN. Thus we analyze the weights

in the first layer of CA-GCN. The most interesting finding

is that context weights for hand joints are helping recog-

nizing the actions collaborated by double hands. In Figure

5, we visualize the weights for joint 12 and 8. For joint 8,

highest weights are assigned to 11,12,24,25, which form the

right hand. Similar weight distribution is also found for the

right palm joint 12. Besides, in context weights of all hand

joints, high weights are assigned to the opposite hand joints.

This is reasonable, as most actions are collaborated by dou-

ble hands, requiring communication between two hands to

recognize. This is impossible in shallow GCN layers, and

only deep layers can capture both hands with large receptive

fields. However, CA-GCN can support this communication

even in the first layer. Corresponding performance increase

can be found in Figure 3. Actions collaborated by double

hands get highest accuracy increase, which are 14.2% and

16.5% for class 10 (clapping) and 30 (typing). Also, in Fig-

ure 4, the dark pixel at (12, 30) indicates decrease of mis-

classifying class 12 (writing) into class 30, both of which

are double-hand collaboration activities.

5. Conclusion

In this paper, we propose CA-GCN to insert global infor-

mation into graph convolution. We design different ways to

generate and integrate context term, and conduct ablation

studies. We adjust the size of CA-GCN to show that our

model performs better with fewer parameters at a higher

speed. Besides the light model, we further propose ad-

vanced CA-GCN with better performance. Moreover, we

extend our context aware graph convolution for GCNs con-

sidering both vertex and edges. Finally, we show perfor-

mance on each class, and visualize the context weights to

investigate CA-GCN in detail.

6. Acknowledgement
This work was supported by Australian Research Coun-

cil Projects FL-170100117, DP-180103424, and DE-
180101438

14340



References

[1] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio.

Neural machine translation by jointly learning to align and

translate. arXiv preprint arXiv:1409.0473, 2014. 2

[2] Joan Bruna, Wojciech Zaremba, Arthur Szlam, and Yann Le-

Cun. Spectral networks and locally connected networks on

graphs. arXiv preprint arXiv:1312.6203, 2013. 1, 2

[3] Zhe Cao, Tomas Simon, Shih-En Wei, and Yaser Sheikh.

Realtime multi-person 2d pose estimation using part affinity

fields. In CVPR, 2017. 2

[4] Jianlong Chang, Jie Gu, Lingfeng Wang, Gaofeng Meng,

Shiming Xiang, and Chunhong Pan. Structure-aware convo-

lutional neural networks. In Advances in Neural Information

Processing Systems, 2018. 2

[5] Chen Chen, Kui Liu, and Nasser Kehtarnavaz. Real-time hu-

man action recognition based on depth motion maps. Journal

of real-time image processing, 2016. 1

[6] Xin Chen, Jian Weng, Wei Lu, Jiaming Xu, and Jiasi Weng.

Deep manifold learning combined with convolutional neural

networks for action recognition. IEEE TNNLS, 2017. 1
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