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Abstract

While being the de facto standard coordinate representa-

tion for human pose estimation, heatmap has not been inves-

tigated in-depth. This work fills this gap. For the first time,

we find that the process of decoding the predicted heatmaps

into the final joint coordinates in the original image space

is surprisingly significant for the performance. We further

probe the design limitations of the standard coordinate de-

coding method, and propose a more principled distribution-

aware decoding method. Also, we improve the standard co-

ordinate encoding process (i.e. transforming ground-truth

coordinates to heatmaps) by generating unbiased/accurate

heatmaps. Taking the two together, we formulate a novel

Distribution-Aware coordinate Representation of Keypoints

(DARK) method. Serving as a model-agnostic plug-in,

DARK brings about significant performance boost to exist-

ing human pose estimation models. Extensive experiments

show that DARK yields the best results on two common

benchmarks, MPII and COCO. Besides, DARK achieves the

2nd place entry in the ICCV 2019 COCO Keypoints Chal-

lenge. The code is available online [36].

1. Introduction

Human pose estimation is a fundamental computer vi-

sion problem that aims to detect the spatial location (i.e. co-

ordinate) of human body joints in unconstrained images [1].

It is a non-trivial task as the appearance of body joints vary

dramatically due to diverse styles of clothes, arbitrary oc-

clusion, and unconstrained background contexts, whilst it

is needed to identify the fine-grained joint coordinates. As

strong image processing models, convolutional neural net-

works (CNNs) excel at this task [15]. Existing works typi-

cally focus on designing the CNN architecture tailored par-

ticularly for human pose inference [20, 25].

Analogous to the common one-hot vectors as the object
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Figure 1. Pipeline of a human pose estimation system. For effi-

ciency, resolution reduction is often applied on the original person

detection bounding boxes as well as the ground-truth heatmap su-

pervision. So, the model operates in a low-resolution image space

which reduces model inference cost significantly. At test time,

a corresponding resolution recovery is therefore necessary in or-

der to obtain the joint coordinate prediction in the original image

space.

class label representation in image classification, a human

pose CNN model also requires a label representation for

encoding the body joint coordinate labels, so that the su-

pervised learning loss can be quantified and computed dur-

ing training and the joint coordinates can be inferred prop-

erly1. The de facto standard label representation is coordi-

1The label representation is for encoding the label annotations

(e.g. 1,000 one-hot vectors for 1,000 object class labels in ImageNet), to-

tally different from the data representation for encoding the data samples
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nate heatmap, generated as a 2-dimensional Gaussian dis-

tribution/kernel centred at the labelled coordinate of each

joint [30]. It is obtained from a coordinate encoding pro-

cess, from coordinate to heatmap. Heatmap is characterised

by giving spatial support around the ground-truth location,

considering not only the contextual clues but also the inher-

ent target position ambiguity. Importantly, this may effec-

tively reduce the model overfitting risk in training, in a sim-

ilar spirit of the class label smoothing regularisation [28].

The state-of-the-art pose methods [20, 33, 25, 38] are based

on the heatmap coordinate representation.

With the heatmap label representation, one major obsta-

cle is that, the computational cost is a quadratic function

of the input image resolution, preventing the CNN models

from processing the typically high-resolution raw imagery

data. To be computationally affordable, a standard strategy

(see Fig. 1) is to downsample all the person bounding box

images at arbitrarily large resolutions into a prefixed small

resolution with a data preprocessing procedure, before be-

ing fed into a human pose estimation model. Aiming to

predict the joint location in the original image coordinate

space, after the heatmap prediction a corresponding resolu-

tion recovery is required for transforming back to the orig-

inal coordinate space. The final prediction is considered

as the location with the maximal activation. We call this

process as coordinate decoding, from heatmap to coordi-

nate. It is worthy noting that quantisation error can be in-

troduced during the above resolution reduction. To alleviate

this problem, during the existing coordinate decoding pro-

cess a hand-crafted shifting operation is usually performed

according to the direction from the highest activation to the

second highest activation [20].

Despite being indispensable in model inference, the

problem of coordinate encoding and decoding (i.e. denoted

as coordinate representation) gains little attention. In con-

trast to the current research focus on designing more effec-

tive CNN structures, we reveal a surprisingly important role

the coordinate representation plays on the model perfor-

mance, much more significant than expected. For instance,

with the state-of-the-art model HRNet-W32 [25], the afore-

mentioned shifting operation of coordinate encoding brings

as high as 5.7% AP on the challenging COCO validation

set (Table 1). It is noteworthy to mention that, this gain is

already much more significant than those by most individ-

ual art methods. But it is never well noticed and carefully

investigated in the literature to our best knowledge.

Contrary to the existing human pose estimation studies,

in this work we dedicatedly investigate the problem of joint

coordinate representation including encoding and decoding.

Moreover, we recognise that the heatmap resolution is one

major obstacle that prevents the use of smaller input res-

olution for faster model inference. When decreasing the

(e.g. the object images from ImageNet).

input resolution from 256×192 to 128×96, the model per-

formance of HRNet-W32 drops significantly from 74.4%

to 66.9% on the COCO validation set, although the model

inference cost falls from 7.1×109 to 1.8×109 FLOPs.

In light of the discovered significance of coordinate rep-

resentation, we conduct in-depth investigation and recog-

nise that one key limitation lies in the coordinate decod-

ing process. Whilst existing standard shifting operation

has shown to be effective as found in this study, we pro-

pose a principled distribution-aware representation method

for more accurate joint localisation at sub-pixel accuracy.

Specifically, it is designed to comprehensively account

for the distribution information of heatmap activation via

Taylor-expansion based distribution approximation. Be-

sides, we observe that the standard method for generating

the ground-truth heatmaps suffers from quantisation errors,

leading to imprecise supervision signals and inferior model

performance. To solve this issue, we propose generating the

unbiased heatmaps allowing Gaussian kernel being centred

at sub-pixel locations.

Our contribution is that, we discover the previously un-

realised significance of coordinate representation in human

pose estimation, and propose a Distribution-Aware coordi-

nate Representation of Keypoints (DARK) method with two

key components: (1) efficient Taylor-expansion based coor-

dinate decoding, and (2) unbiased sub-pixel centred coordi-

nate encoding. Importantly, existing human pose methods

can be seamlessly benefited from DARK without any algo-

rithmic modification. Extensive experiments on two com-

mon benchmarks (MPII and COCO) show that our method

provides significant performance improvement for existing

state-of-the-art human pose estimation models [25, 33, 20],

achieving the best single model accuracy on COCO and

MPII. DARK favourably enables the use of smaller input

image resolutions with much smaller performance degrada-

tion, whilst dramatically boosting the model inference ef-

ficiency therefore facilitating low-latency and low-energy

applications as required in embedded AI scenarios.

2. Related Work

Generally, there are two common coordinate represen-

tation designs in human pose estimation: coordinate and

heatmap. Both are used as the regression targets in existing

methods, which will be reviewed separately in the follows.

Coordinate regression Directly taking the coordinates

as model output target is straightforward and intuitive.

But only a handful of existing methods adopt this design

[31, 10, 3, 21, 27]. One plausible reason is that, this repre-

sentation lacks the spatial and contextual information, mak-

ing the learning of human pose model extremely challeng-

ing due to the intrinsic visual ambiguity in joint location.
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Heatmap regression The heatmap representation elegantly

addresses the above limitations. It was firstly introduced

in [30] and rapidly became the most commonly used coor-

dinate representation. Generally, the mainstream research

focus is on designing network architectures for more effec-

tively regressing the heatmap supervision. Representative

design improvements include sequential modelling [12, 2],

receptive field expansion [32], position voting [16], inter-

mediate supervision [20, 32], pairwise relations modelling

[4], tree structure modelling [8, 35, 7, 26, 29], hierarchi-

cal context learning [37], pyramid residual learning [34],

cascaded pyramid learning [6], knowledge-guided learning

[22], active learning [18], adversarial learning [5], deconvo-

lution upsampling [33], multi-scale supervision [14], atten-

tional mechanism [19, 24], and high-resolution representa-

tion preserving [25].

In contrast to all previous works, we instead investigate

the issues of heatmap representation on human pose estima-

tion, a largely ignored perspective in the literature. Not only

do we reveal a big impact of resolution reduction in the pro-

cess of using heatmap but also we propose a principled co-

ordinate representation method for significantly improving

the performance of existing models. Crucially, our method

can be seamlessly integrated without model design change.

3. Methodology

We consider the coordinate representation problem in-

cluding encoding and decoding in human pose estimation.

The objective is to predict the joint coordinates in a given

input image. To that end, we need to learn a regression

model from the input image to the output coordinates, and

the heatmap is often leveraged as coordinate representation

during both model training and testing. Specifically, we as-

sume access to a training set of images. To facilitate the

model learning, we encode the labelled ground-truth coor-

dinate of a joint into a heatmap as the learning target. In

testing, we then need to decode the predicted heatmap into

the coordinate in the original image coordinate space.

In the following we first describe the decoding process,

focusing on the limitation analysis of the existing standard

method and the development of a novel solution. Then, we

further discuss and address the limitations of the encoding

process. Lastly, we describe the integration of existing hu-

man pose estimation models with the proposed method.

3.1. Coordinate Decoding

Considered seemingly as an insignificant component of

the model testing pipeline, as we will show, coordinate de-

coding turns out to be one of the most significant perfor-

mance contributors. for human pose estimation (cf. Table

1). Specifically, it is a process of translating a predicted

heatmap of each individual joint into a coordinate in the

original image space. Suppose the heatmap has the same

spatial size as the original image, we only need to find the

location of the maximal activation as the joint coordinate

prediction. However, this is often not the case as inter-

preted above. Instead, we need to upsample the heatmaps

to the original image resolution by a sample-specific un-

constrained factor λ ∈ R+. This involves a sub-pixel local-

isation problem. Before introducing our method, we first

revisit the standard coordinate decoding method used in ex-

isting pose estimation models.

The standard coordinate decoding method is designed

empirically according to model performance [20]. Specifi-

cally, given a heatmap h predicted by a trained model, we

first identify the coordinates of the maximal (m) and second

maximal (s) activation. The joint location is then predicted

as

p = m+ 0.25
s−m

‖s−m‖2
(1)

where ‖ · ‖2 defines the magnitude of a vector. This means

that the prediction is as the maximal activation with a 0.25

pixel (i.e. sub-pixel) shifting towards the second maximal

activation in the heatmap space. The final coordinate pre-

diction in the original image is computed as:

p̂ = λp (2)

where λ is the resolution reduction ratio.

Remarks The aim of the sub-pixel shifting in Eq. (1)

is to compensate the quantisation effect of image resolution

downsampling. That being said, the maximum activation

in the predicted heatmap does not correspond to the accu-

rate position of the joint in the original coordinate space, but

only to a coarse location. As we will show, this shifting sur-

prisingly brings a significant performance boost (Table 1).

This may partly explain why it is often used as a standard

operation in model test. Interestingly, to our best knowledge

no specific work has delved into the effect of this operation

on human pose estimation performance. Therefore, its true

significance has never been really recognised and reported

in the literature. While this standard method lacks intuition

and interpretation in design, no dedicated investigation has

been carried out for improvement. We fill this gap by pre-

senting a principled method for shifting estimation and fi-

nally more accurate human pose estimation.

Our coordinate decoding method explores the distribu-

tion structure of the predicted heatmap to infer the under-

lying maximum activation. This differs dramatically to the

standard method above relying on a hand-designed offset

prediction, with little design justification and rationale.

Specifically, to obtain the accurate location at the degree

of sub-pixel, we assume the predicted heatmap follows a 2D

Gaussian distribution, same as the ground-truth heatmap.
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Figure 2. Overview of the proposed distribution aware coordinate decoding method.

Therefore, we represent the predicted heatmap as

G(x;µ,Σ) =
1

(2π)|Σ|
1

2

exp

(

−
1

2
(x− µ)TΣ−1(x− µ)

)

(3)

where x is a pixel location in the predicted heatmap, µ

is the Gaussian mean (centre) corresponding to the to-be-

estimated joint location. The covariance Σ is a diagonal

matrix, same as that used in coordinate encoding:

Σ =

[

σ2 0
0 σ2

]

(4)

where σ is the standard deviation same for both directions.

In order to reduce the approximation difficulty, we use

logarithm to transform the original exponential form G to a

quadratic form P to facilitate inference while keeping the

original maximum activation location as:

P(x;µ,Σ) = ln(G) =− ln(2π)−
1

2
ln(|Σ|) (5)

−
1

2
(x− µ)TΣ−1(x− µ)

Our objective is to estimate µ. As an extreme point in

the distribution, it is well-known that the first derivative at

the location µ meets a condition as:

D′(x)

∣

∣

∣

∣

x=µ

=
∂PT

∂x

∣

∣

∣

∣

x=µ

= −Σ−1(x− µ)

∣

∣

∣

∣

x=µ

= 0

(6)

To explore this condition, we adopt the Taylor’s theorem.

Formally, we approximate the activation P(µ) by a Taylor

series (up to the quadratic term) evaluated at the maximal

activation m of the predicted heatmap as

P(µ) = P(m)+D′(m)(µ−m)+
1

2
(µ−m)TD′′(m)(µ−m)

(7)

where D′′(m) denotes the second derivative (i.e. Hessian)

of P evaluated at m, formally defined as:

D′′(m) = D′′(x)

∣

∣

∣

∣

x=m

= −Σ−1 (8)

The intuition of selecting m to approximate µ is that it rep-

resents a good coarse joint prediction that approaches µ.

Taking Eq. (6), (7), and (8) together, we finally obtain

µ = m−
(

D′′(m)
)

−1
D′(m) (9)

where D′′(m) and D′(m) can be estimated efficiently from

the heatmap. Once obtaining µ, we also apply Eq. (2) to

predict the coordinate in the original image space.

Remarks In contrast to the standard method consider-

ing the second maximum activation alone in heatmap, the

proposed coordinate decoding fully explores the heatmap

distributional statistics for revealing the underlying maxi-

mum more accurately. In theory, our method is based on

a principled distribution approximation under a training-

supervision-consistent assumption that the heatmap is in a

Gaussian distribution. Crucially, it is very efficient com-

putationally as it only needs to compute the first and second

derivative of one pixel location per heatmap. Consequently,

existing human pose estimation approaches can be readily

benefited without any computational cost barriers.

Heatmap distribution modulation As the proposed coordi-

nate decoding method is based on a Gaussian distribution

assumption, it is necessary for us to examine how well this

condition is satisfied. We found that, often, the heatmaps

predicted by a human pose estimation model do not exhibit

good-shaped Gaussian structure compared to the training

heatmap data. As shown in Fig. 3(a), the heatmap usu-

ally presents multiple peaks around the maximum activa-

tion. This may cause negative effects to the performance

of our decoding method. To address this issue, we propose

modulating the heatmap distribution beforehand.

Specifically, to match the requirement of our method we

propose exploiting a Gaussian kernel K with the same vari-

ation as the training data to smooth out the effects of multi-

ple peaks in the heatmap h, formally as

h′ = K ⊛ h (10)

where ⊛ specifies the convolution operation.

To preserve the original heatmap’s magnitude, we finally

scale h′ so that its maximum activation is equal to that of
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Figure 3. Illustration of heatmap distribution modulation. (a) Pre-

dicted heatmap; (b) Modulated heatmap distribution.

Figure 4. Illustration of quantisation error in the standard coordi-

nate encoding process. The blue point denotes the accurate posi-

tion (g′) of a joint. With the floor based coordinate quantisation,

an error (indicated by red arrow) is introduced. Other quantisation

methods share the same problem.

h, via the following transformation:

h′ =
h′ −min(h′)

max(h′)−min(h′)
∗max(h) (11)

where max() and min() return the maximum and minimum

values of an input matrix, respectively. In our experimen-

tal analysis, it is validated that this distribution modulation

further improves the performance of our coordinate decod-

ing method (Table 3), with the resulting visual effect and

qualitative evaluation demonstrated in Fig. 3(b).

Summary We summarise our coordinate decoding method

in Fig. 2. Specifically, a total of three steps are involved in

a sequence: (a) Heatmap distribution modulation (Eq. (10),

(11)), (b) Distribution-aware joint localisation by Taylor ex-

pansion at sub-pixel accuracy (Eq. (3)-(9)), (c) Resolution

recovery to the original coordinate space (Eq. (2)). None of

these steps incur high computational costs, therefore being

able to serve as an efficient plug-in for existing models.

3.2. Coordinate Encoding

The previous section has addressed the problem with co-

ordinate decoding, rooted at resolution reduction. Coor-

dinate encoding also shares the same limitation. Specifi-

cally, the standard coordinate encoding method starts with

downsampling original person images into the model input

size. So, the ground-truth joint coordinates need to be trans-

formed accordingly before generating the heatmaps.

Formally, we denote by g = (u, v) the ground-truth co-

ordinate of a joint. The resolution reduction is defined as:

g′ = (u′, v′) =
g

λ
= (

u

λ
,
v

λ
) (12)

where λ is the downsampling ratio.

Conventionally, for facilitating the kernel generation, we

often quantise g′:

g′′ = (u′′, v′′) = quantise(g′) = quantise(
u

λ
,
v

λ
) (13)

where quantise() specifies a quantisation function, with the

common choices including floor, ceil and round.

Subsequently, the heatmap centred at the quantised co-

ordinate g′′ can be synthesised through:

G(x, y; g′′) =
1

2πσ2
exp

(

−
(x− u

′′)2 + (y − v
′′)2

2σ2

)

(14)

where (x, y) specifies a pixel location in the heatmap, and

σ denotes a fixed spatial variance.

Obviously, the heatmaps generated in the above way are

inaccurate and biased due to the quantisation error (Fig. 4).

This may introduce sub-optimal supervision signals and re-

sult in degraded model performance, particularly for accu-

rate coordinate encoding as proposed in this work.

To address this issue, we simply place the heatmap centre

at the non-quantised location g′ which represents the accu-

rate ground-truth coordinate. We still apply Eq. (14) but

replacing g′′ with g′. We will demonstrate the benefits of

this unbiased heatmap generation method (Table 3).

3.3. Integration with StateoftheArt Models

DARK is model-agnostic, seamlessly integrable with

any existing heatmap based pose models. Importantly, this

does not involve any algorithmic changes to previous meth-

ods. In particular, during training the only change is the

ground-truth heatmap data generated based on the accurate

joint coordinates. At test time, we take as input the pre-

dicted heatmaps predicted by any model such as HRNet

[25], and output more accurate joint coordinates in the origi-

nal image space. In the whole lifecycle, we keep an existing

model intact as the original design. This allows to maximise

the generality and scalability of our method.

4. Experiments

Datasets We used two popular human pose estimation

datasets, COCO and MPII. The COCO keypoint dataset

[17] presents naturally challenging imagery data with var-

ious human poses, unconstrained environments, different

body scales and occlusion patterns. The entire objective
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Decoding AP AP 50 AP 75 APM APL AR

No Shifting 61.2 88.1 72.3 59.0 66.3 68.7

Standard Shifting 66.9 88.7 76.3 64.6 72.3 73.7

Ours 68.4 88.6 77.4 66.0 74.0 74.9

Table 1. Effect of coordinate decoding on the COCO validation

set. Model: HRNet-W32; Input size: 128× 96.

involves both detecting person instances and localising the

body joints. It contains 200,000 images and 250,000 per-

son samples. Each person instance is labelled with 17

joints. The annotations of training and validation sets are

publicly benchmarked. In evaluation, we followed the

commonly used train2017/val2017/test-dev2017 split. The

MPII human pose dataset [1] contains 40k person sam-

ples, each labelled with 16 joints. We followed the standard

train/val/test split as in [30].

Evaluation metrics We used Object Keypoint Similar-

ity (OKS) for COCO and Percentage of Correct Keypoints

(PCK) for MPII to evaluate the model performance.

Implementation details For model training, we used the

Adam optimiser. For HRNet [25] and SimpleBaseline [33],

we followed the same learning schedule and epochs as in

the original works. For Hourglass [20], the base learning

rate was fine-tuned to 2.5e-4, and decayed to 2.5e-5 and

2.5e-6 at the 90-th and 120-th epoch. The total number of

epochs is 140. We used three different input sizes (128×96,

256× 192, 384× 288) in our experiments. We adopted the

same data preprocessing as in [25].

DM AP AP 50 AP 75 APM APL AR

✗ 68.1 88.5 77.1 65.8 73.7 74.8

✓ 68.4 88.6 77.4 66.0 74.0 74.9

Table 2. Effect of distribution modulation (DM) on the COCO val

set. Backbone: HRNet-W32; Input size: 128×96.

4.1. Evaluating Coordinate Representation

As the core problem in this work, the effect of coordinate

representation on model performance was firstly examined,

with a connection to the input image resolution (size). In

this test, by default we used HRNet-W32 [25] as the back-

bone model and 128× 96 as the input size, and reported the

accuracy results on the COCO validation set.

Encode Decode AP AP 50 AP 75 APM APL AR

Biased Standard 66.9 88.7 76.3 64.6 72.3 73.7

Unbiased Standard 68.0 88.9 77.0 65.4 73.7 74.5

Biased Ours 68.4 88.6 77.4 66.0 74.0 74.9

Unbiased Ours 70.7 88.9 78.4 67.9 76.6 76.7

Table 3. Effect of coordinate encoding on the COCO validation

set. Model: HRNet-W32; Input size: 128× 96.

Method Input size GFLOPs AP AP 50 AP 75 APM APL AR

HRN32
128×96 1.8

66.9 88.7 76.3 64.6 72.3 73.7

DARK 70.7 88.9 78.4 67.9 76.6 76.7

HRN32
256×192 7.1

74.4 90.5 81.9 70.8 81.0 79.8

DARK 75.6 90.5 82.1 71.8 82.8 80.8

HRN32
384×288 16.0

75.8 90.6 82.5 72.0 82.7 80.9

DARK 76.6 90.7 82.8 72.7 83.9 81.5

Table 4. Effect of input image size on the COCO validation set.

DARK uses HRNet-W32 (HRN32) as backbone.

Figure 5. Examples by DARK (red) vs. HRNet-W32 (cyan).

(i) Coordinate decoding We evaluated the effect of co-

ordinate decoding, in particular, the shifting operation and

distribution modulation. The conventional biased heatmaps

were used. In this test, we compared the proposed

distribution-aware shifting method with no shifting (i.e. di-

rectly using the maximal activation location), and the stan-

dard shifting (Eq. (1)). We make two major observations

in Table 1: (i) The standard shifting gives as high as 5.7%

AP accuracy boost, which is surprisingly effective. To our

best knowledge, this is the first reported effectiveness anal-

ysis in the literature, since this problem is largely ignored

by previous studies. This reveals previously unseen sig-

nificance of coordinate decoding to human pose estima-

tion. (ii) Despite the great gain by the standard decoding

method, the proposed model further improves AP score by

1.5%, among which the distribution modulation gives 0.3%

as shown in Table 2. This validates the superiority of our

decoding method.

(ii) Coordinate encoding We tested how effective coordi-

nate encoding can be. We compared the proposed unbiased

encoding with the standard biased encoding, along with

both the standard and our decoding method. We observed

from Table 3 that our unbiased encoding with accurate ker-

nel centre brings positive performance margin, regardless

of the coordinate decoding method. In particular, unbiased

encoding contributes consistently over 1% AP gain in both

cases. This suggests the importance of coordinate encoding,

which again is neglected by previous investigations.
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DARK Baseline Input size #Params GFLOPs AP AP 50 AP 75 APM APL AR

✗
Hourglass (4 Blocks) 128× 96 13.0M 2.7

66.2 87.6 75.1 63.8 71.4 72.8

✓ 69.6 87.8 77.0 67.0 75.4 75.7

✗
Hourglass (8 Blocks) 128× 96 25.1M 4.9

67.6 88.3 77.4 65.2 73.0 74.0

✓ 70.8 87.9 78.3 68.3 76.4 76.6

✗
SimpleBaseline-R50 128× 96 34.0M 2.3

59.3 85.5 67.4 57.8 63.8 66.6

✓ 62.6 86.1 70.4 60.4 67.9 69.5

✗
SimpleBaseline-R101 128× 96 53.0M 3.1

58.8 85.3 66.1 57.3 63.4 66.1

✓ 63.2 86.2 71.1 61.2 68.5 70.0

✗
SimpleBaseline-R152 128× 96 68.6M 3.9

60.7 86.0 69.6 59.0 65.4 68.0

✓ 63.1 86.2 71.6 61.3 68.1 70.0

✗
HRNet-W32 128× 96 28.5M 1.8

66.9 88.7 76.3 64.6 72.3 73.7

✓ 70.7 88.9 78.4 67.9 76.6 76.7

✗
HRNet-W48 128× 96 63.6M 3.6

68.0 88.9 77.4 65.7 73.7 74.7

✓ 71.9 89.1 79.6 69.2 78.0 77.9

Table 5. Evaluating the generality of our DARK method to varying state-of-the-art models on the COCO validation set.

Method AP AP 50 AP 75 APM APL AR

DSNT [21] 57.6 83.5 63.1 56.9 60.1 71.2

IPR [27] 68.0 88.1 76.5 65.9 73.8 74.4

DARK 70.7 88.9 78.4 67.9 76.6 76.7

Table 6. Comparing coordinate regression methods on the COCO

validation set. Backbone: HRNet-W32; Input size: 128×96.

(iii) Input resolution We examined the impact of in-

put image resolution/size by testing a number of different

sizes, considering that it is an important factor relevant to

model inference efficiency. We compared our DARK model

(HRNet-W32 as backbone) with the original HRNet-W32

using the biased heatmap supervision for training and the

standard shifting for testing. From Table 4 we have a cou-

ple of observations: (a) With reduced input image size,

as expected the model performance consistently degrades

whilst the inference cost drops clearly. (b) With the support

of DARK, the model performance loss can be effectively

mitigated, especially in case of very small input resolution

(i.e. very fast model inference). This facilitates the deploy-

ment of human pose estimation models on low-resource de-

vices, highly desired in the emerging embedded AI.

(iv) Generality Besides the state-of-the-art HRNet, we also

tested other two representative human pose estimation mod-

els under varying CNN architectures: SimpleBaseline [33]

and Hourglass [20]. The results in Table 5 show that DARK

provides significant performance gain to the existing mod-

els in most cases. This suggests a generic usefulness of our

approach. We showed qualitative evaluation in Fig. 5.

(v) Complexity We tested the inference efficiency impact

by our method in HRNet-W32 at input size of 128 × 96.

On a machine with one i9-7920X CPU and one Titan V

GPU, the running speed is reduced from 360 fps to 320 fps

in the low-efficient python environment, i.e. a drop of 11%.

Hence, the extra cost from DARK is rather affordable. We

believe a native programming language (e.g. C/C++) based

version can further accelerate the inference speed.

4.2. Comparison to Coordinate Regression

We compared our DARK with existing coordinate re-

gression methods including IPR [27] and DSNT [21]. In

this test, we used HRNet-W32 [25] as the backbone and 128

× 96 as the input size, and reported the accuracy results on

the COCO validation set. Table 6 verifies the performance

superiority of our method over both alternatives, whilst en-

joying the advantages of more friendly adoption and more

efficient model training.

4.3. Comparison to StateoftheArt Methods

(i) Evaluation on COCO We compared our DARK

method with top-performers including G-RMI [23], IPR

[27], CPN [6], CFN [13] RMPE [11], SimpleBaseline [33],

and HRNet [25]. Table 7 shows the accuracy results of the

state-of-the-art methods and DARK on the COCO test-dev

set. In this test, we used the person detection results from

[25]. We have the following observations: (i) DARK with

HRNet-W48 at the input size of 384×288 achieves the best

accuracy, without extra model parameters and only tiny cost

increase. Specifically, compared with the best competitor

(HRNet-W48 with the same input size), DARK further im-

proves AP by 0.7% (76.2-75.5). When compared to the

most efficient model (IPR), DARK(HRNet-W32) achieves

an AP gain of 2.2% (70.0-67.8) whilst only needing 16.4%

(1.8/11.0 GFLOPs) execution cost. These suggest the ad-

vantages and flexibility of DARK on top of existing models

in terms of both accuracy and efficiency.
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Method Backbone Input size #Params GFLOPs AP AP 50 AP 75 APM APL AR

G-RMI[23] ResNet-101 353× 257 42.6M 57.0 64.9 85.5 71.3 62.3 70.0 69.7

IPR [27] ResNet-101 256× 256 45.1M 11.0 67.8 88.2 74.8 63.9 74.0 -

CPN [6] ResNet-Inception 384× 288 - - 72.1 91.4 80.0 68.7 77.2 78.5

RMPE [11] PyraNet 320× 256 28.1M 26.7 72.3 89.2 79.1 68.0 78.6 -

CFN [13] - - - - 72.6 86.1 69.7 78.3 64.1 -

CPN (ensemble) [6] ResNet-Inception 384× 288 - - 73.0 91.7 80.9 69.5 78.1 79.0

SimpleBaseline[33] ResNet-152 384× 288 68.6M 35.6 73.7 91.9 81.1 70.3 80.0 79.0

HRNet[25] HRNet-W32 384× 288 28.5M 16.0 74.9 92.5 82.8 71.3 80.9 80.1

HRNet[25] HRNet-W48 384× 288 63.6M 32.9 75.5 92.5 83.3 71.9 81.5 80.5

DARK HRNet-W32 128× 96 28.5M 1.8 70.0 90.9 78.5 67.4 75.0 75.9

DARK HRNet-W48 384× 288 63.6M 32.9 76.2 92.5 83.6 72.5 82.4 81.1

G-RMI (extra data) ResNet-101 353× 257 42.6M 57.0 68.5 87.1 75.5 65.8 73.3 73.3

HRNet (extra data) HRNet-W48 384× 288 63.6M 32.9 77.0 92.7 84.5 73.4 83.1 82.0

DARK (extra data) HRNet-W48 384× 288 63.6M 32.9 77.4 92.6 84.6 73.6 83.7 82.3

Table 7. Comparison with the state-of-the-art human pose estimation methods on the COCO test-dev set.

Method Head Sho. Elb. Wri. Hip Kne. Ank. Mean

PCKh@0.5

HRN32 97.1 95.9 90.3 86.5 89.1 87.1 83.3 90.3

DARK 97.2 95.9 91.2 86.7 89.7 86.7 84.0 90.6

PCKh@0.1

HRN32 51.1 42.7 42.0 41.6 17.9 29.9 31.0 37.7

DARK 55.2 47.8 47.4 45.2 20.1 33.4 35.4 42.0

Table 8. Comparison on the MPII validation set. DARK uses

HRNet-W32 (HRN32) as backbone. Input size: 256×256. Single-

scale model performance is considered.

(ii) Evaluation on MPII We compared DARK with

HRNet-W32 on the MPII validation set. The comparisons

in Table 8 show a consistent performance superiority of our

method over the best competitor. Under the more strict ac-

curacy measurement PCKh@0.1, the performance margin

of DARK is even more significant. Note, MPII provides sig-

nificantly smaller training data than COCO, suggesting that

our method generalises across varying training data sizes.

4.4. COCO Keypoints Detection Challenge

We participated in the ICCV 2019 COCO Keypoints

Challenge using the proposed DARK as the main method.

To push up the performance, we used an ensemble of DARK

models. Table 9 shows that our method achieves 78.9%

AP on test-dev set and 76.4% AP on test-challenge set for

multi-person pose estimation. This enables us to achieve

the 2nd place entry in this Challenge. For more details, we

refer the readers to our technique report [9].

5. Conclusion

We for the first time systematically investigated the

largely ignored yet significant problem of coordinate rep-

AP AP 50 AP 75 APM APL AR

test-dev

78.9 93.8 86.0 75.1 84.4 83.5

test-challenge

76.4 92.5 82.7 70.9 83.8 81.6

Table 9. The results of our DARK based entry in the ICCV2019

COCO Keypoints Challenge.

resentation (including encoding and decoding) for human

pose estimation in unconstrained images. We not only re-

vealed the genuine significance of this problem, but also

presented a novel distribution-aware coordinate representa-

tion (DARK) for more discriminative model training and

inference. Serving as a ready-to-use plug-in component,

existing state-of-the-art models can be seamlessly benefited

from our DARK method without any algorithmic adaptation

at a neglectable cost. Apart from demonstrating empirically

the importance of coordinate representation, we validated

the performance advantages of DARK by conducting ex-

tensive experiments with a wide spectrum of contemporary

models on two challenging datasets. We also provided a se-

quence of in-depth component analysis for giving insights

on the design rationale of our model formulation.
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