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Abstract

Normalization techniques are important in different ad-

vanced neural networks and different tasks. This work

investigates a novel dynamic learning-to-normalize (L2N)

problem by proposing Exemplar Normalization (EN), which

is able to learn different normalization methods for differ-

ent convolutional layers and image samples of a deep net-

work. EN significantly improves flexibility of the recent-

ly proposed switchable normalization (SN), which solves

a static L2N problem by linearly combining several nor-

malizers in each normalization layer (the combination is

the same for all samples). Instead of directly employing a

multi-layer perceptron (MLP) to learn data-dependant pa-

rameters as conditional batch normalization (cBN) did, the

internal architecture of EN is carefully designed to stabilize

its optimization, leading to many appealing benefits. (1) EN

enables different convolutional layers, image samples, cat-

egories, benchmarks, and tasks to use different normaliza-

tion methods, shedding light on analyzing them in a holistic

view. (2) EN is effective for various network architectures

and tasks. (3) It could replace any normalization layers in

a deep network and still produce stable model training. Ex-

tensive experiments demonstrate the effectiveness of EN in

wide spectrum of tasks including image recognition, noisy

label learning, and semantic segmentation. For example, by

replacing BN in the ordinary ResNet50, improvement pro-

duced by EN is 300% more than that of SN on both Ima-

geNet and the noisy WebVision dataset.

1. Introduction

Normalization techniques are one of the most essential

components to improve performance and accelerate train-

ing of convolutional neural networks (CNNs). Recent-

ly, a family of normalization methods is proposed includ-

ing batch normalization (BN) [14], instance normalization

(IN) [36], layer normalization (LN) [1] and group normal-

∗Equal contribution

(a) The learning dynamic of EN ratios of four categories in three layers.

(b) Performance of EN and its counterparts on various CV tasks.

Figure 1. (a) The proposed Exemplar Normalization (EN) enables

different categories to learn to select different normalizers in dif-

ferent layers. The four categories of ImageNet (i.e. flute, bald ea-

gle, newfoundland and castle) in three layers (i.e. bottom, middle

and top) of ResNet50 are presented. (b) EN outperforms its coun-

terparts on various computer vision tasks ( i.e. image classification,

noisy-supervised classification and semantic image segmentation

) by using different network architectures.

ization (GN) [39]. As these methods were designed for d-

ifferent tasks, they often normalize feature maps of CNNs

from different dimensions.

To combine advantages of the above methods, switch-

able normalization (SN) [23] and its variant [33] were pro-

posed to learn linear combination of normalizers for each

convolutional layer in an end-to-end manner. We term this

normalization setting as static ‘learning-to-normalize’. De-

spite the successes of these methods, once a CNN is op-

timized by using them, it employed the same combination

ratios of the normalization methods for all image samples in

a dataset, incapable to adapt to different instances and thus
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rendering suboptimal performance.

As shown in Fig. 1, this work studies a new learn-

ing problem, that is, dynamic ‘learning-to-normalize’, by

proposing Exemplar Normalization (EN), which is able to

learn arbitrary normalizer for different convolutional layer-

s, image samples, categories, datasets, and tasks in an end-

to-end way. Unlike previous conditional batch normaliza-

tion (cBN) that used multi-layer perceptron (MLP) to learn

data-dependent parameters in a normalization layer, suffer-

ing from over-fitting easily, the internal architecture of EN

is carefully designed to learn data-dependent normalization

with merely a few parameters, thus stabilizing training and

improving generalization capacity of CNNs.

EN has several appealing benefits. (1) It can be treat-

ed as an explanation tool for CNNs. The exemplar-based

important ratios in each EN layer provide information to

analyze the properties of different samples, classes, and

datasets in various tasks. As shown in Fig. 1(a), by train-

ing ResNet50 [9] on ImageNet [6], images from different

categories would select different normalizers in the same

EN layer, leading to superior performance compared to the

ordinary network. (2) EN makes versatile design of the

normalization layer possible, as EN is suitable for vari-

ous benchmarks and tasks. Compared with state-of-the-

art counterparts in Fig. 1(b), EN consistently outperforms

them on many benchmarks such as ImageNet [6] for im-

age classification, Webvision [18] for noisy label learning,

ADE20K [42] and Cityscapes [5] for semantic segmenta-

tion. (3) EN is a plug and play module. It can be in-

serted into various CNN architectures such as ResNet [9],

Inception v2 [35], and ShuffleNet v2 [26], to replace any

normalization layer therein and boost their performance.

The contributions of this work are three-fold. (1)

We present a novel normalization learning setting named

dynamic ‘learning-to-normalize’, by proposing Exemplar

Normalization (EN), which learns to select different nor-

malizers in different normalization layers for different im-

age samples. EN is able to normalize image sample in both

training and testing stage. (2) EN provides a flexible way to

analyze the selected normalizers in different layers, the re-

lationship among distinct samples and their deep represen-

tations. (3) As a new building block, we apply EN to vari-

ous tasks and network architectures. Extensive experiments

show that EN outperforms its counterparts in wide spectrum

of benchmarks and tasks. For example, by replacing BN in

the ordinary ResNet50 [9], improvement produced by EN

is 300% more than that of SN on both ImageNet [6] and the

noisy WebVision [18] dataset.

2. Related Work

Many normalization techniques are developed to nor-

malize feature representations [14, 1, 36, 39, 23] or weight-

s of filters [12, 32, 27] to accelerate training and boost

generation ability of CNNs. Among them, Batch Nor-

malization (BN) [14], Layer Normalization (LN) [1] and

Instance Normalization (IN) [36] are most popular meth-

ods that compute statistics with respect to channel, layer,

and minibatch respectively. The follow-up Position Nor-

malization [17] normalizes the activations at each spatial

position independently across the channels. Besides nor-

malizing different dimensions of the feature maps, another

branch of work improved the capability of BN to deal with

small batch size, including Group Normalization (GN) [39],

Batch Renormalization (BRN) [13], Batch Kalman Normal-

ization (BKN) [37] and Stream Normalization (StN) [20].

In recent studies, using the hybrid of multiple normaliz-

ers in a single normalization layer has achieved much atten-

tion [29, 28, 24, 30, 25]. For example, Pan et al. introduced

IBN-Net [29] to improve the generalization ability of C-

NNs by manually designing the mixture strategy of IN and

BN. In [28], Nam et al. adopted the same scheme in style

transfer, where they employed gated function to learn the

important ratios of IN and BN. Luo et al. further proposed

Switchable Normalization (SN) [23, 22] and its sparse ver-

sion [33] to extend such a scheme to deal with arbitrary

number of normalizers. More recently, Dynamic Normal-

ization (DN) [25] was introduced to estimate the computa-

tional pattern of statistics for the specific layer. Our work

is motivated by this series of studies, but provides a more

flexible way to learn normalization for each sample.

The adaptive normalization methods are also related to

us. In [31], Conditional Batch Normalization (cBN) was

introduced to learn parameters of BN (i.e. scale and off-

set) adaptively as a function of the input features. Attentive

Normalization (AN) [19] learns sample-based coefficients

to combine feature maps. In [21], Deecke et al. proposed

Mode Normalization (MN) to detect modes of data on-the-

fly and normalize them. However, these methods are inca-

pable to learn various normalizers for different convolution-

al layers and images as EN did.

The proposed EN also has a connection with learning

data-dependent [15] or dynamic weights [41] in convolu-

tion and pooling [16]. The subnet for computation of im-

portant ratios is also similar to SE-like [11, 2, 38] attention

mechanism in form, but they are technically different. First,

SE-like models encourage channels to contribute equally to

the feature representation [34], while EN learns to selec-

t different normalizers in different layers. Second, SE is

plugged into different networks by using different schemes.

EN could directly replace other normalization layers.

3. Exemplar Normalization (EN)

3.1. Notation and Background

Overview. We introduce normalization in terms of a 4D

tensor, which is the input data of a normalization layer in a
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mini-batch. Let X ∈ R
N×C×H×W be the input 4D tensor,

where N,C,H,W indicate the number of images, number

of channels, channel height and width respectively. Here

H and W define the spatial size of a single feature map.

Let matrix Xn ∈ R
C×HW denote the feature maps of n-

th image, where n ∈ {1, 2, ..., N}. Different normalizers

normalize Xn by removing its mean and standard deviation

along different dimensions, performing a formulation

X̂n = γ
Xn − µk

√
(δk)2 + ǫ

+ β (1)

where X̂n is the feature maps after normalization. µk and

δk are the vectors of mean and standard deviation calculated

by the k-th normalizer. Here we define k ∈ {BN, IN, LN,

GN,...}. The scale parameter γ ∈ R
C and bias parameter

β ∈ R
C are adopted to re-scale and re-shift the normalized

feature maps. ǫ is a small constant to prevent dividing by

zero, and both
√· and (·)2 are channel-wise operators.

Switchable Normalization (SN). Unlike previous meth-

ods that estimated statistics over different dimensions of the

input tensor, SN [23, 24] learns a linear combination of s-

tatistics of existing normalizers,

X̂n = γ
Xn −

∑
k
λkµk

√∑
k
λk (δk)2 + ǫ

+ β (2)

where λk ∈ [0, 1] is a learnable parameter corresponding

to the k-th normalizer, and
∑

k
λk = 1. In practice, this

important ratio is calculated by using the softmax func-

tion. The important ratios for mean and variance can be

also different. Although SN [23] outperforms the individu-

al normalizer in various tasks, it solves a static ‘learning-to-

normalize’ problem by switching among several normaliz-

ers in each layer. Once SN is learned, its important ratios

are fixed for the entire dataset. Thus the flexibility of SN is

limited and it suffers from the bias between the training and

the test set, leading to sub-optimal results.

In this paper, Exemplar Normalization (EN) is proposed

to investigate a dynamic ‘learning-to-normalize’ problem,

which learns different data-dependant normalizations for d-

ifferent image samples in each layer. EN extremely expands

the flexibility of SN, while retaining SN’s advantages of dif-

ferential learning, stability of model training, and capability

in multiple tasks.

3.2. Formulation of EN

Given input feature maps Xn, Exemplar Normalization

(EN) is defined by

X̂n =
∑

k

γk( λk

n

Xn − µk

√
(δk)2 + ǫ

) + βk (3)

where λk
n ∈ [0, 1] indicates the important ratio of the k-

th normalizer for the n-th sample. Similar with SN, we
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Figure 2. Illustration of the Exemplar Normalization (EN) layer,

which is able to learn the sample-based important ratios to nor-

malize the input feature maps by using multiple normalizers. Note

that the scale parameter γ and shift parameter β in Eqn. (3) are

omitted to simplify the diagram.

use softmax function to satisfy the summation constraint,∑
k
λk
n = 1. Compared with Eqn. (2) and Eqn. (3), the

differences between SN and EN are three-fold. (1) The im-

portant ratios of mean and standard deviation in SN can be

different, but such scheme is avoided in EN to ensure stabil-

ity of training, because the learning capacity of EN already

outperforms SN by learning different normalizers for dif-

ferent samples. (2) We use important ratios to combine the

normalized feature maps instead of combining statistics of

normalizers, reducing the bias in SN when combining the

standard deviations. (3) Multiple γ and β are adopted to

re-scale and re-shift the normalized feature maps in EN.

To calculate the important ratios λk
n depended on the fea-

ture map of individual sample, we define

λn = F(Xn,Ω; Θ) (4)

where λn = [λ1

n, ..., λ
k
n, ...λ

K
n ], and K is the total number

of normalizers in EN. Ω indicates a collection of statistic-

s of different normalizers. We have Ω = {(µk, δk)}K
k=1

.

F(·) is a function (a small neural network) to calculate the

instance-based important ratios, according to the input fea-

ture maps Xn and statistics Ω. Θ denotes learnable param-

eters of function F(·). We carefully design a lightweight

module to implement the function F(·) in next subsection.

3.3. An Exemplar Normalization Layer

Fig. 2 shows a diagram of the key operations in an EN

layer, including important ratio calculation and feature map

normalization. Given an input tensor X , a set of statistics

Ω are estimated. We use Ωk to denote the k-th statistics

(mean and standard deviation). Then the EN layer uses X

and Ω to calculate the important ratios as shown in the right

branch of Fig. 2 in blue. As shown in the left branch of

12728



Fig. 2, multiple normalized tensors are also calculated.

In Fig. 2, there are three steps to calculate the importan-

t ratios for each sample. (1) The input tensor X is first-

ly down-sampled in the spatial dimension by using aver-

age pooling. The output feature matrix is denoted as x ∈
R

N×C . Then we use every Ωk to pre-normalize x by sub-

tracting the means and dividing by the standard deviations.

There are K statistics and thus we have x̂ ∈ R
N×K×C . Af-

ter that, a 1-D convolutional operator is employed to reduce

the channel dimension of x̂ from C to C/r, which is shown

in the first blue block in Fig. 2. Here r is a hyper-parameter

that indicates the reduction rate. To further reduce the pa-

rameters in the above operation, we use group convolution

with the group number C/r to ensure the total number of

convolutional parameters always equals to C, irrelevant to

the value of r. The output in this step is denoted as z.

(2) The second step is to compute the pairwise correla-

tion of different normalizers for each sample, which is mo-

tivated by the high-order feature representation [7, 4]. For

the n-th sample, we use zn ∈ R
K×C and its transposition

zT
n to compute the pairwise correlations by vn = znz

T
n ∈

R
K×K . Then vn is reshaped to a vector to calculate the

important ratios. Intuitively, the pairwise correlations cap-

ture the relationship between different normalizers for each

sample, and allow the model to integrate more information

to calculate the important ratios. In practice, we also find

such operation could effectively stabilize the model train-

ing and make the model achieve higher performance.

(3) In the last step, the above vector vn is firstly fed into

a fully-connected (FC) layer followed by a tanh unit. This is

to raise its dimensions to πK, where π is a hyper-parameter

and the value of K is usually small, e.g. 3. In practice, we

set the value of π as 50 in experiments. After that, we per-

form another FC layer to reduce the dimension to K. The

output vector λn ∈ R
K×1 is regarded as the important ra-

tios of the n-th sample for K normalizers, where each ele-

ment is corresponding to an individual normalizer. Once we

obtain the important ratio [λ1,λ2, ...,λN ]T , the softmax

function is applied to satisfy the summation constraint that

the important ratios of different normalizers sum to 1.

Complexity Analysis. The numbers of parameters and

computational complexity of different normalization meth-

ods are compared in Table 1. The additional parameters in

EN are mainly from the convolutional and FC layers to cal-

culate the data-dependant important ratios. In SN [23], such

number is 2K since it adopts the global important ratios for

both mean and standard deviant. In EN, the total number

of parameters that is applied to generate the data-dependant

important ratios is C +Ψ(K), where C equals to the input

channel size of the convolutional layer (i.e. “Conv.” with C
parameters in Fig. 2). Ψ(K) is a function of K, which in-

dicates the amount of parameters in the two FC layers (i.e.

the top blue block in Fig. 2). In practice, since the number

Table 1. Comparisons of parameters and computational complex-

ity of different normalizers. γ and β indicate the scale and shift

parameters in Eqn.(2), and Θ is the parameters of “Conv.” and

FC layer in proposed EN. K denotes the number of normalizer

and Ψ(·) is a function of K that determines the number of Θ.

{ωk, νk}
K

k=1 are the learnable important ratios in SN [23].

Method params #params
computation

complexity

BN [14] γ,β 2C O(NCHW )
IN [36] γ,β 2C O(NCHW )
LN [1] γ,β 2C O(NCHW )

GN [39] γ,β 2C O(NCHW )
BKN [37] A C2 O(NC2HW )
SN [23] γ,β, {ωk, νk}

K

k=1 2C + 2K O(NCHW )

EN γ,β,Θ
2KC+

O(NCHW )
C +Ψ(K)

of K is small (e.g. 3 ∼ 4), the value of Ψ(K) is just about

0.001M . In this paper, EN employ a pool of normalizers

that is the same as SN, i.e. {IN,LN,BN}. Thus the com-

putational complexities of both SN and EN for estimating

the statistics are O(NCHW ). We also compare FLOPs in

Sec. 4, showing that the extra #parameters of EN is marginal

compared to SN, but its relative improvement over the ordi-

nary BN is 300% larger than SN.

4. Experiment

4.1. Image Classification with ImageNet dataset

Experiment Setting. We first examine the performance

of proposed EN on ImageNet [6], a standard large-scale

dataset for high-resolution image classification. Follow-

ing [23], the γ and β in all of the normalization methods are

initialized as 1 and 0 respectively. In the training phase, the

batch size is set as 128 and the data augmentation scheme is

employed same as [9] for all of the methods. In inference,

the single-crop validation accuracies based on 224 × 224
center crop are reported.

We use ShuffleNet v2 x0.5 [26] and ResNet50 [9] as the

backbone network to evaluate various normalization meth-

ods since the difference in their network architectures and

the number of parameters. Same as [26], ShuffleNet v2 is

trained by using Adam optimizer with the initial learning

rate 0.1. For ResNet50, all of the methods are optimized

by using stochastic gradient decent (SGD) with stepwise

learning rate decay. The hyper-parameter r in ShuffleNet

v2 x0.5 and ResNet50 are set as 8 and 32 respectively s-

ince the smallest number of channels are different. The

hyper-parameter π is 50. For fair comparison, we replace

compared normalizers with EN in all of the normalization

layers in the backbone network.

Result Comparison. Table 2 reports the efficiency and ac-

curacy of EN against its counterparts including BN [14],
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Table 2. Comparisons of classification accuracies (%), network

parameters (Params.) and floating point operations per second

(GFLOPs) of various methods on the validation set of ImageNet

by using different network architectures.

Backbone Method GFLOPs Params. top-1 top-5

BN 0.046 1.37M 60.3 81.9

ShuffleNet SN 0.057 1.37M 61.2 82.9

v2 x0.5 SSN 0.052 1.37M 61.2 82.7

EN 0.063 1.59M 62.2 83.3

SENet 4.151 26.77M 77.6 93.7

AANet 4.167 25.80M 77.7 93.8

BN 4.136 25.56M 76.4 93.0

GN 4.155 25.56M 76.0 92.8

ResNet50 SN 4.225 25.56M 76.9 93.2

SSN 4.186 25.56M 77.2 93.1

EN 4.325 25.91M 78.1 93.6

GN [39], SN [23] and SSN [33]. For both two backbone

networks, EN offers a super-performance and a competitive

computational cost compared with previous methods. For

example, by considering the sample-based ratio selection,

EN outperforms SN 1.0%, and 1.2% on top-1 accuracy by

using ShuffleNet v2 x0.5 and ResNet50 with only a small

amount of GFLOPs increment. The top-1 accuracy curves

of ResNet50 by using BN, SN and EN on training and val-

idation set of ImageNet are presented in Fig. 3. We al-

so compare the performance with state-of-the-art attention-

based methods, i.e. SENet [11] and AANet [2], without

bells and whistles, the proposed EN still outperforms these

methods.

4.2. Noisy Classification with Webvision dataset

Experiment Setting. We also evaluate the performance

of EN on noisy image classification task with Webvision

dataset [18]. We adopt Inception v2 [35] and ResNet50 [9]

as the backbone network. Since the smallest number of

channels in Inception v2 is 32, the feature reduction rate

r in the first “Conv.” is set as 16 for such network archi-

tecture. In ResNet50 [9], we maintain the same reduction

parameter r = 32 as Imagenet. The center crop with the

image size 224 × 224 are adopted in inference. All of

the models are optimized with SGD, where the learning

rate is initialized as 0.1 and decreases at the iterations of

{30, 50, 60, 65, 70} × 104 with a factor of 10. The batch

size is set as 256 and the data augmentation and data bal-

ance technologies are used by following [8]. In the training

phase, we replace compared normalizers with EN in all of

the normalization layers.

Result Comparison. Table 3 reports the top-1 and top-5

classification accuracies of various normalization method-

s. EN outperforms its counterparts by using both of two

network architectures. Specially, by using ResNet50 as the

(a) ResNet20 on CIFAR-10 (b) ResNet20 on CIFAR-10

(c) ResNet50 on ImageNet (d) ResNet50 on ImageNet

(e) ResNet50 on Webvision (f) ResNet50 on Webvision

Figure 3. Top-1 training and validation accuracy curves of differ-

ent normalization methods on CIFAR-10, ImageNet and Webvi-

sion dataset. Zoom in three times for the best view.

backbone, EN significantly boost the top-1 accuracy from

72.8% to 73.5% compared with SN. It achieves about 3
times relative improvement of EN against SN compared to

the ordinary plain ResNet50. Such performance gain is con-

sistent with the results on ImageNet. The training and vali-

dation curves are shown in Fig. 3.

The cross dataset test is also conducted to investigate the

transfer ability of EN since the categories in ImageNet and

Webvision are the same. The model trained on one dataset

is used to do the test on another dataset’s validation set. The

results are reported in Fig. 4 that EN still outperforms its

counterparts.

4.3. Tiny Image Classification with CIFAR dataset

Experiment Setting. We also conduct the experiment on

CIFAR-10 and CIFAR-100 dataset. The training batch size

is 128. All of the models are trained by using the single G-

PU. The training process contains 165 epoches. The initial

learning rate is set as 0.1 and decayed at 80 and 120 epoch,

respectively. We also adopt the warm up scheme [9, 10] for
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Table 3. Comparison of classification accuracies (%), network

parameters and GFLOPs of various normalization methods on the

validation set of Webvision by using different network architec-

tures. The best results are bold.

Model Norm GFLOPs Params. top-1 top-5

Inception v2

BN 2.056 11.29M 70.7 88.0

SN 2.081 11.30M 71.3 88.5

EN 2.122 12.36M 71.6 88.6

ResNet50

BN 4.136 25.56M 72.5 89.1

SN 4.225 25.56M 72.8 89.2

EN 4.325 25.91M 73.5 89.4

Table 4. Top-1 and top-5 accuracy (%) of cross dataset results.

The dataset before ’→’ is adopted to train ResNet50 with various

normalization methods. The validation set after ’→’ is used for

testing. The number of categories in two datasets are the same.

training set → val. set method top-1 top-5

ImageNet→ Webvision

BN 67.9 85.8

SN 68.0 86.3

EN 68.4 86.8

Webvision → ImageNet

BN 64.4 84.3

SN 61.1 81.0

EN 64.7 84.6

Table 5. Top-1 accuracy (%) on CIFAR-10 and CIFAR-100 dataset

by using various networks. The best results are bold.

Dataset Backbone BN SN EN

CIFAR-10

ResNet20 91.54 91.81 92.41

ResNet56 93.15 93.41 93.73

ResNet110 93.88 94.01 94.22

CIFAR-100

ResNet20 67.87 67.74 68.78

ResNet56 70.83 70.70 72.01

ResNet110 72.41 72.53 73.32

all of the models training, which increases the learning rate

from 0 to 0.1 in the first epoch.

Result Comparison. The experiment results on CIFAR

dataset are presented in Table 5. Compared with the pre-

vious methods, EN shows better performance than the other

normalization methods over various depths of ResNet [9].

In particular, the top-1 accuracies of EN on CIFAR-100 are

significantly improved by 1.04%, 1.31% and 0.79% com-

pared with SN with different network depths.

4.4. Semantic Image Segmentation

Experiment Setting. We also evaluate the performance of

EN on semantic segmentation task by using standard bench-

marks, i.e. ADE20K [42] and Cityscapes [5] datasets, to

demonstrate its generalization ability. Same as [23, 40], we

use DeepLab [3] with ResNet50 as the backbone network

and adopt the atrous convolution with the rate 2 and 4 in

the last two blocks. The downsample rate of the backbone

Table 6. Semantic Segmentation results on ADE20K and C-

ityscapes datasets. The backbone is ResNet50 with dilated con-

volutions. The subscripts “ss” and “ms” indicate single-scale and

multi-scale test respectively. The best results are bold.

Method
ADE20K Cityscapes

mIoUss mIoUms mIoUss mIoUms

SyncBN 36.4 37.7 69.7 73.0

GN 35.7 36.6 68.4 73.1

SN 37.7 38.4 72.2 75.8

EN 38.2 38.9 72.6 76.1

Table 7. Top-1 accuracy (%) on ImageNet by using EN-ResNet50

with different ascending dimension hyper-parameter π.

Method SN
EN ( value of hyper-parameter π )

1 10 20 50 100

top-1 76.9 77.1 77.5 77.8 78.1 78.0

∆ vs. SN - + 0.2 + 0.6 + 0.9 +1.2 + 1.1

network is 8 and the bilinear operation is employed to up-

sample the predicted semantic maps to the size of the input

image. All of the models are trained with 2 samples per G-

PU by using “ploy” learning rate decay. The initial learning

rate on ADE20K and Cityscapes are set as 0.02 and 0.01,

respectively. Single-scale and multi-scale testing are used

for evaluation. Note that the synchronization scheme is not

used in SN and EN to estimate the batch mean and batch

standard deviate across multi-GPU. To finetune the model

on semantic segmentation, we use 8 GPU with 32 images

per GPU to pre-train the EN-ResNet50 in ImageNet, thus

we report the same configuration of SN (i.e. SN(8,32) [24])

for fair comparision.

Result Comparison. The mIoU scores on ADE20K valida-

tion set and Cityscapes test set are reported in Table 6. The

performance improvement of EN is consistent with the re-

sults in classification. For example, the mIoUs on ADE20K

and Cityscapes are improved from 38.4% and 75.8% to

38.9% and 76.1% by using multi-scale test.

4.5. Ablation Study

Hyper-parameter π. We first investigate the effect of

hyper-parameter π in Sec. 3.3. The top-1 accuracy on Ima-

geNet by using ResNet50 as the backbone network are re-

ported in Table 7. All of the EN models outperform SN.

With the number of π increasing, the performance of clas-

sification growths steadily. The the gap between the lowest

and highest is about 0.6% excluding π = 1, which demon-

strates the model is not sensitive to the hyper-parameter π
in most situations. To leverage the classification accuracy

and computational efficiency, we set π as 50 in our model.

Hyper-parameter r. We also evaluate the differen-

t group division strategy in the first “Conv.” of Fig. 3.3

through controlling the hyper-parameter r. Although the
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Table 8. Top-1 accuracy (%) on ImageNet by using EN-ResNet50

with different hyper-parameter r in the ‘Conv.’ of Sec. 3.3. Note

that the total number of parameters with different r are the same.

Method SN
EN ( value of hyper-parameter r )

2 4 16 32 64

top-1 76.9 77.7 77.9 77.9 78.1 77.7

∆ vs. SN - +0.8 +1.0 +1.0 +1.2 +0.8

Table 9. Top-1 and Top-5 accuracy (%) on ImageNet by using EN-

ResNet50 with different configurations.

Method top-1 / top5
top-1 / top5

∆ vs. EN

EN-ResNet50 78.1 / 93.6 -

a. → 2-layer MLP 76.7 / 92.9 −1.4 / −0.7

b. → w/o Conv. 77.6 / 92.9 −0.5 / −0.7

c. → ReLU 77.7 / 93.4 −0.4 / −0.2

d. → single γ, β 77.6 / 93.3 −0.5 / −0.3

total numbers of parameters in “Conv.” layer are the same

by using distinct r, the reduced feature dimensions are d-

ifferent, leading to the different computational complexity,

i.e. the larger r, the smaller computation cost in the subse-

quent block. Table 8 shows the top-1 accuracy on ImageNet

by using EN-ResNet50 with different group division in the

first “Conv.” shown in Fig. 2. All of the configurations

achieve higher performance than SN. With the value of r
growths, the performance of EN-ResNet50 increases stably

expect 64, which equals to the smallest number of channels

in ResNet50. These results indicate that feature dimension

reduction benefits to the performance increment. However,

such advantage may disappear if the reduction rate equals

to the smallest number of channels.

Other Configurations. We replace the other compo-

nents in the EN layer to verify their effectiveness. The con-

figurations for comparison are as follows. (a) A 2-layer

multi-layer perceptron (MLP) is used to replace the de-

signed important ratio calculation module in Fig. 2. The

MLP reduces the feature dimension to 1/32 in the first lay-

er followed by an activation function, and then reduce the

dimension to the number of important ratios in the second

layer. (b) The “Conv.” operation in the Fig. 2 are omitted

and pairwise correlations vn in Sec. 3.3 ‘step(2)’ are direct-

ly computed. (c) The Tanh activation function in the top

blue block of Fig. 2 is replaced with ReLU. (d) Instead of

multiple γ, β in Eqn. (3) (i.e. each γ, β is corresponding to

one normalizer), single γ, β are adopted. Table 9 report-

s the comparisons of proposed EN with different internal

configuration. According to the results, the current con-

figuration of EN achieves the best performance compared

with the other variants. It is worthy to note that we find the

output of 2-layer MLP changing dramatically in the train-

ing phase (i.e. important ratios), making the distribution of

(a) The average ratios on ImageNet validation set

(b) The average ratios on Webvision validation set

Figure 4. The averaged sample ratios in different layers of

ResNet50 on ImageNet and Webvision validation set. The y-axis

denotes the important ratios of different normalizers after the soft-

max operation (i.e. sum to 1). The x-axis shows different residual

blocks of ResNet50 and the image resolution in each block is rep-

resented as well. Different datasets learn distinct averaged ratios

for different normalizers in different layers of the network.

feature maps at different iterations changed too much and

leading to much poor accuracy.

4.6. Analysis of EN

Learning Dynamic of Ratios on Dataset. Since the pa-

rameters which are adopted to learn the important ratios λ

in EN layer are initialized as 0, the important ratios of each

sample in each layer have uniform values ( i.e. 1/3 ) at the

beginning of the model training. In the training phase, the

values of λ changes between 0 and 1. We first investigate

the averaged sample ratios in different layers of ResNet50

on ImageNet and Webvision validation set. We use the op-

timized model to calculate the ratios of each sample in each

layer, then the average ratios of each layer are calculated

over all of the validation set. According to Fig. 4, once the

training dataset is determined, the learned averaged ratios

are usually distinct for different datasets.

To analysis the changes of ratios in the training process,

Fig. 5 plots the leaning dynamic of ratios of 100 epochs for

53 normalization layers in ResNet50 . Each value of ratios

are averaged over all of the samples in ImageNet validation

set. From the perspective of the entire dataset, the changes

of ratios in each layer of EN are similar to those in SN,

whose values have smooth fluctuation in the training phase,

implying that distinct layers may need their own preference

of normalizers to optimize the model in different epochs.

Learning Dynamic of Ratios on Classes and Images.

One advantage of EN compared with SN is able to learn

important ratios to adaptive to different exemplars. To il-

lustrate such benefit of EN, we further plot the averaged

important ratios of different classes (i.e. w/ and w/o similar

appearance) in different layers in Fig. 6, as well as the im-

portant ratios of various image samples in different layers

in Fig. 7. We have the following observations.

(1) Different classes learn their own important ratios in

different layers. However, once the neural network is opti-
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Figure 5. The visualization of averaged sample ratios in 53 nor-

malization layers of EN-ResNet50 trained on ImageNet for 100 e-

poches. The y-axis of each sub-figure denotes the important ratios

of different normalizers. The x-axis shows the different training

epoches. Zoom in three times for the best view.

mized on a certain dataset (e.g. ImageNet), the trend of the

ratio changes of are similar in different epochs. For exam-

ple, in Fig. 6, since the Persian cat and Siamese cat have a

similar appearance, their leaned ratio curves are very close

and even coincident in some layers, e.g. Layer5 and Layer

10. While the ratio curves from the class of Cheeseburger

are far away from the above two categories. But in most lay-

ers, the ratio changes of different normalizers are basically

the same, only have the numerical nuances.

(2) For the images with the same class index but vari-

ous appearances, their learned ratios could also be distinct

in different layers. Such cases are shown in Fig. 7. All of

the images are sampled from confectionery class but with

various appearance, e.g. the exemplar of confectionery and

shelves for selling candy. According to Fig. 7, different im-

ages from the same category also obtained different ratios

in bottom, middle and top normalization layers.

5. Conclusion

In this paper, we propose Exemplar Normalization to

learn the linear combination of different normalizers with

a sample-based manner in a single layer. We show the ef-

fectiveness of EN on various computer vision tasks, such

as classification, detection and segmentation, demonstrate

its superior learning and generalization ability than static

learning-to-normalize method such as SN. In addition, the

interpretable visualization of learned important ratios re-

veals the properties of classes and datasets. The future work

will explore EN in more intelligent tasks. In addition, the

task-oriented constraint on the important ratios will also be

a potential research direction.
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Figure 6. The visualization of the important ratios of 3 categories

(i.e. Persian cat, Siamese cat and Cheeseburger ) in 6 different

layers of ResNet50. Each column indicates one of the normalizers.

Figure 7. The visualization of the important ratios of 3 samples

selected from Confectionery class in different layers of ResNet50.
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