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Abstract

We propose to estimate 3D human pose from multi-view

images and a few IMUs attached at person’s limbs. It op-

erates by firstly detecting 2D poses from the two signals,

and then lifting them to the 3D space. We present a ge-

ometric approach to reinforce the visual features of each

pair of joints based on the IMUs. This notably improves 2D

pose estimation accuracy especially when one joint is oc-

cluded. We call this approach Orientation Regularized Net-

work (ORN). Then we lift the multi-view 2D poses to the

3D space by an Orientation Regularized Pictorial Struc-

ture Model (ORPSM) which jointly minimizes the projec-

tion error between the 3D and 2D poses, along with the dis-

crepancy between the 3D pose and IMU orientations. The

simple two-step approach reduces the error of the state-

of-the-art by a large margin on a public dataset. Our

code will be released at https://github.com/microsoft/imu-

human-pose-estimation-pytorch.

1. Introduction

Estimating 3D poses from images has been a longstand-

ing goal in computer vision. With the development of deep

learning models, the recent approaches [5, 17, 2, 20, 21, 26]

have achieved promising results on the public datasets. One

limitation of the vision-based methods is that they cannot

robustly solve the occlusion problem.

A number of works are devoted to estimating poses from

wearable sensors such as IMUs [27, 22, 29, 30]. They suf-

fer less from occlusion since IMUs can provide direct 3D

measurements. For example, Roetenberg et al. [22] place

17 IMUs with 3D accelerometers, gyroscopes and magne-

tometers at the rigid bones. If the measurements are accu-

rate, the 3D pose is fully determined. In practice, however,

the accuracy is limited by a number of factors such as cali-

bration errors and the drifting problem.

Recently, fusing images and IMUs to achieve more ro-

bust pose estimation has attracted much attention [27, 28,

∗Work done when Zhe Zhang is an intern at Microsoft Research Asia.

Figure 1. Our approach gets accurate 3D pose estimations even

when severe self-occlusion occurs in the images.

6, 15]. They mainly follow a similar framework of building

a parametric 3D human model and optimizing its parame-

ters to minimize its discrepancy with the images and IMUs.

The accuracy of these approaches is limited mainly due to

the hard optimization problem.

We present an approach to fuse IMUs with images for ro-

bust pose estimation. It gets accurate estimations even when

occlusion occurs (see Figure 1). In addition, it outperforms

the previous methods [15, 28] by a notable margin on the

public dataset. We first introduce Orientation Regularized

Network (ORN) to jointly estimate 2D poses for multi-view

images as shown in Figure 2. ORN differs from the previ-

ous multiview methods [19] in that it uses IMU orientations

as a structural prior to mutually fuse the image features of

each pair of joints linked by IMUs. For example, it uses the

features of the elbow to reinforce those of the wrist based

on the IMU at the lower-arm.

The cross-joint-fusion allows to accurately localize the

occluded joints based on their neighbors. The main chal-

lenge is to determine the relative positions between each

pair of joints in the images, which we solve elegantly in the

3D space with the help of IMU orientations. The approach

significantly improves the 2D pose estimation accuracy es-

pecially when occlusion occurs.

In the second step, we estimate 3D pose from multi-view

2D poses (heatmaps) by a Pictorial Structure Model (PSM)

[12, 17, 2]. It jointly minimizes the projection error be-

tween the 3D and 2D poses, along with the discrepancy be-
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tween the 3D pose and the prior. The previous works such

as [17, 19] often use the limb length prior to prevent from

generating abnormal 3D poses. This prior is fixed for the

same person and does not change over time. In contrast, we

introduce an orientation prior that requires the limb orien-

tations of the 3D pose to be consistent with the IMUs. The

prior is complementary to the limb length and can reduce

the negative impact caused by inaccurate 2D poses. We

call this approach Orientation Regularized Pictorial Struc-

ture Model (ORPSM).

We evaluate our approach on two public datasets includ-

ing Total Capture [27] and H36M [9]. On both datasets,

ORN notably improves the 2D estimation accuracy espe-

cially for the frequently occluded joints such as ankle and

wrist, which in turn decreases the 3D pose error. Take the

Total Capture dataset as an example, on top of the 2D poses

estimated by ORN, ORPSM obtains a 3D position error of

24.6mm which is much smaller than the previous state-of-

the-art [19] (29mm) on this dataset. This result demon-

strates the effectiveness of our visual-inertial fusion strat-

egy. To validate the general applicability of our approach,

we also experiment on the H36M dataset which has differ-

ent poses from the Total Capture dataset. Since it does not

provide IMUs, we synthesize virtual limb orientations and

only show proof-of-concept results.

2. Related Work

Images-based We classify the existing image-based 3D

pose estimation methods into three classes. The first class is

model/optimization based [5, 13] which defines a 3D para-

metric human body model and optimizes its parameters to

minimize the discrepancy between model projections and

extracted image features. These approaches mainly differ

in terms of the used image features and optimization algo-

rithms. These methods generally suffer from the difficult

non-convex optimization which limits the 3D estimation ac-

curacy to a large extent in practice.

With the development of deep learning, some approaches

such as [20, 21, 16, 26, 10, 18] propose to learn a mapping

from images to 3D pose in a supervised way. The lack of

abundant ground truth 3D poses is their biggest challenge

for achieving desired performance on wild images. Zhou et

al. [33] propose a multi-task solution to leverage the abun-

dant 2D pose datasets for training. Yang et al. [32] use ad-

versarial training to improve the robustness of the learned

model. Another limitation of this type of methods is that

the predicted 3D poses by these methods are relative to their

pelvis joints. So they are not aware of their absolute loca-

tions in the world coordinate system.

The third class of methods such as [1, 3, 17, 2, 7, 11,

4, 19] adopt a two-step framework. It first estimates 2D

poses in each camera view and then recovers the 3D pose

in a world coordinate system with the help of camera pa-

rameters. For example, Tome et al. [25] build a 3D picto-

rial model and optimize the 3D locations of the joints such

that their projections match the detected 2D pose heatmaps

and meanwhile the spatial configuration of the 3D joints

matches the prior pose structure. Qiu et al. [19] propose to

first estimate 2D poses for every camera view, and then es-

timate the 3D pose by triangulation or by pictorial structure

model. This type of approaches has achieved the state-of-

the-art accuracy due to the significantly improved 2D pose

estimation accuracy.

IMUs-based There are a small number of works which

attempt to recover 3D poses using only IMUs. For example,

Slyper et al. [23] and Tautges et al. [24] propose to recon-

struct human pose from 5 accelerometers by retrieving pre-

recorded poses with similar accelerations from a database.

They get good results when the test sequences are present

in the training dataset. Roetenberg et al. [22] use 17 IMUs

equipped with 3D accelerometers, gyroscopes and magne-

tometers and all the measurements are fused using a Kalman

Filter. By achieving stable orientation measurements, the 17
IMUs can fully define the pose of the subject. Marcard et al.

[30] propose to exploit a statistical body model and jointly

optimize the poses over multiple frames to fit orientation

and acceleration data. One disadvantage of the IMUs-only

methods is that they suffer from drifting over time, and need

a large amount of careful engineering work in order to make

it work robustly in practice.

“Images+IMUs”-based Some works such as [29, 27, 28,

6, 15] propose to combine images and IMUs for robust 3D

human pose estimation. The methods can be categorized

into two classes according to how image-inertial fusion is

performed. The first class [15, 28, 29] estimate 3D human

pose by minimizing an energy function which is related to

both IMUs and image features. The second class [27, 6] es-

timate 3D poses separately from the images and IMUs, and

then combine them to get the final estimation. For exam-

ple, Trumble et al. [27, 6] propose a two stream network to

concatenate the pose embeddings separately derived from

images and IMUs for regressing the final pose.

Although the simple two-step framework has achieved

the state-of-the-art performance in the image only setting, it

is barely studied for “IMU+images”-based pose estimation

because it is nontrivial to leverage IMUs in the two steps.

Our main contribution lies in proposing two novel ways

of exploiting IMUs in the framework. More importantly,

we empirically show that this simple two-step approach can

significantly outperform the previous state-of-the-arts.

Our work differs from the previous works [27, 28, 6,

15, 14] in two-fold. First, instead of estimating 3D poses

or pose embeddings from images and IMUs separately and

then fusing them in a late stage, we propose to fuse IMUs
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Figure 3. Illustration of the cross-joint-fusion idea in ORN. (a) For a location YP in H1, we estimate its 3D points Pk lying on the line

defined by the camera center C1 and YP . Then based on the 3D limb orientation provided by IMU and the limb length, we get candidate

3D locations of J2 which are denoted as Qk. We project Qk to the image as YQk
and get the corresponding heatmap confidence. If the

confidence is high, J1 has high confidence being located at YP . (b) We enhance the initial confidence of J1 at YP with the confidence of

J2 at YQk
in all views. Similarly, we can fuse the heatmap of J2 using that of J1. (c) We show the skeleton model used in this work.

To resolve this problem, we propose to perform fusion

across multiple views simultaneously:

H1(YP )← λH1(YP ) +
(1− λ)

V

V
∑

v=1

max
k=1···K

Hv
2 (Y

v
Qk

),

(3)

where Y v
Qk

is the projection of Qk in the camera view v

and Hv
2 is the heatmap of J2 in view v. The result is that

the lines from multiple views will intersect at the correct

location. Consequently, the correct location will be en-

hanced most which resolves the ambiguity. See the fused

heatmap in Figure 4 for illustration. Another desirable ef-

fect of cross-view fusion is that it helps solve the occlusion

problem by fusing the features from multiple views because

a joint occluded in one view may be visible in other views.

This notably increases the joint detection rates.

3.2. Implementation

We use the network proposed in [31], referred to as

SimpleNet (SN) to estimate initial pose heatmaps. It uses

ResNet50 [8] as its backbone which was pre-trained on the

ImageNet classification dataset. The image size is 256×256
and the heatmap size is 64×64. The orientation regulariza-

tion module can either be trained end-to-end with SN, or

added to a already trained SN as a plug-in since it has no

learnable parameters. In this work, we train the whole ORN

end-to-end. We generate ground-truth pose heatmaps as the

regression targets and enforce l2 loss on all views before

and after feature fusion. In particular, we do not compute

losses for background pixels of the fused heatmap since the

background pixels may have been enhanced. The network is

trained for 15 epochs. The parameter λ is 0.5 in all exper-

iments. Other hyper-parameters such as learning rate and

decay strategy are the same as in [31].

4. ORPSM for 3D Pose Estimation

A human is represented by a number of joints J =
{J1, J2, · · · , JM}. Each J represents its 3D position in

a world coordinate system. Following the previous works

[12, 17, 2, 19], we use the pictorial model to estimate 3D

pose as it is more robust to inaccurate 2D poses. But differ-

ent from the previous works, we also introduce and evaluate

a novel limb orientation prior based on IMUs as will be de-

scribed in detail later. Each J takes values from a discrete

state space. An edge between two joints denotes their con-

ditional dependence such as limb length. Given a 3D pose

J and multi-view 2D pose heatmaps F , we compute the

posterior as follows

p(J |F) =
1

Z(F)

M
∏

i=1

φconf
i (Ji,F)

∏

(m,n)∈Elimb

ψlimb(Jm, Jn)

∏

(m,n)∈EIMU

ψIMU(Jm, Jn),

(4)

where Z(F) is the partition function, Elimb and EIMU

are sets of edges on which we enforce limb length and

orientation constraints, respectively. The unary potential

φconf
i (Ji,F) is computed based on 2D pose heatmaps F .

The pairwise potentialψlimb(Jm, Jn) andψIMU(Jm, Jn) en-

code the limb length and orientation constraints. We de-

scribe each term in detail as follows.

Discrete State Space We first estimate the 3D location

of the root joint by triangulation based on its 2D locations

detected in all views. Note that this step is usually very ac-

curate because the root joint can be detected in most times.

Then the state space of the 3D pose is within a 3D bound-

ing volume centered at the root joint. The edge length of

the volume is set to be 2000mm which is large enough to

cover every body joint. The volume is discretized by an

N ×N ×N regular grid G. Each joint can take one of the

bins of the grid as its 3D location. Note that all body joints

share the same state space G which consists of N3 discrete

locations (bins).
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Table 1. The 2D pose estimation accuracy (PCKh@t) on the Total Capture Dataset. “SN” means SimpleNet which is the baseline. ORNsame

and ORN, respectively, represent that the same-view and cross-view fusion are used. “Mean (six)” is the average result over the six joint

types. “Others” is the average result over the rest of the joints. “Mean (All)” is the result over all joints.

Methods PCKh@ Hip Knee Ankle Shoulder Elbow Wrist Mean (Six) Others Mean (All)

SN 1/2 99.3 98.3 98.5 98.4 96.2 95.3 97.7 99.5 98.1

ORNsame 1/2 99.4 99.0 98.8 98.5 97.7 96.7 98.3 99.5 98.6

ORN 1/2 99.6 99.2 99.0 98.9 98.0 97.4 98.7 99.5 98.9

SN 1/6 97.5 92.3 92.5 78.3 80.8 80.0 86.9 95.4 89.1

ORNsame 1/6 97.2 94.0 93.3 78.1 83.5 82.0 88.0 95.4 89.9

ORN 1/6 97.7 94.8 94.2 81.1 84.7 83.6 89.3 95.4 90.9

SN 1/12 87.6 67.0 68.6 47.4 50.0 49.3 61.7 78.1 65.8

ORNsame 1/12 81.2 70.1 68.0 43.9 51.6 50.1 60.8 78.1 65.2

ORN 1/12 85.3 71.6 70.6 47.7 53.2 51.9 63.4 78.1 67.1

Unary Potential Every body joint hypothesis, i.e., a bin

in the grid G, is defined by its 3D position. We project it to

the pixel coordinate system of all camera views using the

camera parameters, and get the corresponding joint con-

fidence/response from F . We compute the average confi-

dence/response over all camera views as the unary potential

for the hypothesis.

Limb Length Potential For each pair of joints (Jm,Jn)

in the edge set Elimb, we compute the average distance ˜lm,n

on the training set as limb length prior. During inference,

the limb length pairwise potential is defined as:

ψlimb(Jm, Jn) =

{

1, if |lm,n − ˜lm,n| ≤ ǫ,
0, otherwise

, (5)

where lm,n is the distance between Jm and Jn. The pair-

wise term favors 3D poses having reasonable limb lengths.

In our experiments, ǫ is set to be 150mm.

Limb Orientation Potential We compute the dot product

between the limb orientations of the estimated pose and the

IMU orientations as the limb orientation potential

ψIMU(Jm, Jn) =
Jm − Jn
‖Jm − Jn‖2

· om,n, (6)

where om,n is the orientation (represented as a directional

vector) of the limb measured by the IMU. This term favors

poses whose limb orientations are consistent with the IMUs.

We also experimented with the hard orientation constraint

similar to what we did for limb length, but this soft limb

orientation constraint gets better performance. A 3D pose

estimator without/with orientation potential will be termed

as PSM and ORPSM, respectively.

Inference We maximize the posterior probability, i.e. Eq.

(4), over the discrete state space by the dynamic program-

ming algorithm. In general, the complexity grows quadrat-

ically. In order to improve the speed, we adopt a recursive
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Figure 4. Three sample heatmaps estimated by ORN. The initially

estimated heatmaps without fusion are inaccurate. After fusing

multi-view features, the “Enhanced Heatmap” localizes the correct

joints. Note there are blurred lines in the “Enhanced Heatmap”

with each corresponding to the confidence contributed from one

camera view. The lines intersect at the correct location.

variant of PSM [19] which iteratively refines the 3D poses.

In practice, it takes about 0.15 seconds to estimate one 3D

pose on a single Titan Xp GPU.

5. Datasets and Metrics

Total Capture [27] To the best of our knowledge, this is

the only benchmark providing images, IMUs and ground

truth 3D poses. It places 8 cameras in the capture room

to record the human motion. We use four of them (1, 3, 5
and 7) in our experiments for efficiency reasons. The per-

formers wear 13 IMUs. We use eight of them as shown in

Figure 3 (c). There are five subjects performing four ac-

tions including Roaming(R), Walking(W), Acting(A) and

Freestyle(FS) with each repeating 3 times. Following the

previous work [27], we use Roaming 1,2,3, Walking 1,3,
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Figure 6. Sample 3D poses estimated by our approach and noFusion. We project the estimated 3D poses to the images and draw the

skeletons. Left and right limbs are drawn in green and orange colors, respectively. (a-c) show examples when our method improves over

noFusion. (d-f) show three failure cases. These rare cases mainly happen when both joints of a limb have large errors.

Table 2. 3D pose estimation errors (mm) of different variants of our approach on the Total Capture dataset. “Mean (six)” is the average

error over the six joint types. “Others” is the average error over the rest of the joints. “Mean (All)” is the average error over all joints.

2D 3D Hip Knee Ankle Shoulder Elbow Wrist Mean (Six) Others Mean (All)

SN PSM 17.2 35.7 41.2 50.5 54.8 56.8 37.1 20.3 28.3

ORN PSM 17.4 29.9 35.2 49.6 44.2 45.1 32.8 20.4 25.4

SN ORPSM 18.3 25.8 34.0 44.8 44.2 49.8 32.1 19.9 25.5

ORN ORPSM 18.5 24.2 30.1 44.8 40.7 43.4 30.2 19.8 24.6

6.2. 3D Pose Estimation

We first evaluate our 3D pose estimator through a num-

ber of ablation studies. Then we compare our approach

to the state-of-the-arts. Finally, we present results on the

H36M dataset validating the generalization capability of the

proposed approach.

Ablation Study We denote the baseline which uses SN

and PSM to estimate 2D and 3D pose as noFusion base-

line. The main results are shown in Table 2. First, using

ORN consistently decreases the 3D error no matter what 3D

pose estimators we use. In particular, the improvement on

the elbow and wrist joint is as large as 10mm when we use

PSM as the 3D estimator. This significant error reduction

is attributed to the improved 2D poses. Figure 6 (a-c) visu-

alize three typical examples where ORN gets better results:

we project the estimated 3D poses to the images and draw

the skeletons. It is guaranteed that if the 2D locations are

correct for more than one view, then the 3D joint location

is at the correct position. We also plot the 3D error of ev-

ery testing sample in Figure 5. Our approach improves the

accuracy for most cases because the orange line is mostly

below zero. See the caption of the figure for the meanings

of the lines. In addition, we can see that the improvement is

larger when the noFusion baseline has large errors. There

are a small number of cases where fusion does not improve

joint detection results as shown in Figure 6 (d-f).
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Table 3. 3D pose estimation errors MPJPE (mm) of different methods on the Total Capture dataset. “Aligned” means whether we align the

estimated 3D poses to the ground truth poses by Procrustes.

Approach IMUs Temporal Aligned Subjects(S1,2,3) Subjects(S4,5) Mean

W2 A3 FS3 W2 A3 FS3

PVH [27] 48.3 94.3 122.3 84.3 154.5 168.5 107.3

Malleson et al. [15] X X - - 65.3 - 64.0 67.0 -

VIP [28] X X X - - - - - - 26.0

LSTM-AE [26] X 13.0 23.0 47.0 21.8 40.9 68.5 34.1

IMUPVH [6] X X 19.2 42.3 48.8 24.7 58.8 61.8 42.6

Qiu et al. [19] 19.0 21.0 28.0 32.0 33.0 54.0 29.0

SN + PSM 14.3 18.7 31.5 25.5 30.5 64.5 28.3

SN + PSM X 12.7 16.5 28.9 21.7 26.0 59.5 25.3

ORN + ORPSM X 14.3 17.5 25.9 23.9 27.8 49.3 24.6

ORN + ORPSM X X 12.4 14.6 22.0 19.6 22.4 41.6 20.6

Table 4. 3D pose estimation error (mm) on the H36M dataset. We use virtual IMUs in this experiment. We show results for the six joints

which are affected by IMUs. “Mean (six)” is the average error over the six joint types. “Others” is the average error over the rest of the

joints. “Mean (All)” is the average error over all joints.

Methods Hip Knee Ankle Shoulder Elbow Wrist Mean (Six) Others Mean (All)

noFusion (SN + PSM) 23.2 28.7 49.4 29.1 28.4 32.3 31.9 18.3 27.9

ours (ORN + ORPSM) 20.6 18.6 28.2 25.1 21.8 24.2 23.1 18.3 21.7

Second, from the second and third rows of Table 2, we

can see that using ORPSM alone achieves a similar 3D er-

ror as ORN alone. This means 3D fusion is related to 2D

fusion in some way— although 3D fusion does not directly

improve the 2D heatmap quality, it uses 3D priors to select

better joint locations having both large responses as well as

small discrepancy with respect to the prior structures. But

in some cases, for example, when the responses at the cor-

rect locations are too small, using the 3D prior is not suf-

ficient. This is verified by the experimental results in the

fourth row — if we enforce 2D and 3D fusion simultane-

ously, the error further decreases to 30.2mm. It suggests

the two components are actually complementary.

State-of-the-arts Finally we compare our approach to

the state-of-the-arts on the Total Capture dataset. The re-

sults are shown in Table 3. First, we can see that IMUPVH

[6] which uses IMUs even gets worse results than LSTM-

AE [26] which does not use IMUs. The results suggest

that getting better visual features is actually more effective

than performing late fusion of the (possibly inaccurate) 3D

poses obtained from images and IMUs, respectively. Our

approach, which uses IMUs to improve the visual features,

also outperforms [6] by a large margin.

The error of the state-of-the-art is about 29mm [19]

which is larger than 24.6mm of ours. This validates the ef-

fectiveness of our IMU-assisted early visual feature fusion.

Note that the error of VIP [28] is obtained when the 3D

pose estimations are aligned to ground truth which should

be compared to 20.6mm of our approach.

We notice that the error of our approach is slightly larger

than [26] for the “W2 (walking)” action. We tend to think it

is because LSTM can get significant benefits when it is ap-

plied to periodic actions such as “walking”. This is also ob-

served independently in another work [6]. Besides, the error

14.3mm for “W2” of Subject 1,2,3 is not further reduced af-

ter fusion since noFusion method has already achieved ex-

traordinarily high accuracy.

Generalization To validate the wide applicability of our

approach, we conduct experiments on the H36M dataset [9].

The results of different methods are shown in Table 4. We

can see that our approach (ORN+ORPSM) consistently out-

performs the baseline noFusion which validates its general

applicability. In particular, the improvement is significant

for the Ankle joint which is often occluded. Since we use

the ground truth IMU orientations in this experiment, the

results are not directly comparable to other works.

7. Summary and Future Work

We present an approach for fusing visual features

through IMUs for 3D pose estimation. The main difference

from the previous efforts is that we use IMUs in a very early

stage. We evaluate the approach through a number of abla-

tion studies, and observe consistent improvement resulted

from the fusion. As the readings from the IMUs usually

have noises, our future work will focus on learning a relia-

bility indicator, for example based on temporal filtering, for

each sensor to guide the fusion process.
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