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Figure 1: 3D human bodies with various shapes and poses are automatically generated to interact with the scene. Appropriate

human-scene contact is encouraged, and human-scene surface interpenetration is discouraged.

Abstract

We present a fully automatic system that takes a 3D scene

and generates plausible 3D human bodies that are posed

naturally in that 3D scene. Given a 3D scene without peo-

ple, humans can easily imagine how people could interact

with the scene and the objects in it. However, this is a chal-

lenging task for a computer as solving it requires that (1)

the generated human bodies to be semantically plausible

within the 3D environment (e.g. people sitting on the sofa

or cooking near the stove), and (2) the generated human-

scene interaction to be physically feasible such that the hu-

man body and scene do not interpenetrate while, at the same

time, body-scene contact supports physical interactions. To

that end, we make use of the surface-based 3D human model

SMPL-X. We first train a conditional variational autoen-

coder to predict semantically plausible 3D human poses

conditioned on latent scene representations, then we further

refine the generated 3D bodies using scene constraints to

enforce feasible physical interaction. We show that our ap-

proach is able to synthesize realistic and expressive 3D hu-

man bodies that naturally interact with 3D environment. We

perform extensive experiments demonstrating that our gen-

erative framework compares favorably with existing meth-

ods, both qualitatively and quantitatively. We believe that

our scene-conditioned 3D human generation pipeline will

be useful for numerous applications; e.g. to generate train-

ing data for human pose estimation, in video games and in

VR/AR. Our project page for data and code can be seen at:

https://vlg.inf.ethz.ch/projects/PSI/.

∗ This work was performed when Y. Z. and S. T. were at MPI-IS and

University of Tübingen.
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1. Introduction

In recent years, many high-quality datasets of 3D indoor

scenes have emerged such as Matterport3D [3], Replica

[42], and Gibson [47], which employ 3D scanning and

reconstruction technologies to create digital 3D environ-

ments. Also, virtual robotic agents exist inside of 3D en-

vironments such as Gibson [47] and the Habitat simulator

[32]. These are used to develop scene understanding meth-

ods from embodied views, thus providing platforms for in-

door robot navigation, AR/VR, computer games and many

other applications. Despite this progress, a significant limi-

tation of these environments is that they do not contain peo-

ple. The reason such worlds contain no people is that there

are no automated tools to generate realistic people interact-

ing realistically with 3D scenes, and manually doing this re-

quires significant artist effort. Consequently, our goal is to

automatically generate natural and realistic 3D human bod-

ies in the scene. The generated human bodies are expected

to be physically plausible (e.g. neither floating nor inter-

penetrating), diverse, and posed naturally within the scene.

This is a step towards equipping high-quality 3D scenes and

simulators (e.g. Matterport3D [3] and Habitat [32]) with se-

mantically and physically plausible 3D humans, and is es-

sential for numerous applications such as creating synthetic

datasets, VR/AR, computer games, etc.

Our solution is inspired by how humans infer plausi-

ble interactions with the environment. According to the

studies of [49], humans tend to propose interaction plans

depending on the structure and the semantics of objects.

Afterwards, to realize the interaction plan, physical rules

will apply to determine the detailed human-object configu-

ration, while guaranteeing that the human body can neither

float in the air nor collide into the objects. Therefore, our

method has two steps: (1) We propose a generative model

of human-scene interaction using a conditional variational

autoencoder (CVAE) [39] framework. Given scene depth

and semantics, we can sample from the CVAE to obtain

various human bodies. (2) Next, we transform the gener-

ated 3D human body to the world coordinates and perform

scene geometry-aware fitting, so as to refine the human-

scene interaction and eliminate physically implausible con-

figurations (e.g. floating and collision).

We argue that realistically modeling human-scene inter-

actions requires a realistic model of the body. Previous stud-

ies on scene affordance inference and human body synthe-

sis in the literature, like [28, 46, 57], represent the body as

a 3D stick figure or coarse volume. This prevents detailed

reasoning about contact such as how the leg surface contacts

the sofa surface. Without a model of body shape, it is not

clear whether the estimated body poses correspond to plau-

sible human poses. To overcome these issues, we use the

SMPL-X model [36], which takes a set of low-dimensional

body pose and shape parameters and outputs a 3D body

mesh with important details like the fingers. Since SMPL-

X is differentiable, it enables straightforward optimization

of human-scene contact and collision prevention [18]. In

addition, we incorporate the body shape variation in our ap-

proach, so that our generated human bodies have various

poses and shapes.

To train our method we exploit the PROX-Qualitative

dataset [18], which includes 3D people captured moving

in 3D scenes. We extend this by rendering images, scene

depth, and semantic segmentation of the scene from many

virtual cameras. We conduct extensive experiments to eval-

uate the performance of different models for scene-aware

3D body mesh generation. For testing, we extract 7 dif-

ferent rooms from the Matterport3D [3] dataset and use a

virtual agent in the Habitat Simulator [32] to capture scene

depth and semantics from different views. Based on prior

work, e.g. [28, 46], we propose three metrics to evaluate the

diversity, the physical plausibility, and the semantic plausi-

bility of our results. The experimental results show that our

solution effectively generates 3D body meshes in the scene,

and outperforms the modified version of a state-of-the-art

body generation method [28]. We will make our datasets

and evaluation metrics available to establish a benchmark.

Our trained model learns about the ways in which 3D

people interact with 3D scenes. We show how to leverage

this in the form of a scene-dependent body pose prior and

show how to use this to improve 3D body pose estimation

from RGB images. In summary, our contributions are as

follows: (1) We present a solution to generate 3D human

bodies in scenes, using a CVAE to generate a body mesh

with semantically plausible poses. We follow this with

scene-geometry-aware fitting to refine the human-scene in-

teraction. (2) We extend and modify two datasets, and pro-

pose three evaluation metrics for scene-aware human body

generation. We also modify the method of [28] to generate

body meshes as the baseline (see Sec. 4.1.2). The experi-

mental results show that our method outperforms the base-

line. (3) We show that our human-scene interaction prior is

able to improve 3D pose estimation from RGB images.

2. Related work

Multiple studies focus on placing objects in an image

so that they appear natural [11, 27, 29, 34]. For example,

[11, 43, 45] use contextual information to predict which ob-

jects are likely to appear at a given location in the image.

Lin et al. [29] apply homography transformations to 2D ob-

jects to approximate the perspectives of the object and back-

ground. Tan et al. [44] predict likely positions for people in

an input image and retrieve a person that semantically fits

into the scene from a database. Ouyang et al. [34] use a

GAN framework to synthesize pedestrians in urban scenes.

Lee et al. [27] learn where to place objects or people in a

semantic map and then determine the pose and shape of the
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respective object. However, all these methods are limited

to 2D image compositing or inpainting. Furthermore, the

methods that add synthetic humans do not take interactions

between the humans and world into account.

To model human-object or human-scene interactions it

is beneficial to know which interactions are possible with

a given object. Such opportunities for interactions are re-

ferred to as affordances [14] and numerous works in com-

puter vision have made use of this concept [7, 8, 15, 17,

21, 25, 24, 28, 38, 46, 56, 57]. Object affordance is of-

ten represented by a human pose when interacting with a

given object [8, 15, 17, 21, 28, 38, 46, 56, 57]. For exam-

ple, [15, 17, 57] search for valid positions of human poses

in 3D scenes. Delataire et al. [8] learn associations between

objects and human poses in order to improve object recogni-

tion. Given a 3D model of an object Kim et al. [21] predict

human poses interacting with the given object. Given an

image of an object Zhu et al. [56] learn a knowledge base

to predict a likely human pose and a rough relative loca-

tion of the object with respect to the pose. Savva et al. [38]

learn a model connecting human poses and arrangement of

objects in a 3D scene that can generate snapshots of object

interaction given a corpus of 3D objects and a verb-noun

pair. Monszpart et al. [33] use captured human motion to

infer the objects in the scene and their arrangement. Sava

et al. [37] predict action heat maps that highlight the likeli-

hood of an action in the scene. Recently, Chen et al. [5] pro-

pose to tackle scene parsing and 3D pose estimation jointly

and to leverage their coupled nature to improve scene un-

derstanding. Chao et al. [4] propose to train multiple con-

trollers to imitate simple motions from mocap, and then use

hierarchical reinforcement learning (RL) to achieve higher-

level interactive tasks. The work of Zanfir et al. [50] first

estimates the ground plane in the image, and requires a fore-

ground person image as input. The above methods do not

use a realistic body model to represent natural and detailed

human-environment interactions.

Recently, Wang et al. [46] published an affordance

dataset large enough to obtain reliable estimates of the prob-

abilities of poses and to train neural networks on affordance

prediction. The data is collected from multiple sitcoms and

contains images of scenes with and without humans. The

images with humans contain rich behavior of humans in-

teracting with various objects. Given an image and a lo-

cation as input, Wang et al. first predict the most likely

pose from a set of 30 poses. This pose is deformed and

scaled by a second network to fit it into the scene. Li et

al. [28] extend this work to automatically estimate where to

put people and to predict 3D poses. To acquire 3D training

data they map 2D poses to 3D poses and place them in 3D

scenes from the SUNCG dataset [40, 51]. This synthesized

dataset is cleaned by removal of all predictions intersect-

ing with the 3D scene or without sufficient support for the

body. The methods of [28, 46] are limited in their gener-

alization, since they require a large amount of paired data

and manual cleaning of the pose detections. Such a large

amount of data might be hard to acquire for scenes that are

less frequently covered by sitcoms, or in the case of [28] in

3D scene datasets. Furthermore, both methods only predict

poses represented as stick figures. Such a representation is

hard to validate visually, lacks details, and can not directly

be used to generate realistic synthetic data of humans inter-

acting with an environment.

3. Methods

3.1. Preliminaries

3D scene representation. We represent the scene from the

view of an embodied agent, as in the Habitat simulator [32].

According to [52], which indicates that the depth and se-

mantic segmentation are the most valuable modalities for

scene understanding, we capture scene depth and semantics

as our scene representation. For each view, we denote the

stack of depth and semantics as xs, the camera perspective

projection from 3D to 2D as π(·), and its inverse opera-

tion as π−1(·) for 3D recovery. Our training data, xs, are

generated from Habitat and we resize this to 128× 128 for

compatibility with our network; we retain the aspect ratio

and pad with zeros where needed. The 3D-2D projection

π(·) normalizes the 3D coordinates to the range of [−1, 1],
using the camera intrinsics and the maximal depth value.

Note that each individual xs is from a single camera view.

We do not use multi-view data in our work.

3D human body representation. We use SMPL-X [36] to

represent the 3D human body. SMPL-X can be regarded as

a function M(·), mapping a group of low-dimensional body

features to a 3D body mesh. The 3D body mesh has 10475

vertices and a fixed topology. In our study, we use the body

shape feature β ∈ R
10, the body pose feature θb ∈ R

32,

and the hand pose feature θh ∈ R
24. The body pose feature

θb is represented in the latent space of VPoser [36], which

is a variational autoencoder trained on a large-scale motion

capture dataset, AMASS [31]. The global rotation R, i.e.,

the rotation of the pelvis, is represented by a 6D continuous

rotation feature [55], which facilitates back-propagation in

our trials. The global translation t is represented by a 3D

vector in meters. The global rotation and translation is with

respect to the camera coordinates. Based on the camera ex-

trinsics, Tw
c , one can transform the 3D body mesh to the

world coordinates.

We denote the joint body representation as xh :=
(t, R, β, θb, θh)

T ∈ R
75; i.e., the concatenation of individ-

ual body features. When processing the global and the local

features separately as in [28], we denote the global transla-

tion as x
g
h, and the other body features as xl

h.
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Figure 2: Network diagrams of our models. The trape-

zoids denote the scene encoders, which are fine-tuned from

a pre-trained ResNet18 network. The blue rectangles de-

note fully-connected (fc) layers. In the residual blocks,

Leaky-ReLU [30] is employed between fc layers. The or-

ange dashed arrows denote the sampling operation in the

VAE re-parameterization trick [23]. The blocks with “cat”

denote the feature concatenation operation.

3.2. Scene contextaware Human Body Generator

3.2.1 Network architecture

We employ a conditional variational autoencoder (CVAE)

[39] framework to model the probability p(xh|xs). When

inferring all body features jointly, we propose a one-stage

(S1) network. When inferring x
g
h and xl

h successively, we

factorize the probability as p(xl
h|x

g
h, xs)p(x

g
h|xs) and use a

two-stage (S2) network. The network architectures are il-

lustrated in Fig. 2. Referring to [28], our scene encoder is

fine-tuned from the first 6 convolutional layers in ResNet18

[19], which is pre-trained on ImageNet [9]. The human fea-

ture xh is first lifted to a high dimension (256 in our study)

via a fully-connected layer, and then concatenated with the

encoded scene feature. In the two-stage model, the two

scene encoders are both fine-tuned from ResNet18, but do

not share parameters. After the first stage, the reconstructed

body global feature x
g,rec
h is further encoded, and is used in

the second stage to infer the body local features.

3.2.2 Training loss

The entire training loss can be formulated as

L = Lrec + αklLKL + αvpLVPoser

+ αcontLcontact + αcollLcollision,
(1)

where the terms denote the reconstruction loss, the Kull-

back–Leibler divergence, the VPoser loss, the human-scene

contact loss and the human-scene collision loss, respec-

tively. The set of α’s denotes the loss weights. For sim-

plicity, we denote αcontLcontact + αcollLcollision as LHS ,

implying the loss for human-scene interaction.

Reconstruction loss Lrec: It is given by Lrec =

|xg
h − x

g,rec
h |+ |π(xg

h)− π(xg,rec
h )|

2
+ |xl

h − x
l,rec
h |, (2)

in which the global translation, the projected and normal-

ized global translation, and the other body features are con-

sidered separately. We apply this reconstruction loss in both

our S1 model and our S2 model.

KL-Divergence LKL: Denoting our VAE encoder as

q(zh|xh), the KL-divergence loss is given by

LKL = DKL (q(zh|xh) || N (0, I)) . (3)

Correspondingly, in our S2 model the KL-divergence loss

is given by LKL =

DKL (q(zgh|x
g
h)||N (0, I)) +DKL

(

q(zlh|x
l
h)||N (0, I)

)

.

(4)

We use the re-parameterization trick in [23] so that the KL

divergence is closed form.

VPoser loss LV Poser: Since VPoser [36] attempts to en-

code natural poses with a normal distribution in its latent

space, like in [36] and [18], we employ the VPoser loss, i.e.

LV Poser = |θrecb |2, (5)

to encourage the generated bodies to have natural poses.

Collision loss Lcollision: Based on the model output xrec
h ,

we generate the body mesh and transform it to world co-

ordinates. Then, we compute the negative signed-distance

values at the body mesh vertices given the negative signed

distance field (SDF) Ψ−
s (·), and minimize

Lcoll = E
[

|Ψ−
s (Tw

c M(xrec
h )) |

]

. (6)

indicating the average of absolute values of negative SDFs

on the body.

Contact loss Lcontact: Following [18], we encourage con-

tact between the body mesh and the scene mesh. Hence, the

contact loss is written as

Lcontact =
∑

vc∈C(Tw
c
M(xrec

h
))

min
vs∈Ms

ρ(|vc − vs|), (7)

in which C(·) denotes selecting the body mesh vertices for

contact according to the annotation in [18], Ms denotes

the scene mesh, and ρ(·) denotes the Geman-McClure er-

ror function [13] for down-weighting the influence of scene

vertices far away from the body mesh.

6197



3.3. Scene geometryaware Fitting

We refine the body meshes with an optimization step

similar to [18]. It encourages contact and helps to avoid

inter-penetration between the body and the scene surfaces,

while not deviating much from the generated pose. Let the

generated human body configuration be x0
h. To refine this,

we minimize a fitting loss taking into account the scene ge-

ometry, i.e.

Lf (xh) = |xh − x0
h|+ α1Lcontact + α2Lcollision

+ α3LV Poser,
(8)

in which the α’s denote the loss weights; the loss terms are

defined above.

3.4. Implementation

Our implementation is based on PyTorch v1.2.0 [35].

For the Chamfer distance in the contact loss we use the

same implementation as [10, 16]. For training, we set

{αkl, αvp} = {0.1, 0.001} in Eq. 1 for both our S1

and S2 models, in which αkl increases linearly in an an-

nealing scheme [1]. When additionally using LHS , we

set {αcont, αcoll} = {0.001, 0.01}, and enable it after

75% training epochs to improve the interaction model-

ing. We use the Adam optimizer [22] with the learning

rate 3e−4, and terminate training after 30 epochs. For

the scene geometry-aware fitting, we set {α1, α2, α3} =
{0.1, 0.5, 0.01} in all cases. Our data, code and models will

be available for research purposes.

4. Experiments 1

4.1. Sceneaware 3D Body Mesh Generation

4.1.1 Datasets

PROX-E: The PROX-E dataset (pronounced “proxy”) is

extended from the PROX-Qualitative (PROX-Q) dataset

[18], which records how people interact with various in-

door environments. In PROX-Q, 3D human body meshes

in individual frames are estimated by fitting the SMPL-X

body model to the RGB-D data subject to scene constraints

[18]. We use this data as pseudo-ground truth in our study,

and extend PROX-Q in three ways: (1) We manually build

up virtual walls, floors and ceilings to enclose the original

open scans and simulate real indoor environments. (2) We

manually annotate the mesh semantics following the object

categorization of Matterport3D [3]. (3) We down-sample

the original recordings and extract frames every 0.5 sec-

onds. In each frame, we set up virtual cameras with various

poses to capture scene depth and semantics. The optical

axis of each virtual camera points towards the human body,

1Please see appendix for more details.
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Figure 3: Illustration of how we extend the PROX-

Qualitative dataset [18] to PROX-E. In the rows of PROX-

Qualitative, a video frame, a body-scene mesh and a depth

map are shown from left to right. In the rows of PROX-E,

the virtual camera setting, the mesh with semantics, and the

completed depth map are shown from left to right.

and then Gaussian noise is applied on the camera transla-

tion. To avoid severe occlusion, all virtual cameras are lo-

cated above half of the room height and below the virtual

ceiling. As a result, we obtain about 70K frames in total.

We use ‘MPH16’, ‘MPH1Library’, ‘N0SittingBooth’ and

‘N3OpenArea’ as test scenes, and use samples from other

scenes for training. See Fig. 3.

MP3D-R: This name denotes “rooms in Matterport3D [3]”.

From the architecture scans of Matterport3D, we extract 7

different rooms according to the annotated bounding boxes.

In addition, we create a virtual agent using the Habitat simu-

lator [32], and manipulate it to capture snapshots from var-

ious views in each room. We employ the RGB, the depth

and the semantics sensor on the agent. These sensors are of

height 1.8m from the ground, and look down at the scene;

these are in a similar range as the virtual cameras in PROX-

E. For each snapshot, we also record the extrinsic and in-

trinsic parameters of the sensors. As a result, we obtain

32 snapshots in all 7 rooms. Moreover, we follow the same

procedure as in PROX-Qualitative [18] to calculate the SDF

of the scene mesh. Our MP3D-R is illustrated in Fig. 4.

4.1.2 Baseline

To our knowledge, the most related work is Li et al. [28],

which proposes a generative model to put 3D body stick

figures into images2. For fair comparison, we modify their

method to use SMPL-X to generate body meshes in 3D

2The data and the pre-trained model in [28] are based on SUNCG [41],

and not publicly available.
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Figure 4: The left column shows two rooms in MP3D-R.

The right column shows snapshots captured by the Habitat

virtual agent [32] from different views, which contain RGB

images, depth maps and scene semantics.

scenes. Specifically, we make the following modifications:

(1) We change the scene representation from RGB (or RGB-

D) to depth and semantics like ours to improve generaliza-

tion. (2) During training, we perform K-means to cluster

the VPoser pose features of training samples to generate

the pose class. (3) The where module is used to infer the

global translation, and the what module infers other SMPL-

X parameters. (4) For training the geometry-aware discrim-

inator, we project the body mesh vertices, rather than the

stick figures, to the scene depth maps. We train the modified

baseline model using PROX-E with the default architecture

and loss weights in [28]. Moreover, we combine the modi-

fied baseline method with our scene geometry-aware fitting

in our experiments.

4.1.3 Evaluation: representation power

Here we use PROX-E to investigate how well the pro-

posed network architectures represent human-scene interac-

tion. We train all models using samples from virtual cam-

eras in training scenes, validate them using samples from

real cameras in training scenes, and test them using samples

from real cameras in test scenes. For quantitative evalua-

tion, we feed individual test samples to our models, and re-

port the mean of the reconstruction errors, and the negative

evidenced lower bound (ELBO), i.e. −logP (X), which is

the sum of the reconstruction error and the KL divergence.

For fair comparison, the reconstruction error of all models

is based on Lrec in Eq. 2. As shown in Tab. 1, our models

outperform the baseline model on both validation and test

set by large margins. The metrics on the validation and the

test sets are comparable, indicating that our virtual camera

approach is effective in preventing severe over-fitting on the

seen environments.

Table 1: Comparison between models, in which “+LHS”

denotes the model is trained with that human-scene interac-

tion loss (Sec. 3.2.2). The best results are in boldface.

rec. err. −logP (x)

model val test val test

baseline [28] 0.52 0.48 0.98 0.72

S1 0.22 0.25 0.23 0.41

S1 + LHS 0.16 0.24 0.27 0.36

S2 0.24 0.70 0.25 0.49

S2 + LHS 0.20 0.23 0.30 0.39

4.1.4 Evaluation: 3D body mesh generation

Given a 3D scene, our goal is to generate diverse, physically

and semantically plausible 3D human bodies. Based on [28,

46], we propose to quantitatively evaluate our method using

a diversity metric and a physical metric. Also, we perform

a user perceptual study to measure the semantic plausibility

of the generated human bodies.

The quantitative evaluation is based on the PROX-E and

the MP3D-R dataset. When testing on PROX-E, we train

our models using all samples in the training scenes, and

generate body meshes using the real camera snapshots in

the testing scenes. For each individual model and each test

scene, we randomly generate 1200 samples, and hence ob-

tain 4800 samples. When testing on MP3D-R, we use all

samples from PROX-E to train the models. For each snap-

shot and each individual model, we randomly generate 200

samples, and hence obtain 6400 samples.

(1) Diversity metric: This metric aims to evaluate how di-

verse the generated human bodies are. Specifically, we em-

pirically perform K-means to cluster the SMPL-X parame-

ters of all the generated human bodies to 20 clusters. Then,

we compute the entropy (a.k.a Shannon index, a type of di-

versity index) of the cluster ID histogram of all the samples.

We also compute the average size of all the clusters.

A higher value indicates that the generated human bod-

ies are more diverse in terms of their global positions, their

body shapes and poses. We argue that this metric is essen-

tial for evaluating the quality of the generated bodies and

should always be considered together with other metrics.

For instance, a posterior-collapsed VAE, which always gen-

erates an identical body mesh, could lead to a low diversity

score but superior performance according to the physical

metric and the semantic metric.

The results are shown in Tab. 2. Overall, our methods

consistently outperform the baseline. Notably, our methods

increase the average cluster size of the generated samples by

large margins, indicating that the generated human bodies

are much more diverse than those from the baseline.

(2) Physical metric: From the physical perspective, we

evaluate the collision and the contact between the body

mesh and the scene mesh. Given a scene SDF and a SMPL-
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Table 2: Comparison between different models according

to the diversity metric. The best results for each metric

are in boldface. “S1” and “S2” denote our stage-1 and

stage-2 architecture, respectively. “+ LHS” denotes that the

model is trained with the human-scene interaction loss (see

Sec. 3.2.2). “+Lf” denotes the results are after the scene-

aware fitting process (see Sec. 3.3).

cluster ID entropy cluster size average

model PROX-E MP3D-R PROX-E MP3D-R

baseline [28] 2.89 2.93 1.49 1.84

S1 2.96 2.99 2.51 2.81

S1 + LHS 2.93 2.99 2.40 2.73

S2 2.97 2.91 2.46 2.85

S2 + LHS 2.96 2.89 2.22 2.90

baseline + Lf 2.93 2.92 1.52 1.94

S1 + Lf 2.97 2.98 2.53 2.86

S1 + LHS + Lf 2.94 2.96 2.43 2.79

S2 + Lf 2.94 2.87 2.48 2.91

S2 + LHS + Lf 2.91 2.90 2.26 2.95

X body mesh, we propose a non-collision score, which is

calculated as the number of body mesh vertices with pos-

itive SDF values divided by the number of all body mesh

vertices (10475 for SMPL-X). Simultaneously, if any body

mesh vertex has a non-positive SDF value, then the body

has contact with the scene. Then, for all generated body

meshes, the non-collision score is the ratio of all body ver-

tices in the free space, and the contact ratio is the calculated

as the number of body meshes with contact divided by all

generated body meshes. Therefore, due to the physical con-

straints, a higher non-collision score and contact ratio indi-

cate a better generation, in analogy with precision and recall

in an object detection task.

The results are presented in Tab. 3. First, one can see that

our proposed methods consistently outperform the baseline

for the physical metric. The influence of the LHS loss on

3D body generation is not as obvious as on the interaction

modeling task (see Tab. 1). Additionally, one can see that

the scene geometry-aware fitting consistently improves the

physical metric, since the fitting process aims to improve

the physical plausibility. Fig. 7 shows some generated ex-

amples before and after the fitting.

(3) User study: In our study, we render our generated re-

sults as images, and upload them to Amazon Mechanical

Turk (AMT) for a user study. Due to the superior perfor-

mance of our S1 model without LHS , we compare it with

the baseline, as well as ground truth if it exists. For each

scene and each model, we generate 100 and 400 bodies in

PROX-E and MP3D-R, respectively, and ask Turkers to

give a score between 1 (strongly not natural) and 5 (strongly

natural) to each individual result. The user study details

are in the appendix. Also, for each scene in the PROX-

E dataset, we randomly select 100 frames from the ground

Table 3: Comparison between different models according

to the physical metric. The best results are in boldface.

non-collision score contact score

model PROX-E MP3D-R PROX-E MP3D-R

baseline [28] 0.89 0.92 0.93 0.78

S1 0.93 0.94 0.95 0.80

S1 + LHS 0.89 0.95 0.88 0.65

S2 0.91 0.93 0.88 0.79

S2 + LHS 0.89 0.95 0.88 0.56

baseline + Lf 0.93 0.97 0.99 0.89

S1 + Lf 0.94 0.97 0.99 0.88

S1 + LHS + Lf 0.92 0.98 0.99 0.81

S2 + Lf 0.94 0.97 0.99 0.88

S2 + LHS + Lf 0.93 0.97 0.99 0.81

Table 4: Comparison between models in the user study

score (1-5). The best results for each metric are in boldface.

use study score w.r.t. mean±std

model PROX-E MP3D-R

baseline [28] 3.31 ± 1.39 3.14 ± 1.41

baseline + Lf 3.32 ± 1.35 3.35 ± 1.38

S1 3.29 ± 1.36 3.15 ± 1.40

S1 + Lf 3.49 ± 1.26 3.30 ± 1.30

ground truth 4.04 ± 1.03 n/a

truth [18], and ask Turkers to evaluate them as well.

The results are presented in Tab. 4. Not surprisingly, the

ground-truth samples achieve the best score from the user

study. We observe that the geometry-aware fitting improves

the performance both for the baseline and our model, most

likely due to the improvement of the physical plausibility.

Note that, although the baseline and our model achieve sim-

ilar average scores, the diversity of our generated samples

is much higher (Tab. 2). This indicates that, compared to

the baseline, our method generates more diverse 3D human

bodies, while being equally good in terms of semantic plau-

sibility given a 3D scene.

Qualitative results are shown in Fig. 5, Fig. 6 and Fig. 8.

More results are in the appendix.

4.2. Sceneaware 3D Body Pose Estimation

Here we perform a down-stream application and show

our model improves 3D human pose estimation from

monocular images. Given a RGB image of a scene with-

out people, we estimate the depth map using the pre-trained

model [26], and perform semantic segmentation using the

model of [6] pre-trained on the ADE20K [53] dataset. To

unify the semantics, we create a look-up table to convert the

object IDs from ADE20K to Matterport3D. Next, we feed

the estimated depth and semantics to our S1 model with

LHS and randomly generate 100 bodies. We compute the

average of the pose features in the VPoser latent space, and

denote it as θsb .
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Figure 5: Generated human bodies in two test scenes of

PROX-E. Results are visualized in two views.

Figure 6: Generated results in three scenes of MP3D-R.

b
e
fo
r
e

a
ft
e
r

Figure 7: Results before and after the scene geometry-aware

fitting.

Failure cases
1. The generated body poses are not always plausible, such as collision with the scene mesh, floating in the air, etc.
2. In the post-processing phase, the contact loss pulls the body mesh according to the closest vertices in the scene, 

which is perhaps not meaningful. 
3. The collision loss is dependent on the scene SDF, which is not always accurate and pulls the person to implausible 

configurations.

failed generation failed scene geometry-aware fitting

Figure 8: Two typical failure cases in our results.

When performing 3D pose estimation in the same scene,

we follow the optimization framework of SMPlify-X [36]

and PROX [18]. In contrast to these two methods, we use

our derived θsb to initialize the optimization, and change the

Table 5: Results of 3D pose estimation from RGB frames

in PROX-Quantitative, in which “PJE”/“p.PJE” denote

the mean per-joint error without/with Procrustes alignment,

and “V2V”/“p.V2V” denote the mean vertex-to-vertex error

without/with Procrustes alignment, respectively.

Error (in millimeters)

method PJE V2V p.PJE p.V2V

Simplify-X [36] 223.83 225.60 73.28 62.93

PROX [18] 171.78 173.97 73.20 64.76

Ours 174.10 171.75 71.73 62.64

VPoser term in [18, Eq. 7] from |θb|
2 to |θb−θsb |

2. We eval-

uate the performance using the PROX-Quantitative dataset

[18]. We derive the 2D keypoints from the frames via Al-

phaPose [12, 48], and obtain a θsb from a background image

without people. Then, we use the same optimization meth-

ods and the evaluation metric in [18] for fair comparison.

The results are shown in Tab. 5. We find that our method

improves 3D pose estimation on the PROX-Quantitative

dataset. This suggests that our model learns about the ways

in which 3D people interact with 3D scenes. Leveraging it

as a scene-dependent body pose prior can improve 3D body

pose estimation from RGB images.

5. Conclusion

In this work, we introduce a generative framework to

produce 3D human bodies that are posed naturally in the 3D

environment. Our method consists of two steps: (1) A scene

context-aware human body generator is proposed to learn a

distribution of 3D human pose and shape, conditioned on

the scene depth and semantics; (2) geometry-aware fitting

is employed to impose physical plausibility of the human-

scene interaction. Our experiments demonstrate that the au-

tomatically synthesized 3D human bodies are realistic and

expressive, and interact with 3D environment in a semantic

and physical plausible way.
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