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Abstract

Existing Temporal Activity Localization (TAL) methods

largely adopt strong supervision for model training which

requires (1) vast amounts of untrimmed videos per each

activity category and (2) accurate segment-level boundary

annotations (start time and end time) for every instance.

This poses a critical restriction to the current methods in

practical scenarios where not only segment-level annota-

tions are expensive to obtain but many activity categories

are also rare and unobserved during training. Therefore,

Can we learn a TAL model under weak supervision that

can localize unseen activity classes? To address this sce-

nario, we define a novel example-based TAL problem called

Minimum Effort Temporal Activity Localization (METAL):

Given only a few examples, the goal is to find the occur-

rences of semantically-related segments in an untrimmed

video sequence while model training is only supervised by

the video-level annotation. Towards this objective, we pro-

pose a novel Similarity Pyramid Network (SPN) that adopts

the few-shot learning technique of Relation Network and di-

rectly encodes hierarchical multi-scale correlations, which

we learn by optimizing two complimentary loss functions in

an end-to-end manner. We evaluate the SPN on the THU-

MOS’14 and ActivityNet datasets, of which we rearrange

the videos to fit the METAL setup. Results show that our

SPN achieves performance superior or competitive to state-

of-the-art approaches with stronger supervision.

1. Introduction

TAL is a fundamental problem in computer vision and

has drawn increasing interests over the past few years due

to its vast potential applications in security surveillance,

robotics, etc. While impressive progress has been made [34,

12, 42, 6, 43, 28, 47, 7, 3, 20, 8, 31, 55, 53, 33, 48, 52, 54] to

recognize and localize temporal segments in videos, success

of these deep learning models heavily relies on the avail-

ability of a huge amount of labeled training data, mean-
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Figure 1: Minimum Effort Temporal Activity Localiza-

tion (METAL): during training, we simply have untrimmed

videos with only video-level labels and trimmed videos of

the same label; during testing, the learned model is applied

to TAL in untrimmed videos given only a few trimmed ex-

amples from unseen classes.

ing that model training requires the full annotation of the

ground truth segment-level boundary for each activity in-

stance among all possible classes. This severely limits their

(1) scalability in practical scenarios as annotating temporal

boundaries for long untrimmed videos is very expensive and

time-consuming [46] and (2) applicability to newly emerg-

ing or rare events which are not observed in the original

training dataset.

By contrast, human beings are capable of recognizing

and localizing new activity classes in untrimmed videos

by observing a few examples from each class. This moti-

vates us to develop TAL methods that require significantly

fewer annotations for training and generalize well to rare

and novel activity categories. In this paper, we introduce a

new challenging example-based TAL problem called Min-

imum Effort Temporal Activity Localization (METAL).

As illustrated in Figure 1, we focus on the following sce-

nario: during training, we have (1) untrimmed videos with
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only video-level labels (e.g. video tags) and (2) trimmed

examples of the same labels, which are much easier to col-

lect compared to segment-level boundary annotations. Dur-

ing testing, given only a few trimmed examples from un-

seen activity classes, we aim to localize all occurrences

of semantically-related segments in the untrimmed testing

videos. We refer this scenario as the METAL setup that this

paper works on.

The METAL setup would greatly reduce the human ef-

forts in developing efficient and scalable TAL methods and

better simulate real-world scenario. To tackle this problem,

we adopt the few-shot learning technique of Relation Net-

work [40] and propose a novel meta-learning based frame-

work, called Similarity Pyramid Network (SPN). The

main idea of SPN is a hierarchical multi-scale feature repre-

sentation (similarity pyramid) that directly measures partial

similarities between an untrimmed video and trimmed ex-

amples at different temporal resolutions. To train the SPN

with only video-level labels, we devise two complimen-

tary loss functions: (1) Pair-wise Content Similarity Loss

(PCSL)1 for classification where we compute a video-level

distance metric for each pair and enforce higher similarities

for positive pairs; and (2) Co-pair Structure Similarity Loss

(CSSL) for localization, which is based on the intuition that

two positive pairs should have similar distribution of sim-

ilarity scores, namely higher correlation between two sim-

ilarity pyramids. Thereafter, we jointly minimize the two

loss functions to train the network in an end-to-end man-

ner. The learned model is directly applied to testing videos,

where the similarity pyramids are fused to yield the local-

ization results.

Our contributions are summarized as follows:

• We introduce the METAL problem that addresses

the novel task of localizing unseen activity instances

in untrimmed videos given a few trimmed examples

while training is only supervised by video-level labels.

• We propose a meta-learning based approach named

SPN to tackle the METAL problem, which is able to

measure hierarchical multi-scale similarity metrics be-

tween video pairs and simultaneously enforce classifi-

cation and localization information.

• We conduct extensive experiments on two challenging

benchmarks: THUMOS’14 and ActivityNet of which

we rearrange the videos to fit under the METAL setup.

Experimental results show that our SPN achieves per-

formance superior or competitive to state-of-the-art ap-

proaches with stronger supervision.

1In this paper, a positive pair is defined as an untrimmed video and a

trimmed video sharing the same label, while a negative pair is defined to

have different labels.

2. Related Work

Temporal Activity Localization. TAL is the task to

predict the temporal boundary and the label of activity

instances in untrimmed videos. Earlier works on activ-

ity localization mainly used temporal sliding windows as

candidates and trained activity classifiers on hand-crafted

features [25, 26, 14, 16, 23, 41]. With the recent ad-

vances of deep learning methods, Conv3D network [42],

two-stream convolutional networks [34, 12], and other deep

neural networks [6, 43, 28, 47] have been widely applied

for temporal motion analysis and significantly improved

recognition performance. To localize temporal boundaries,

a large body of work incorporated deep networks into

the localization framework and obtained improved perfor-

mance [7, 20, 8, 31, 55, 33, 48, 52, 4, 15, 11, 21, 50, 51]:

Some of them focused on designing better temporal pro-

posal schemes [4, 15, 11, 21], while others worked on im-

proving temporal search [50, 51] or proposing better clas-

sifiers [31]. Among these works, R-C3D [48] proposed

an end-to-end trainable activity detector based on Faster-

RCNN [29], while S3D [52] performed single-shot activity

localization to get rid of temporal proposals. However, all

these methods were proposed for the fully supervised set-

ting where the segment-level boundary annotations are re-

quired during training.

Weakly Supervised TAL. Weakly supervised learning

has been extensively studied for object detection [2, 10, 37].

As for activity localization, video-level label is one kind

of weak supervision and has been studied in recent years.

Sun et al. [39] was the first to consider this problem and

leveraged additional supervision from web images. Hide-

and-Seek [35] addressed the challenge that weakly super-

vised detection models usually neglect some relevant parts

of the target instance. UntrimmedNet [45] proposed a

framework consisting of a classification module to perform

action classification and a selection module to detect im-

portant temporal segments. Most recently, AutoLoc [32]

and W-TALC [27] introduced novel loss functions to fur-

ther improve the performance. Although these works are

trained with weak supervision, the learned models can only

localize activity categories observed in the training dataset.

Few-shot Learning. Few-shot learning refers to learn-

ing from just a few training examples per class. An in-

creasingly popular solution for few-shot learning is meta-

learning where transferable knowledge can be learned from

auxiliary tasks to help with the target few-shot problem.

The successful MAML approach [13] aimed to meta-learn

an initial condition that is good for fine-tuning on few-shot

problems. To avoid fine-tuning, some works leverage the

neural networks with memories [24, 30]. Another category

of approach is metric-learning which aims to learn a set

of projection functions such that when represented in this

embedding, inputs are easy to recognize through similarity
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Figure 2: Similarity Pyramid Network (SPN) architecture for METAL under one-shot setting (best viewed in color). Both

untrimmed and trimmed videos are fed into a shared Conv3D network for feature extraction, and a temporal feature pyramid

is applied to summarize the untrimmed video. The features are then passed through the multi-scale relation module to obtain

the similarity pyramids and similarity scores. Using these outputs, we compute two loss functions namely CSSL and PCSL,

which are optimized jointly to train the network.

matching [19, 36, 40, 44]. While [19, 36] applies a fixed

nearest-neighbor or linear classifier, [40] proposes to use

a learnable non-linear function and demonstrates improved

accuracy. Yang et al. [49] is the first work proposing the

few-shot TAL task. It applied a sliding window approach

with matching network to retrieve activity instances at each

location. However, they still need the expensive boundary

annotations to supervise the model training.

Our work is the fisrt to study the METAL problem which

can also be framed as a joint problem of weakly supervised

TAL and few-shot TAL, while previous works only consider

one aspect at a time thus cannot be applied or easily ex-

tended to tackle the more challenging METAL setting.

3. Approach

We consider the METAL problem: Given only a few

examples from unseen activity classes, the goal is to find

the occurrences of semantically-related segments in an

untrimmed video sequence while model training is only su-

pervised by the video-level annotation. The setting is worth

exploring as it aligns well with the practical situation: one

may expect to train a localization model on dataset of easily

collecting video-level labels and deploy the model to local-

ize new activities with a few trimmed examples.

Following the few-shot learning terminologies [40, 49],

we formally define the problem setup. We have three

datasets: a training set, a support set and a testing

set where the training set contains both untrimmed and

trimmed videos with video-level labels, the support set con-

tains labelled trimmed videos and the testing set contains

untrimmed videos. The support set and testing set share the

same label space, but the training set has its own label space

that is disjoint with the support and testing sets. If the sup-

port set contains K trimmed examples for each of C unique

classes, the target problem is called C-way K-shot.

We follow the meta-learning framework to use the train-

ing set during training phase and the support set and test-

ing set during testing phase. More specifically, we fol-

low [44, 40] to exploit the training set to mimic the few-shot

learning setting via episode based training. In each train-

ing iteration, an episode is formed by randomly selecting

C classes from the training trimmed videos with K sam-

ples from each of the C classes to act as the sample set, as

well as one training untrimmed video to serve as the query
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set. This sample/query set split is designed to simulate the

support/test set that will be encountered at test time. In

our experiments (Section 4), we consider five-way one-shot

(C = 5, K = 1) and five-way five-shot (C = 5, K = 5)

settings.

3.1. Model Overview

In this section, we present our Similarity Pyramid Net-

work (SPN) for METAL. An overview of our proposed SPN

is illustrated in Figure 2. First, we present the video embed-

ding module (Section 3.2) that uses a shared Conv3D net-

work to encode both untrimmed and trimmed videos, fol-

lowed by a temporal feature pyramid (Section 3.3) to nat-

urally summarize an untrimmed video at different tempo-

ral locations and scales. We then present the multi-scale

relation module (Section 3.4) that directly measures the

segment-level similarities between an untrimmed video and

trimmed examples. Thereafter, we introduce two loss func-

tions PCSL and CSSL (Section 3.5), which we jointly opti-

mize to learn the weights of the network. It may be noted

that we compute both the loss functions using only the

video-level labels. Finally, we show that the trained model

can be directly applied for TAL given a few labelled exam-

ples in the support set (Section 3.6).

3.2. Video Embedding Module

In our problem setup, our SPN takes two types of in-

put videos, namely, untrimmed video U and trimmed video

T . We denote a video as a series of RGB frames {Ii}
F
i=1,

where Ii ∈ R
H×W×3 is the i-th input frame and F is

the total number of frames for a single video. A common

practice for video processing is to use a high-quality video

encoding network to extract a compact feature representa-

tion from raw frame inputs. In this work, we adopt the

Res3D [43] model to obtain visual representations for both

untrimmed and trimmed videos. The network weights are

shared among the two different inputs.

As illustrated in Figure 2, the input RGB frame sequence

can be represented as a tensor with dimension R
F×H×W×3

where H and W are the height and width of each frame.

For a trimmed video, we follow the traditional use of

Res3D to uniformly sample LT frames and obtain a fixed-

dimensional 1D feature vector fT ∈ R
dT as the visual

representation, where dT is the number of output chan-

nels. For an untrimmed video, as the Res3D network can

take arbitrary number of frames as input due to the fully

convolutional nature, we also uniformly sample a much

longer sequence of LU frames and extract a feature map

fU ∈ R
TU×dU as the visual representation where TU is de-

termined by the equivalent temporal stride of the original

Res3D network, and dU is the number of output channels.

In the C-way one-shot setting, we feed each trimmed video

to the Res3D network thus generate C features for trimmed

videos. For C-way K-shot where K > 1, we follow [40]

to element-wise sum over the Res3D outputs of all samples

from each class to form this class’ feature representation.

Thus the number of features for the sample/support set is

always C in both one-shot or few-shot setting.

After the video embedding module, we extract features

for both untrimmed and trimmed videos which we denote

as fU and {f i
T }

C
i=1 where f i

T ∈ R
dT represents each class’

feature. Note that {f i
T }

C
i=1 are from C different classes

during testing but not necessarily in the sample set (during

training) in order to enrich the training dynamics.

3.3. Temporal Feature Pyramid

Although fU serves as a good feature representation for

an untrimmed video, it only summaries the video at a single

temporal resolution. One may think of applying the tempo-

ral sliding window approach [49], but such method is com-

putationally intensive and cannot model complex temporal

relations. Inspired by the single-shot object detector [22]

and its successful applications in temporal activity localiza-

tion [52, 20], we construct a multi-scale feature pyramid to

directly produce temporal features at variable scales. Un-

like the previous activity localization methods trained with

strong supervision, the few-shot problem setup requires us

to minimize the network size to prevent overfitting. Thus,

we use a simple multi-scale pooling architecture instead of

multiple layers of temporal convolutions.

Specifically, we stack NU 1D max-pooling layers with a

pooling stride of 2 to generate a sequence of feature maps

that progressively decrease in temporal dimension which

we denote as {f i
U}

NU

i=1, f i
U ∈ R

T i
U×dU where T k

U is the

temporal dimension of each layer. Thus each temporal fea-

ture is responsive to a particular temporal location and scale.

For simplicity, we denote the final encoding feature for an

untrimmed video as f ′
U ∈ R

N×dU where N =
∑NU

i=1
T i
U is

the total number of temporal locations used for the multi-

scale feature pyramid.

3.4. Multiscale Relation Module

To learn the relations between untrimmed and trimmed

videos, we follow the relation network [40] to combine the

feature maps between two different inputs with operator

Φ(f ′
U , fT ), where fT is a class’ feature map and we omit

the superscript for simplicity. Different from the relation

network where only image-to-image relations are consid-

ered, we extend the formulation to video domain and deal

with relations between untrimmed and trimmed videos. In

this work, we assume Φ(·, ·) to be concatenation of feature

maps in depth among all temporal locations defined as:

fΦ = Φ(f ′
U , fT ) ∈ R

N×dΦ (1)

where dΦ = dU + dT is the number of channels after con-

catenation. We then generate a similarity embedding fs us-
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ing one single 1D convolutional (Conv1D) layer:

fs = ReLU(Conv1D(fΦ)) ∈ R
N×ds (2)

where ds is the number of output channels.

While fs can be directly fed into a relation module to

compute the similarity scores, it only considers the content

similarity at each specific temporal location. However, tem-

poral contextual information has been proven to be critical

for TAL [7, 54, 53]. To encode such contextual relations

in our network, we adopt a simple GCN on top of fs. Dif-

ferent from the standard convolutions which operate on a

local regular grid, the graph convolutions allow us to com-

pute the response of a node based on its neighbors defined

by the graph connections. In this work, temporal segments

are represented by nodes, and their relations are defined as

edges. We use fs as the input node features and one layer

of graph convolution is defined as:

fg = ReLU(GfsW ) (3)

where G ∈ R
N×N is the adjacency matrix, fs is the input

feature of all nodes, W ∈ R
ds×dg is the learnable weight

matrix and fg ∈ R
N×dg is the output node representation.

In this work, we define the adjacency matrix based on the

ordering of temporal segments as originally encoded in the

multi-scale feature hierarchy. After one GCN layer, each

node representation in fg is enriched by the neighborhood

relations. We refer to fg as the similarity pyramid as it nat-

urally encodes relations in a multi-scale feature pyramid.

Finally, we apply a relation module Θ(fg) to produce

similarity scores S ∈ R
N where each number is a scalar in

range of 0 to 1 representing the similarity at each temporal

location. In this work we assume Θ(·) be a multi-Conv1D

layer although other choices are possible.

3.5. Training

In this section, we present two proposed loss functions

which use only the video-level labels as direct supervi-

sion for classification and localization, respectively. To bet-

ter illustrate our idea, we consider one training batch con-

taining one untrimmed feature fU and C trimmed features

{f i
T }

C
i=1.

Pair-wise Content Similarity Loss. Here, we propose

a Pair-wise Content Similarity Loss (PCSL) to add classifi-

cation constraints. Considering one positive pair, although

we don’t know which temporal segment best corresponds

to the trimmed example, it is certain that there is at least

one semantically-related segment resulting in a high simi-

larity score (close to 1). Similarly, all similarity scores will

be small (close to 0) considering a negative pair. Based on

this motivation, we aggregate similarity scores S to form a

video-level score Svideo via a simple max-pooling. Given a

pair (fU , f
i
T ), S

i
video will be regressed to 1 if it is positive,

otherwise 0.

Given the labels of untrimmed and trimmed videos in

one batch, we formally define a positive set Sp containing

all positive pairs and a negative set Sn where |Sp|+ |Sn| =
C. We define the PCSL as the sum of the sigmoid cross

entropy loss for each pair:

LPCSL = −

C∑

i=1

Lsigmoid(S
i
video, GT i

video) (4)

where Si
video is the predicted video-level score, GT i

video is

the ground truth score GT i
video = 1, (fU , f

i
T ) ∈ Sp and

GT i
video = 0, (fU , f

i
T ) ∈ Sn.

Co-pair Structure Similarity Loss. While PCSL

enforces the pair-wise relations between untrimmed and

trimmed videos, it is location agnostic as it only measures

the video-level similarity. In order to provide constraints

for learning better weights for localization, we propose an-

other Co-pair Structure Similarity Loss (CSSL). Our in-

tuition is that given two positive pairs, for example an

untrimmed video of playing basketball and two different

trimmed videos of shooting, both should be matched to the

same temporal region in the untrimmed sequence although

the boundary annotation is unknown. To enforce such infor-

mation during training, we leverage the design of similarity

pyramid fg and enforce two pyramids to have similar struc-

tures (distribution of scores) for two positive pairs.

Formally, given two positive pairs (fU , f
a
T ) and

(fU , f
b
T ), we first produce the similarity pyramid after GCN

as fa
g and f b

g respectively. Based on the above intuition,

we compute the structure similarity between two similarity

pyramids. Specifically, we define the structure similarity as

the average cosine similarity among all temporal locations:

S
a,b
struc =

1

N

N∑

i=1

δ(fa
g (i), f

b
g (i))

δ(fa
g (i), f

b
g (i)) =

(fa
g (i))

T f b
g (i)

||fa
g (i)|| · ||f

b
g (i)||

(5)

where fa
g (i) and f b

g (i) indicates the feature vector at index

i and δ(·, ·) denotes the cosine similarity between two fea-

tures. Note that the embeddings fa
g and f b

g are multi-scale

similarity embeddings among different temporal locations,

thus the score Sstruc peaks when they share the same dis-

tribution. Therefore, given one positive pair, Sstruc will be

maximized when compared with another positive pair, oth-

erwise minimized.

Given a training batch, we define the CSSL as the sum

of structure similarities for every two pairs including at least

one positive pair:

LCSSL =

|Sp|∑

i=1

|Sn|∑

j=1

S
i,j
struc −

|Sp|∑

i=1

|Sp|∑

j=i+1

S
i,j
struc (6)
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where S
i,j
struc is the predicted structure similarity, |Sp| is the

number of positive pairs and |Sn| is the number of negative

pairs.

Finally, the SPN is end-to-end trainable by jointly opti-

mizing two loss functions. The joint training allows all net-

work weights to be trained such that the embedding module

as well as the relation module are optimized for both classi-

fication and localization. The total loss is defined as:

L = LPCSL + αLCSSL (7)

where α is used to balance the two losses.

3.6. Prediction

TAL via SPN is straightforward with one forward pass

of the network. Considering a C-way K-shot localization

problem with one untrimmed testing video and K differ-

ent trimmed videos in each of the C different classes from

the support set. We first extract the visual features for

both untrimmed videos and trimmed videos resulting in C

trimmed features and 1 untrimmed feature. Then, we com-

pute, as the outputs of multi-scale relation module, the sim-

ilarity scores S for each of the C features. For each specific

temporal location, the maximum similarity score among C

different classes and the corresponding class label are as-

signed for the temporal segment. Then the segments with

similarity score less than 0.5 will be filtered out and the re-

maining segments are refined via temporal non-maximum

suppression to get the final localization results.

4. Experiments

In this section we describe the experimental results of

our method. First, we introduce the evaluation settings for

the METAL setup and the implementation details of our

model. Then we compare our SPN with other state-of-

the-art approaches. Finally, we perform ablation studies to

investigate the impact of different components of our ap-

proach and provide qualitative visualizations.

4.1. Datasets and Evaluation Settings

We evaluate our SPN on two large-scale datasets, namely

THUMOS’14 [17] and ActivityNet [5]. While the original

datasets are collected for TAL with strong supervision, we

rearrange the videos to fit under the METAL setup by (1)

Removing the boundary annotations for untrimmed videos;

(2) Splitting activity classes into mutually exclusive sets; (3)

Pairing each untrimmed video with trimmed examples from

different sources. We detail the evaluation settings below.

Evaluation settings. We follow the problem definition

as described previously. In our experiments, we consider

the five-way localization problem under one-shot (K = 1)

and five-shot (K = 5) settings. During the training, in each

iteration, we construct the sample set by randomly sampling

five classes from the subset of the training classes, and then

for each class we randomly sample K trimmed videos. For

the query set, we randomly sample one untrimmed video.

During the testing phase, the setup is identical to that of the

training phase, only now we use the support set and testing

set. Note that the support set should have at least one class

overlap with the video-level label in the testing set.

We follow the conventions to report the mean Average

Precision - mAP@a where a denotes the temporal Inter-

section over Union (tIoU) threshold, and the average mAP

among 10 tIoU thresholds [0.5:0.05:0.95]. As can be eas-

ily seen, there are a large number of different combina-

tions of the trimmed and untrimmed videos (random classes

and random samples), and the performance is dependent on

those choices. We follow the few-shot tradition [49, 40] to

get the reliable test results, namely, we randomly sample

1000 testing batches and the final results are reported by

averaging over all these batches.

ActivityNet v1.2 [5] ActivityNet is a recently released

benchmark for temporal activity localization. The dataset

is released in two versions, and to facilitate comparisons

with previous works, we use the version 1.2 which con-

tains 4819 and 2383 untrimmed videos in the original train-

ing and validation subsets respectively. There are 100 dif-

ferent activity classes and we randomly split it into 80
classes (ActivityNet-train-80) for training and 20 classes

(ActivityNet-test-20) for testing. We use the video seg-

ments in ActivityNet as the trimmed samples and we make

sure that trimmed videos do not come from the same

untrimmed video when pairing them together.

THUMOS’14 [17] The THUMOS’14 dataset is another

widely used benchmark for activity recognition and local-

ization. There are 2765 trimmed videos from UCF101

dataset [38] and 413 untrimmed videos of 20 different ac-

tivity categories. Although this is a smaller dataset, it has

several videos where multiple activities occur, thus making

it even more challenging. The 20 classes are a subset of

the 101 classes in UCF101. Following [49], we split the 20
classes into 6 classes for training and 14 classes for testing.

The two splits are denoted as Thumos-train-6 and Thumos-

test-14. The trimmed videos come from mutual classes in

UCF-101 which we denote as UCF-101-6 and UCF-101-14

for training and testing respectively.

4.2. Implementation Details

For the video embedding module, we train a Res3D

model [43] on the Kinetics dataset [6]. Note that the few-

shot problem setup requires that the classes for testing must

not be present during training and we notice that there are

mutual classes between Kinetics and ActivityNet or THU-

MOS’14, thus, those classes are excluded when we train the

Res3D model. As described in Section 3.2, we set LT = 24,

LU = 256 and dT = dU = 2048. On THUMOS’14, as the
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Method Supervision Few-shot mAP@0.5 average mAP

1-shot 5-shot 1-shot 5-shot

CDC [31] Full Yes 8.2 8.6 2.4 2.5

Yang et al. [49] Full Yes 22.3 23.1 9.8 10.0

SPN (ours) Weak Yes 41.9 45.0 26.5 28.8

AutoLoc [32] Weak No 45.2 30.8

Table 1: TAL results on ActivityNet v1.2 (in percentage). mAP at tIoU threshold 0.5 and average mAP are reported. Methods

are categorized into three groups: Weak supervision provides video-level labels during training; Full supervision provides

temporal boundary annotations during training; Few-shot refers to only a few labeled examples are available.

Method mAP@0.5

1-shot 5-shot

CDC [31] 6.4 6.5

Yang et al. [49] 13.6 14.0

SPN (ours) 14.3 16.2

AutoLoc [32] 24.5

Table 2: TAL results on THUMOS’14 (in percentage).

mAP at tIoU threshold 0.5 is reported. The methods are

categorized into the same groups as used in Table 1.

length of untrimmed videos is much longer, we follow com-

mon practice [48] to cut it into non-overlapping 32-second

segments and use the segmented inputs. Regarding the tem-

poral feature pyramid, we use NU = 5 for ActivityNet to

generate a sequence of feature maps with temporal dimen-

sion {16, 8, 4, 2, 1} and NU = 3 for THUMOS’14 to pro-

duce the features maps with temporal dimension {16, 8, 4}.

We set ds = dg = 512 for the multi-scale relation mod-

ule, and the relation module Θ(·) is two layers of Conv1D

to map feature input to similarity scores with sigmoid ac-

tivation. The whole SPN network is optimized with the

end-to-end loss function defined in Equation 7. As a speed

accuracy trade-off, only the last layer of the Res3D model

is jointly optimized after pre-training. We implement our

SPN on TensorFlow [1]. The whole network is trained by

Adam [18] optimizer with learning rate 10−5.

4.3. Comparison with Stateoftheart

As there are no existing methods for TAL under the

METAL setup. we make comparisons with state-of-the-

art localization models trained with stronger supervision.

Specifically, we compare with the methods which are

trained with video-level labels but not under few-shot set-

tings [32]2, and the methods proposed for few-shot activ-

ity localization but trained with temporal boundary annota-

tions [31, 49]3. It should be emphasized again that results of

our methods are reported under the METAL setting which

is most challenging of all.

2Results are reported using the few-shot evaluation settings.
3For CDC, we use the values reported in [49]

Method mAP@0.5 average mAP

Yang et al. [49] 22.3 9.8

SPN-ImageNet 35.2 20.6

SPN-Kinetics 41.9 26.5

Base 13.2 7.2

+Feature Pyramid 30.3 18.2

+GCN 34.7 22.7

+CSSL 41.9 26.5

Table 3: Ablation study for different SPN components on

ActivityNet. Top: Weight initialization for the embedding

module. Bottom: Effectiveness of temporal feature pyra-

mid, GCN and CSSL. Results are reported under five-way

one-shot localization.

ActivityNet v1.2 Table 1 shows the localization results

on the ActivityNet v1.2 dataset. All the methods are catego-

rized into three different groups based on the level of super-

vision. Our SPN under the one-shot setting, significantly

outperforms previous fully supervised methods among all

evaluation metrics, demonstrating the superior ability of

our model to effectively learn good similarity metrics be-

tween different video pairs even without having access to

boundary annotations. Compared to the weakly supervised

method trained with more data, although our method lacks

in performance for one-shot localization, we achieves com-

petitive accuracy when more labelled data are available (i.e.

five-shot localization). It should be noted that we still use

fewer annotations compared to that of those used in [32].

THUMOS’14 We also compare our method with the

state-of-the-art approaches on THUMOS’14 dataset. The

results are shown in Table 2 where the methods are also cat-

egorized into the same groups as used in Table 1. Our SPN

consistently achieves superior or competitive performance

compared with previous methods trained with stronger su-

pervision. Note that THUMOS’14 is a more challenging

dataset than ActivityNet for the METAL problem, as the

former has much longer untrimmed videos and has more

activity instances per video, making it harder to efficiently

model similarities under weak supervision: on average, the

THUMOS’14 training set has 15 instances per video, while

the ActivityNet training set has only 1.5 instances per video.
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Hence, strong adaptivity is required to perform consistently

well on both datasets.

4.4. Ablation Studies

Weight Initialization. We conduct experiments to study

the effect of different weight initialization for the embed-

ding module. We consider two different initialization: (1)

Res3D initialized from ImageNet [9] weights (simply du-

plicate 2D kernels to 3D) without pre-training on any video

datasets, we denote as SPN-ImageNet. (2) Res3D pre-

trained from Kinetics (Section 4.2), we denote as SPN-

Kinetics. The results are summarized in the top half of

Table 3. It may be noted that our SPN-ImageNet already

significantly outperforms the state-of-the-art method, high-

lighting SPN’s strong ability to learn the temporal relations.

Network Components. On ActivityNet v1.2 dataset, we

perform ablation studies to investigate the effect of each net-

work component we proposed in this paper: temporal fea-

ture pyramid and GCN. All the experiments are conducted

for five-way one-shot localization.

First, we implement a baseline model: we use the same

Res3D network to extract features for both the untrimmed

video and trimmed videos, instead of using a multi-scale

architecture to encode the untrimmed video, we directly ap-

ply a relation module to compute 32 relation scores which is

then max-pooled and trained with video-level labels (PCSL

only). As each score only represents a small duration of the

entire video, we apply multi-scale sliding windows and use

the maximum score for each windowed segment. The result

is reported in the first row in bottom half of Table 3.

On top of this base model, we first add the temporal fea-

ture pyramid and leave other parts unchanged to study the

effect of this component alone. The result is shown in the

second row in bottom half of Table 3. We observed a sig-

nificant performance jump improving mAP@0.5 from 13.2
to 30.3, this clearly demonstrates the advantage of using

a multi-scale feature pyramid to directly summarize video

content at different temporal locations and scales.

We further validate our design to use a GCN for model-

ing contextual relations in the multi-scale relation module.

Specifically, based on the previous model, we add a GCN

on top. As reported in the third row in bottom half of Ta-

ble 3, we achieve higher mAP indicating the importance to

enrich similarity by contextual relations.

CSSL. One major contribution of SPN is to add a CSSL

during training to enforce localization supervision even

without boundary annotations. As shown in the Table 3,

adding the CSSL improves the mAP@0.5 from 34.7 to 41.9
and average mAP from 22.7 to 26.5. This significant im-

provement indicates the importance of training SPN with

CSSL and supports our motivation to enforce structure sim-

ilarity between two video pairs.

Qualitative Visualization. As shown in Figure 3, We

Testing Set (1 Untrimmed Video)

Support Set (5 Trimmed Videos)

Ground Truth

Predicted Similarity Scores

0.0 1.00.750.50.25

Time

L:1

L:2

L:4

L:8

L:16

0.67

0.65

0.700.71

Bathing Dog

0.63

Bathing Dog, Using the Pommel Horse, Grooming Horse, Washing Face, Shotput

Bathing Dog

Figure 3: Qualitative Visualization of the similarity scores

in ActivityNet v1.2 dataset (best viewed in color). The

segments with top 5 scores are visualized with each class

in the support set shown in different colors. The pre-

dicted segments are organized with different temporal res-

olutions, and the similarity score is shown below each seg-

ment. Light color indicates that the corresponding segment

is suppressed by temporal NMS. For better visualization,

the temporal length of the video is normalized to 1.0.

provide further qualitative visualization of the similarity

scores. Although the untrimmed video and trimmed ex-

amples differ a lot in terms of motion and appearance, our

SPN can output higher scores for more related segments and

only keep the best matched ones through temporal NMS,

demonstrating the effectiveness and robustness of the pro-

posed framework.

5. Conclusion

In this paper, we introduce a new challenging setting for

TAL in untrimmed videos called Minimum Effort Temporal

Activity Localization (METAL) which can also be framed

as a joint problem of weakly supervised and few-shot TAL.

We have presented SPN, a Similarity Pyramid Network that

adapts a meta-learning framework to address the challenges

in a single shot end-to-end architecture. Given only video-

level labels, our SPN is end-to-end trainable by optimizing

two complimentary loss functions and generalizes well to

localize unseen activity classes. With this framework, al-

though trained under the METAL setup on the challeng-

ing THUMOS’14 and ActivityNet benchmarks, our SPN

achieves performance superior or competitive to that of

those state-of-the-art approaches with stronger supervision.
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