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Abstract

Recently, neural architecture search (NAS) methods have

attracted much attention and outperformed manually de-

signed architectures on a few high-level vision tasks. In

this paper, we propose HiNAS (Hierarchical NAS), an ef-

fort towards employing NAS to automatically design effec-

tive neural network architectures for image denoising. Hi-

NAS adopts gradient based search strategies and employs

operations with adaptive receptive field to build an flexible

hierarchical search space. During the search stage, HiNAS

shares cells across different feature levels to save memory

and employ an early stopping strategy to avoid the collapse

issue in NAS, and considerably accelerate the search speed.

The proposed HiNAS is both memory and computation ef-

ficient, which takes only about 4.5 hours for searching us-

ing a single GPU. We evaluate the effectiveness of our pro-

posed HiNAS on two different datasets, namely an additive

white Gaussian noise dataset BSD500, and a realistic noise

dataset SIM1800. Experimental results show that the archi-

tecture found by HiNAS has fewer parameters and enjoys

a faster inference speed, while achieving highly competi-

tive performance compared with state-of-the-art methods.

We also present analysis on the architectures found by NAS.

HiNAS also shows good performance on experiments for

image de-raining.

1. Introduction

Single image denoising is an important task in low-level

computer vision, which restores a clean image from a noisy

one. Owing to the fact that noise corruption always occurs

in the image sensing process and may degrade the visual

quality of collected images, image denoising is needed for

various computer vision tasks [2].

Traditional image denoising methods generally focus on

modeling natural image priors and use the priors to re-

store the clean image, including sparse models [5, 26],

Markov random field models [13], etc. One drawback of

these methods is that most of them involve a complex op-
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timization problem and can be time-consuming for infer-

ence [4, 9]. Recently, deep learning models have been suc-

cessfully applied in various computer vision tasks and set

new state-of-the-art. Motivated by this, most recent works

on image denoising have shifted their approaches to deep

learning, which builds a mapping function from noisy im-

ages to the desired corresponding clean images with deep

learning models and have often outperformed conventional

methods significantly [27, 33, 22]. Nonetheless, discov-

ering state-of-the-art neural network architectures requires

substantial efforts.

Recently a growing interest is witnessed in develop-

ing algorithmic solutions to automate the manual process

of architecture design. Architectures automatically found

by algorithms have achieved highly competitive perfor-

mance in high-level vision tasks such as image classifica-

tion [46], object detection [8, 36] and semantic segmenta-

tion [17, 29]. Inspired by this, here we design algorithms to

automatically search for neural architectures efficiently for

image denoising tasks. Our main contributions are summa-

rized as follows.

1. Based on gradient based search algorithms, we pro-

pose a memory-efficient hierarchical neural architec-

ture search approach for image denoising, termed Hi-

NAS. To our knowledge, this is the first attempt to

apply differentiable architecture search algorithms to

low-level vision tasks.

2. The proposed HiNAS is able to search for both inner

cell structures and outer layer widths. It is also mem-

ory and computation efficient, taking only about 4.5

hours for searching with a single GPU.

3. We apply our proposed HiNAS on two denoising

datasets of different noise modes for evaluation. Ex-

periments show that the networks found by our Hi-

NAS achieves highly competitive performance com-

pared with state-of-the-art algorithms, while having

fewer parameters and a faster speed.

4. We conduct comparison experiments to analyse the

network architectures found by our NAS algorithm in

terms of the internal structure, offering some insights

in architectures found by NAS.
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1.1. Related Work

CNNs for image denoising. To date, due to the popular-

ity of convolutional neural networks (CNNs), image de-

noising algorithms have achieved a significant performance

boost. Recent network models such as DnCNN [41] and

IrCNN [42] predict the residue presented in the image in-

stead of the denoised image, showing promising perfor-

mance. Lately, FFDNet [43] attempts to address spatially

varying noise by appending noise level maps to the input of

DnCNN. N3Net [35] formulates a differentiable version of

nearest neighbor search to further improve DnCNN. DuRN-

P [22] proposes a new style of residual connection, where

two residual connections are employed to exploit the poten-

tial of paired operations. Some algorithms focus on denois-

ing for real-noisy images. CBDNet [10] uses a simulated

camera pipeline to supplement real training data. Similar

work in [12] proposes a camera simulator that aims to ac-

curately simulate the degradation and noise transformation

performed by camera pipelines.

Network architecture search (NAS). NAS aims to design

automated approaches for discovering high-performance

neural architectures such that the procedure of tedious and

heuristic manual design of neural architectures can be elim-

inated from the deep learning pipeline. Early attempts em-

ploy evolutionary algorithms (EAs) for optimizing neural

architectures and parameters. The best architecture may

be obtained by iteratively mutating a population of can-

didate architectures [19]. An alternative to EA is to use

reinforcement learning (RL) techniques, e.g., policy gradi-

ents [47, 36] and Q-learning [44], to train a recurrent neu-

ral network that acts as a meta-controller to generate po-

tential architectures—typically encoded as sequences—by

exploring a predefined search space. However, EA and RL

based methods are inefficient in search, often requiring a

large amount of computations. Speed-up techniques are

therefore proposed to remedy this issue. Exemplar works

include hyper-networks [40], network morphism [6] and

shared weights [30].

In terms of the design of search space and search strate-

gies, our work is most closely related to DARTS [20], Prox-

ylessNAS [1] and Auto-Deeplab [17]. DARTS is based on

the continuous relaxation of the architecture representation,

allowing efficient search of the cell architecture using gradi-

ent descent, which has achieved competitive performance.

Motivated by this search efficiency, here we also use the

gradient based approach as our search strategy. In addition,

we employ convolution operations with adaptive receptive

field in building our search space. We then extend the search

space to include widths for cells by layering multiple can-

didate paths. Another optimization based NAS approach

that has widths included in its search space is Proxyless-

NAS. However, it is limited to discover sequential struc-

tures and chooses kernel widths within manually designed

blocks (Inverted Bottlenecks [11]). By introducing multi-

ple paths of different widths, the search space of our Hi-

NAS resembles Auto-Deeplab. The three major differences

are: 1) to retain high resolution feature maps, we do not

downsample the feature maps but reply on automatically se-

lected dilated convolutions and deformable convolutions to

adapt the receptive field; 2) we share the cell across dif-

ferent paths which leads to significant memory efficiency,

only 1/3 of that is needed by Auto-Deeplab counterparts; 3)

to avoid the performance of the selected network degrad-

ing after a certain number of epochs (collapse problem), we

employ a simple but effective early stopping search strat-

egy. In addition, our HiNAS is proposed for low-level im-

age restoration tasks, the three methods mentioned above

are all proposed for high-level image understanding tasks.

DARTS [20] and ProxylessNAS [1] are proposed for image

classification. Auto-Deeplab [17] finds architectures for se-

mantic segmentation.

Two more relevant works are E-CAE [32] and FALSR

[3]. E-CAE [32] employs EA to search for an architectures

of convolutional autoencoders for image inpainting and de-

noising. FALSR [3] is proposed for super resolution tasks.

FALSR combines RL and EA and design a hybrid controller

as its model generator. Both E-CAE and FALSR require a

relatively large amount of computations and takes a large

amout of GPU time for searching. Different from E-CAE

and FALSR, our HiNAS employs gradient based strategies

in searching for architectures for low-level image restora-

tion tasks, probably for the first time, and shares cells across

different feature levels to save memory. Our method only

needs about 4.5 GPU hours to find a high-performing archi-

tecture on the BSD500 dataset (see Section 3.5).

2. Our Approach

Following [20, 1], we employ gradient-based architec-

ture search strategies in our HiNAS and we search for a

computation cell as the basic block then build the final ar-

chitecture by stacking the found block with different widths.

HiNAS defines a flexible hierarchical search space to de-

sign architectures for image denoising. In this section, we

first introduce how to search for architectures of cells using

continuous relaxation and adaptive search space. Then we

explain how to determine the widths via multiple candidate

paths and cell sharing. Last, we present our search strategy

and our the loss functions.

2.1. Inner Cell Architecture Search

Continuous relaxation. For inner cell architecture search,

we employ the continuous relaxation strategy proposed in

DARTS [20]. More specifically, we build a supercell that

integrates all possible layer types, which is show in the left

side of Figure 1. This supercell is a directed acyclic graph
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Figure 1: Inner cell architecture search. Left: supercell that contains all

possible layer types. Right: the cell architecture search result, a compact

cell, where each node only keeps the two most important inputs and each

input is connected to the current node with a selected operation.

containing a sequence of N nodes. In Figure 1, we only

show three nodes for clear exposition.

We denote the super cell in layer l as Cl, which takes

outputs of previous cells and the cell before previous cells

as inputs and outputs a tensor hl. Inside Cl, each node takes

the two inputs of the current cell and the outputs of all previ-

ous nodes as input and outputs a tensor. Taking the ith node

in Cl as an example, the output of this node is calculated as:

xl,i =
∑

xj∈Il,i

Oj→i(xj), (1)

where Il,i = {hl−1, hl−2, xl,j<i} is the input set of node i.
hl−1 and hl−2 are the outputs of cells in layers l − 1 and

l − 2, respectively. Oj→i is the set of possible layer types.

Here, to make the search space continuous, we operate each

Oj→i in an continuous relaxation fashion, which is:

Oj→i(xj) =

S
∑

k=1

αk
j→iO

k(xj), (2)

where {O1, O2, · · · , OS} correspond to S possible layer

types. αk
j→i denotes the weight of operator Ok.

Adaptive search space. Following several recent image

restoration networks [18, 31, 14], we do not reduce the spa-

tial resolution of the input. To preserve pixel-level informa-

tion for low-level image processing, we do not downsample

the features but rely on operations with adaptive receptive

field such as dilated convolutions and deformable convolu-

tions. In this paper, we pre-define the following 6 types of

basic operators:

• conv: 3× 3 convolution;

• sep: 3× 3 separable convolution;

• dil: 3× 3 convolution with dilation rate of 2;

• def: 3× 3 deformable convolution v2 [45];

Input

Conv 1

Conv 2

Concat

Conv 3

Input

Conv 1

Conv 2

ASPP

Output Output

Conv 3

Figure 2: Outer layer width search. Left: network architecture search

space, a supernet that consists of supercells and contains several super-

cells with different widths in each layer. Right: the final architecture

obtained from the supernet, a compact network that consists of compact

cells and only keeps one cell in each layer.

• skip: skip connection;

• none: no connection and return zero.

Each convolution operation starts with a ReLU activation

layer and is followed by a batch normalization layer.

hl is the concatenation of the outputs of N nodes and it

can be expressed as:

hl = Cell(hl−1, hl−2)

= Concat{xl,i|i ∈ {1, 2, · · · , N}}.
(3)

In summary, the task of cell architecture search is to learn

continuous weights α, which are updated via gradient de-

scent. After the supercell is trained, for each node, we rank

the corresponding inputs according to α values, then keep

the top two inputs and remove the rest to obtain the compact

cell, as shown in the right-side of Figure 1.

2.2. MemoryEfficient Width Search

Multiple candidate paths. Now we have presented the

main idea of cell architecture search, which is used to de-

sign the specific architectures inside cells. As previously

mentioned, the overall network is built by stacking several

cells of different widths. To build the overall network, we

still need to either heuristically set the width of each cell

or search for a proper width for each cell automatically. In

conventional CNNs, the change of widths of convolution

layers is often related to the change of spatial resolutions.

For instance, doubling the widths of following convolution

layers after the features are downsampled. In our HiNAS,
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instead of using downsample layers, we rely on operations

with adaptive receptive field such as dilated convolutions

and deformable convolutions to adjust the receptive field au-

tomatically. Thus the conventional experience of adjusting

width no longer applies to our case.

To solve this problem, we employ the flexible hierarchi-

cal search space and leave the task of deciding width of each

cell to the NAS algorithm itself, making the search space

more general. In fact, several NAS algorithms in the litera-

ture also search for the outer layer width, mostly for high-

level image understanding tasks. For example, FBNet [38]

and MNASNet [34]consider different expansion rates inside

their modules to discover compact networks for image clas-

sification.

In this section, we introduce the outer layer width search

space which determines the widths of cells in different lay-

ers. Similarly, we build a supernet that contains several su-

percells with different widths in each layer. As illustrated

in the left-side of Figure 2, the supernet mainly consists of

three parts:

1) start part, consisting of input layer and two convolu-

tion layer;

2) middle part, containing L layers and each layer having

three supercells of different widths;

3) end part, concatenating the outputs of CL, then feed-

ing them to a convolution layer to generate the output.

Our supernet provides three paths of cells with differ-

ent widths. For each layer, the supernet decides to increase

the width by twice, keeping previous width or reducing the

width by two. After searching, only one cell at each layer

is kept. The continuous relaxation strategy mentioned in

the cell architecture search section is reused for inter cell

search.

At each layer l, there are three cells C0
l , C1

l and C2
l with

widths W , 2W and 4W , where W is the basic width and

is set to 10 during search phase. The output feature of each

layer is

hl = {h0
l , h

1
l , h

2
l }, (4)

where hi
l is the output of Ci

l . The channel width of hi
l is

2iNW , where N is the number of nodes in the cells.

Cell sharing. Each cell Ci
l is connected to Ci−1

l−1
, Ci

l−1
and

Ci+1

l−1
in the previous layer and Ci

l−2
two layers before. We

first process the outputs hl−1 from those layers with a 1× 1
convolution to form features fl−1 with width 2iW , match-

ing the input of Ci
l . Then the output for the ith cell in layer

l is computed with

hi
l = Ci

l

(

i+1
∑

k=i−1

βi
kf

k
l−1, f

i
l−2

)

, (5)

where βi
k is the weight of fk

l−1
. We combine the three out-

puts of Cl−1 according to corresponding weights then feed

2

1

3

level

2

1

3

level

Figure 3: Comparison of cases of whether using cell sharing or not.

Left: features from different levels share same cell. Using cell sharing;

Right: features from different levels use different cells.

them to Ci
l as input. Here, features f i−1

l−1
, f i

l−1
and f i+1

l−1

come from different levels, but they share the cell Ci
l dur-

ing computing hi
l .

Note the similarity of this design with Auto-Deeplab,

which is used to select feature strides for image segmenta-

tion. However, in Auto-Deeplab, the outputs from the three

different levels are first processed by separate cells with dif-

ferent sets of weights before summing into the output:

hi
l =

i+1
∑

k=i−1

βi
kC

k
l (f

k
l−1, f

i
l−2), (6)

A comparison between Eqs. (5) and (6) is shown in Fig-

ure 3, where the inputs from layer l − 1 are not shown out

for simplicity.

For the hierarchical structure which has three candidate

paths, the cell in each candidate path is used once with

Eq. (5) and it is used three times with Eq. (6). By sharing

the cell Ci
l , we are able to save the memory consumption by

a factor of 3 in the supernet. Cell sharing has two main ad-

vantages: 1) improving applicability. NAS in general con-

sumes much memory and computation. Improving mem-

ory efciency enables much broader applications. 2)improv-

ing searching efciency. As cell sharing saves memory con-

sumption in the supernet, during search, we can use larger

batch sizes during search to increase the search speed. We

can also use a deeper and wider supernet for more accurate

approximations.

Deriving the final architecture. Note that, different from

the cell architecture search, we can not simply rank cells of

different widths according to β values then keep the top one

cell. In cell widths search, the channel widths of outputs

of different cells in the same layer can be very different.

Using the strategy that we have adopted in cell architecture

search may lead to the widths of adjacent layers in the final

network change drastically, which has a negative impact on

the efficiency, as explained in [25]. In cell width search,

we view the β values as probability, then use the Viterbi

decoding algorithm to select the path with the maximum

probability as the final result.
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2.3. Searching Using Gradient Descent

Optimization function. In terms of the optimization

method, our proposed HiNAS belongs to differentiable ar-

chitecture search. The searching process is the optimization

process. For image denoising, the two most widely used

evaluation metrics are PSNR and SSIM [37]; and we de-

sign the following loss for optimizing supernet:

loss = ‖fnet(x)− y‖
2

2
+ λ · lssim(fnet(x), y), (7)

where

lssim(x, y) = log10(ssim(x, y)
−1

), (8)

Here x and y denote the input image and corresponding

ground-truth. lssim(·) is a loss item that is designed to en-

force the visible structure of the result. fnet(·) is the super-

net. ssim(·) is structural similarity [37]. λ is a weighting

coefficient and it is empirically set to 0.5 in all of our exper-

iments.

Early stopping search. During optimization of the super-

net with gradient descent, we find that the performance of

network founded by HiNAS is often observed to collapse

when the number of search epochs becomes large. The very

recent method of Darts+ [16], which is concurrent to this

work here, presents similar observations. Because of this

collapse issue, it is hard to pre-set the number of search

epochs. To solve this problem, we employ an early stop-

ping search strategy. Specifically, we split the training set

into three disjoint parts: Train W, Train A and Validation

V. Sub-datasets W and A are used to optimize the weights

of the supernet (kernels in convolution layers) and weights

of different layer types and cells of different widths (α and

β). During optimizing, we periodically evaluate the per-

formance of the trained supernet on the validation dataset

V. We stop the search procedure when the performance of

supernet decreases for a pre-determined number of evalua-

tions. Then we choose the supernet which offers the highest

PSNR and SSIM scores on validation dataset V as the re-

sult of the architecture search. Details are presented in the

search settings of Section 3.1.

3. Experiments

3.1. Datasets and Implementation Details

Datasets We carry out the denoising experiments on two

datasets. The first one is BSD500 [28]. Following [27, 33,

18, 22], we use as the training set the combination of 200

images from the training set and 100 images from the vali-

dation set, and test on 200 images from the test set. On this

dataset, we generate noisy images by adding white Gaus-

sian noises to clean images with σ = 30, 50, 70.

The second one is SIM1800, built by ourselves. As

the additive white noise models is not able to accurately

Models # parameters (M) PSNR SSIM

HiNAS-ws 0.63 29.14 0.8403

HiNAS-w40 0.96 29.15 0.8406

HiNAS-wm 1.13 28.89 0.8370

Table 1: Comparisons of different search settings.

reproduce the true noise in real world, by using the cam-

era pipeline simulation method proposed in [12], we build

this new denoising dataset SIM1800, which contains 1600

training samples and 212 test samples. More details of this

dataset are introduced in supplementary.

Search settings. The supernet that we build for image de-

noising consists of 4 cells and each cell has 5 nodes. we

perform architecture search on BSD500 and apply the net-

works found by HiNAS on both denoising datasets. Specif-

ically, we randomly choose 2% of training samples as the

validation set (Validation V). The rest are equally divided

into two parts: one part is used to update the kernels of con-

volution layers (Train W) and the other part is used to opti-

mize the parameters of the neural architecture (Train A).

We train the supernet at most 100 epochs with batch size

of 12. We optimize the parameters of kernels and architec-

ture with two optimizers. For learning the kernels of convo-

lution layers, we employ the standard SGD optimizer. The

momentum and weight decay are set to 0.9 and 0.0003, re-

spectively. The learning rate decays from 0.025 to 0.001

with the cosine annealing strategy [23]. For learning the

parameters of an architecture, we use the Adam optimizer,

where both learning rate and weight decay are set to 0.001.

In the first 20 epochs, we only update the parameters of

kernels, then we start to alternately optimize the kernels of

convolution layers and architecture parameters from epoch

21.

During the training process of searching, we randomly

crop patches of 64 × 64 and feed them to the network.

During evaluation, we split each image to some adjacent

patches of 64 × 64 and then feed them to the network and

finally join the corresponding patch results to otain final re-

sults of the whole test image. We evaluate the supernet for

every epoch.

Training settings We train the network for 600k itera-

tions with the Adam optimizer, where the initial learning

rate, batchsize are set to 0.05 and 12, respectively. For

data augmentation, we use random crop, random rotations

∈ {0◦, 90◦, 180◦, 270◦}, horizontal and vertical flipping.

For random crop, the patches of 64 × 64 are randomly

cropped from input images.

3.2. Benefits of Searching for the Outer Layer
Width

In this section, to evaluate the benefits of searching outer

layer width, we apply our HiNAS on BSD500 with three

different search settings, which are denoted as HiNAS-ws,

HiNAS-w40, HiNAS-wm. For HiNAS-ws, both inner cell
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Figure 4: Comparisons of different search settings.

architectures and out layer width are found by our HiNAS

algorithm. For the latter two settings, only the inner cell

architectures are found by our algorithm and the outer layer

widths are set manually. The basic width of each cell are

set to 40 for HiNAS-w40. In HiNAS-wm, we set the basic

width of the first cell to 10, then double the basic width

cell by cell. The three settings are shown in Figure 4. The

comparison results for denoising on BSD500 of σ = 30 are

listed in Table 1.

As shown in Table 1, from HiNAS-ws to HiNAS-w40,

PSNR and SSIM show slight improvement, 0.01 for PSNR

and 0.0003 for SSIM. Meanwhile the corresponding num-

ber of parameters is increased by 52%. HiNAS-wm shows

the worst performance, and yet it contains the most param-

eters. With searching for the outer layer width, HiNAS-ws

achieves the best trade-off between the number of parame-

ters and accuracy.

3.3. Benefits of Using lssim Loss

Methods
σ = 30 σ = 50 σ = 70

PSNR SSIM PSNR SSIM PSNR SSIM

N3Net [31] 28.66 0.8220 26.50 0.7490 25.18 0.6960

HiNAS∗ 29.03 0.8254 26.77 0.7498 25.42 0.6962

HiNAS∗∗ 29.14 0.8403 26.77 0.7635 25.48 0.7129

Table 2: Ablation study on BSD500. HiNAS∗ is trained with single loss

MSE and HiNAS∗∗ is trained with the combination loss MSE and lssim.

Here we analyze how our designed loss item lssim im-

proves image restoration results. We implement two base-

lines: 1) HiNAS∗ trained with single MSE loss; and 2) Hi-

NAS∗∗ trained with the combination MSE loss and lssim.

Table 2 shows the results of these two methods and that of

N3Net on the BSD500 dataset. It is clear that both HiNAS∗

and HiNAS∗∗ outperform the competitive model, while Hi-

NAS∗∗ trained with the combination loss shows even better

results over HiNAS∗.

3.4. Architecture Analysis

Now let us analyse the architectures designed by HiNAS.

Figures 5 (a) and (b) show the search results in outer net-
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Figure 5: Architecture analysis. ‘Conv’, ‘def’ and ‘dil’ denote con-

ventional, deformable and dilated convolutions. ‘Skip’ is skip connec-

tion. (a) Outer layer architecture; (b) inner cell architecture; (c) modified

cells, R1; (d) modified cells, R2.

Methods HiNAS HiNAS, R1 HiNAS, R2

PSNR 29.14 29.06 29.13

SSIM 0.8403 0.8398 0.8400

Table 3: Architecture analysis.

work level and the details inside cells, respectively. From

Figures 5 (a) and (b), we can see that:

1. In the denoising network found by our HiNAS, the

width of cell that is most close to output layer has the

maximum number of channels. This is consist with

previous manually designed networks.

2. Generally speaking, with the same widths, deformable

convolution is more flexible and powerful than other

convolution operations. Even so, inside cells, in-

stead of connecting all the nodes with the power-

ful deformable convolution, HiNAS connects differ-

ent nodes with different types of operators, such as

conventional convolution, dilated convolution and skip

connection. We believe that these results prove that Hi-

NAS is able to select proper operators.

3. Separable convolutions are not included in the

searched results. We conjecture that this is caused

by the fact that we do not limit FLOPS or number of

parameters during search. Interestingly, the networks

found by our HiNAS still have fewer parameters than

other manual models.
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Methods
Cell # param. σ = 30 σ = 50 σ = 70 search cost training cost search

sharing (M) PSNR SSIM PSNR SSIM PSNR SSIM GPU hours GPU hours method

E-CAE [32] - 1.05 28.23 0.8047 26.17 0.7255 24.83 0.6636 4 V100 44.0 1 V100 3.6 EA

HiNAS ✗ 0.63 29.13 0.8403 26.78 0.7636 25.44 0.7123 1 V100 21.6 1 V100 12 gradient

HiNAS ✓ 0.63 29.14 0.8403 26.77 0.7635 25.48 0.7129 1 V100 4.5 1 V100 12 gradient

Table 4: Comparisons with E-CAE on BSD500. For E-CAE, the search and training time costs computed on V100 GPUs are provided by authors.

Methods # parameters (M) time cost (s)
σ = 30 σ = 50 σ = 70

PSNR SSIM PSNR SSIM PSNR SSIM

BM3D [4] - - 27.31 0.7755 25.06 0.6831 23.82 0.6240

WNNM [9] - - 27.48 0.7807 25.26 0.6928 23.95 0.3460

RED [27] 0.99 - 27.95 0.8056 25.75 0.7167 24.37 0.6551

MemNet [33] 4.32 - 28.04 0.8053 25.86 0.7202 24.53 0.6608

NLRN [18] 0.98 10411.49 28.15 0.8423 25.93 0.7214 24.58 0.6614

E-CAE [32] 1.05 - 28.23 0.8047 26.17 0.7255 24.83 0.6636

DuRN-P [22] 0.78 - 28.50 0.8156 26.36 0.7350 25.05 0.6755

N3Net [31] 0.68 121.11 28.66 0.8220 26.50 0.7490 25.18 0.6960

HiNAS 0.63 83.25 29.14 0.8403 26.77 0.7635 25.48 0.7129

Table 5: Denoising experiments. Comparisons with state-of-the-arts on the BSD500 dataset. We show our results in the last row. Time cost means

GPU-seconds for inference on the 200 images from the test set of BSD500 using one single GTX 980 graphic card.

From Figure 5 (b), we can see that the networks found by

HiNAS consist of many fragmented branches, which might

be the main reason why the designed networks have bet-

ter performance than previous denoising models. As ex-

plained in [25], the fragmentation structure is beneficial for

accuracy. Here we verify if HiNAS improves the accuracy

by designing a proper architecture or by simply integrating

various branch structures and convolution operations. We

modify the architecture found by our HiNAS in two differ-

ent ways and then compare the modified architectures with

unmodified architectures.

The first modification is replacing conventional convo-

lutions in the searched architectures with deformable con-

volutions as shown in Figure 5 (c). As mentioned above,

deformable convolution is more flexible than conventional

convolution, replacing conventional convolutions with de-

formable convolutions in theory should improve the capac-

ity of networks. The other modification is to change the

connection relationships between nodes inside each cell, as

shown in Figure 5 (d), which is aiming to verify if the con-

nection relationship built by our HiNAS is indeed appropri-

ate.

Following the two proposed modifications, we mod-

ify different operations and connections in different nodes.

Modied architectures achieve lower performance. However,

limited by space, we only show two examples here. The

modification parts are marked in red in Figure 5 (c) and

(d). The comparison results are listed in Table 3, where the

two mentioned modification operations, are denoted as R1
and R2. From Table 3, we can see that both modifications

reduce the accuracy. Replacing convolution operation re-

duces the PSNR and SSIM by 0.08 and 0.0005, respectively.

Changing connection relationships decreases the PSNR and

SSIM to 29.13 and 0.8400, respectively.

From the comparison results, we can draw a conclusion:

HiNAS does find a proper structure and select proper con-

volution operations, instead of simply integrating a complex

network with various operations. The fact that a slight per-

turbation to the found architecture deteriorates the accu-

racy indicates that the found architecture is indeed a local

optimum in the architecture search space.

3.5. Comparisons with Other NAS Methods

Inspired by recent advances in NAS, three NAS methods

have been proposed for low-level image restoration tasks

[32, 3, 21]. E-CAE [32] is proposed for image inpainting

and denoising. FALSR [3] is proposed for super resolution.

EvoNet [21] searches for networks for medical image de-

noising. All three methods are based on EA and require a

large amount of compuational resources and are GPU time

hungry. By using four P100 GPUs, E-CAE takes four days

(384 GPU hours) to execute the evolutionary algorithm and

fine-tune the best model for denoising on BSD500. FALSR

takes about 3 days on 8 Tesla-V100 GPUs (576 GPU hours)

to find the best architecture. EvoNet uses 4 Geforce TITAN

GPUs and takes 135 hours for finding the best gene. Here

we mainly focus on comparing our HiNAS with E-CAE,

because both them are proposed for searching for architec-

tures for the task of denoising on BSD500. Table 4 shows

the details.

Compared with E-CAE [32], FALSR [3] and EvoNet

[21], our HiNAS is much faster in searching. By using a sin-

gle Tesla V100, HiNAS takes about 4.5 hours in searching

(4.5 hours is for three levels of σ) and 12 hours for training
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Methods PSNR SSIM

NLRN [18] 27.53 0.8081

N3Net [31] 27.62 0.8191

HiNAS 27.23 0.8326

Table 6: Denoising results on SIM1800.

the network found by our algorithm. The fast search speed

of our HiNAS benefits from the following three advantages.

1. HiNAS uses a gradient based search strategy. EA

based NAS methods generally need to train a large

number of children networks (genes) to update their

populations. For instance, FALSR trained about 10k

models during its searching process. In sharp con-

trast, our HiNAS only needs to train one supernet in

the search stage.

2. In searching for the outer layer width, we share cells

across different feature levels, saving memory con-

sumption in the supernet. As a result, we can use

larger batch sizes for training the supernet, which fur-

ther speeds up search. Comparing the last two rows of

Table 4, we can see that the proposed cell sharing strat-

egy significantly accelerates the search speed without

any negative influence to performance.

3. By using a simple early-stopping search strategy, Hi-

NAS further saves 0.5 to 1.5 hours in the search stage.

3.6. Comparisons with Stateoftheart

Now we compare the HiNAS designed networks with

a number of recent methods and use PSNR and SSIM to

quantitatively measure the restoration performance of those

methods. The comparison results on BSD500 and SIM1800

are listed in Table 5 and Table 6, respectively. Refer to sup-

plementary materials to see visual results.

Table 5 shows that N3Net and HiNAS beat other models

by a clear margin. Our proposed HiNAS achieves the best

performance when σ is set to 50 and 70. When the noise

level σ is set to 30, the SSIM of NLRN is slightly higher

(0.002) than that of our HiNAS, but the PSNR of NLRN is

much lower (nearly 1dB) than that of HiNAS.

Overall our HiNAS achieves better performance than

others. In addition, compared with the second best model

N3Net, the network designed by HiNAS has fewer param-

eters and is faster in inference. As listed in Table 5, the

HiNAS designed network has 0.63M parameters, which is

92.65% that of N3Net and 60% that of E-CAE. Compared

with N3Net, the HiNAS designed network reduces the in-

ference time on the test set of BSD500 by 31.26%.

We compare the network designed by HiNAS with

NLRN and N3Net on SIM1800. Table 6 lists the results,

from which we can see that the SSIM of the HiNAS des-

gined network is much higher than that of NLRN and

N3Net. However, PSNR of the HiNAS designed network is

slightly lower than that of NLRN and N3Net. In summary,

Methods PSNR SSIM

DSC [24] 18.56 0.5996

LP [15] 20.46 0.7297

DetailsNet [7] 21.16 0.7320

JORDER [39] 22.24 0.7763

JORDER-R [39] 22.29 0.7922

SCAN [14] 23.45 0.8112

RESCAN [14] 24.09 0.8410

HiNAS 26.31 0.8685

Table 7: De-raining results on Rain800. With a GTX 980 graphic card,

RESCAN and HiNAS respectively cost 44.35, 21.80 GPU-seconds for

inference on the test set of Rain800.

the performance of the HiNAS designed network is com-

petitive with that of NLRN and N3Net on SIM1800. The

corresponding visual result is shown in the supplementary

material.

Additional experiments We apply the proposed HiNAS on

a challenging de-raining dataset Rain800. The supernet that

we build for image de-raining contains 3 cells and each cell

is made up of 4 nodes. Search and training setting are con-

sistent with that of the denoising experiments, except that

we use random crop and horizontal flipping for augmenta-

tion.

The results are listed in Table 7. Corresponding vi-

sual results are included in supplementary materials. As

shown in Table 7, the de-raining network designed by Hi-

NAS achieves much better performance than others. Com-

paring RESCAN to the network designed by HiNAS, PSNR

and SSIM are improved by 2.22 and 0.0275, respectively. In

addition, the inference speed of HiNAS designed de-raining

network is 2.03× that of RESCAN.

4. Conclusion

In this work, we have proposed HiNAS, an memory-

efficient hierarchical architecture search algorithm for the

low-level image restoration task image denoising. HiNAS

adopts differentiable architecture search algorithms and a

cell sharing strategy. It is both memory and computation

efficient, taking only about 4.5 hours to search using a sin-

gle GPU. In addition, a simple but effictive early stopping

strategy is used to avoid the NAS collapse problem. Our

proposed HiNAS achieves highly competitive or better per-

formance compared with previous state-of-the-art methods

with fewer parameters and a faster inference speed. We be-

lieve that the proposed method can be applied to many other

low-level image processing tasks.
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