
Nested Scale-Editing for Conditional Image Synthesis

Lingzhi Zhang∗ Jiancong Wang∗ Yinshuang Xu Jie Min

Tarmily Wen James C. Gee Jianbo Shi

University of Pennsylvania

Figure 1: Our approach enables scale-specific visual editings in conditional image synthesis. We can choose to surgically

manipulate coarse-level structural information or fine-level details in Cat2Dog translation and image outpainting tasks.

Abstract

We propose an image synthesis approach that provides

stratified navigation in the latent code space. With

a tiny amount of partial or very low-resolution im-

age, our approach can consistently out-perform state-

of-the-art counterparts in terms of generating the clos-

est sampled image to the ground truth. We achieve

this through scale-independent editing while expand-

ing scale-specific diversity. Scale-independence is

achieved with a nested scale disentanglement loss.

Scale-specific diversity is created by incorporating a

progressive diversification constraint. We introduce se-

mantic persistency across the scales by sharing com-

mon latent codes. Together they provide better control

of the image synthesis process. We evaluate the ef-

fectiveness of our proposed approach through various

tasks, including image outpainting, image superresolu-

tion, and cross-domain image translation.

1. Introduction

Imagine that we want to identify a person based on the ap-

pearance of their eyes and nose, or a lower resolution image,

as shown in figure 1. One solution may be to outpaint the

entire face, conditioned on the partial information available.

∗equal contribution.

We want to be as imaginative and as detailed as possible to

give us a greater chance of success in finding the right per-

son. These tasks are multimodal in nature, i.e., a single

input corresponds to many plausible outputs.

Conditional image synthesis approaches aim to solve this

problem by sampling stochastic latent codes to generate

images in a GAN setting. However, these image synthe-

sis methods of sampling operate as uncontrollable “black

boxes”. During inference, we can only hope that a sam-

pled random variable generates the ideal image we desire;

otherwise, we need to keep sampling.

We propose a steerable conditional image synthesis ap-

proach. Inspired by the steerable filtering in the wavelet

process [48], we wish to ‘steer’ the image synthesis across

the spatial scales consistently. While in steerable filter-

ing we are concerned with angular edge orientation, in our

domain, we focus on object semantics. Specifically, we

aim to create visual information from a coarse-level struc-

ture to fine-level texture. The key objectives are 1) scale-

independence: we learn disentangled representations that

model scale-specific visual details, and 2) diversity/mode

covering: we ensure that the decoder covers diverse varia-

tions presented on ground truth images.

To implement the scale-independent objective, we take

inspiration from the Laplacian image pyramid decomposi-

43215477



Figure 2: Demonstration of an application scenario in which a user interactively recovers a facial identity by sampling scale-

specific visual details using our proposed approach. Image you look at this occluded face, you might have a rough mental

picture of someone. We can edit the image at multi-scale to recover the identity.

tion: our algorithm essentially learns to generate progres-

sively more refined image along spatial scales, with each

level of refinement independent of each other. To imple-

ment the diversity objective, we extend a successful diver-

sity constraint [36] to multi-scale and ensure scale-specific

diversity.

Unlike current multi-scale noise injection methods [7,

25], our multi-scale injected noises share same latent vari-

able during training. This introduces semantic persistency,

meaning the decoder expects latent variables on differ-

ent scales to have similar semantic meaning. Semantic-

persistence can play a major role in search efficiency, since

it enables stratified navigation in the latent code space.

Fig.2 illustrates the stratified navigation process for face su-

perresolution. We first coarsely sample a widespread set

of latent random variables to find an image roughly match-

ing the ground truth. Because of our scale-independent rep-

resentation, we can efficiently edit the image by adjusting

any of the latent variable at a specific scale and edit the im-

age information at the corresponding scale. Therefore we

can generate a refined image by adjusting the existing latent

variable at next scale and repeat, until final scale is reached.

This is the ideal steering behavior we seek.

In summary, we highlight our contributions as follows:

• We are the first to propose a multi-scale feature disen-

tanglement loss and a progressive diversification reg-

ularization to achieve scale-specific control for condi-

tional image synthesis.

• To the best of our knowledge, our work is the first to

utilize diverse conditional image generation for iden-

tity recovery. We developed three evaluation metrics

for identity recovery in diverse conditional synthesis

scenarios.

• We evaluate our aforementioned development on tasks

of image outpainting, image superresolution, and mul-

timodal image translation. Our methods achieves com-

petitive image quality and diversity compared to state-

of-the-art counterparts, while consistently outperform-

ing them in terms of identity recovery.

2. Related Work

2.1. Multimodal Conditional Generation

Deep generative models have been widely used in many

conditional image synthesis tasks, such as super-resolution

[9,28,54,60–62], inpainting missing regions [21,35,43,44,

56,58,59,65], style transfer [15,18,22,34,39], image blend-

ing [40, 49, 55, 66], and text-to-image [23, 32, 46]. The ma-

jority of these tasks are in nature multimodal, where single

input condition may correspond to multiple plausible out-

puts. BicycleGAN [68] first proposed to model this one-to-

many distribution by explicitly encoding the target domain

into a compact Gaussian latent distribution from which the

generator samples. During inference, the generator maps a

random variable drawn from the latent distribution, com-

bined with the given input, to the output. StackedGAN

and its variant StackedGAN++ [63, 64] proposed to use a

hierarchical generator which incorporates conditional code

on multiple scales and were able to generate high quality

synthetic images. DRIT [31] and MUNIT [20] proposed

to disentangle the features into domain-invariant content

codes and domain-specific style codes for unpaired image-

to-image translations. During inference, the sampled style

codes combined with the content code can be transformed

into many plausible outputs.

Although the above approaches can generate multimodal

outputs given a conditional input, there is no explicit con-

straint to prevent the generator from mapping the vari-

ous sampled random variables to similar outputs, which is

known as mode collapse. Two concurrent works aim to al-
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leviate this issue by proposing diversity regularization tech-

niques for generative training. Mode Seeking GAN (MS-

GAN) [41] proposes to maximize the ratio of two sampled

images over the corresponding latent variables. Normalized

Diversification (NDiv) [36] proposes to enforce the gener-

ator to preserve the normalized pairwise distance between

the sparse samples from a latent distribution to the corre-

sponding high-dimensional output space.

In addition to image synthesis, other applications with

multimodal predictions include but are not limited to pre-

dicting uncertain motion flows in the future [14, 51, 57],

hallucinating diverse body pose affordance in 2D [52] and

3D [33] scenes.

Different from previous work, our focus is to achieve

scale-specific control for image synthesis and progres-

sively inject stochasticity into different scales of the syn-

thesized image. Therefore, our proposed techniques can be

readily added into these orthogonal previous approaches.

We demonstrate that our techniques work with face out-

painting, face superresolution, and multimodal animal

translation with modified MUNIT [20].

2.2. Feature Disentanglement

Recently there is increasing interest in disentanglement of

distinct image characteristics for image synthesis. [26, 29,

53] attempt to decouple image style and content, while

[12, 13, 38] target object shape and appearance. These ap-

proaches explicitly incorporate two codes that denote the

two characteristics, respectively, into the generative model

and introduce a guided loss or incorporate the invariance

constraint to orthogonalize the two codes, while our method

disentangles the scale-specific variations from global struc-

tural feature to local texture feature through hierarchical in-

put of latent variables into the generative model.

Besides the disentanglement of two specific characteris-

tics, several prior efforts [4, 5, 8, 10, 17] have explored par-

tially or fully interpretable representations of independent

factors for generative modeling. Some current work learn

representations of the specific attribute by supervised learn-

ing [2, 45] with a conditioning discriminator. Our method

focuses on multi-scale disentanglement through unsuper-

vised learning, which is distinct from the concept of dis-

entangling specific semantic factors.

[24] has first proposed synthesize images from low-

resolution scale to higher-resolution scale in a progressive

manner. Similarly, other closely related work is [7] and

[25]. [7] pioneered the use of the hierarchical generator with

latent codes injected at each level for multi-scale control

of image synthesis and further advanced in [25]. Both [7]

and [25], however, only target unconditional image synthe-

sis and do not explicitly enforce diversity of outputs. Our

work extends to conditional synthesis and incorporates ex-

plicit diversity constraints.

Since the purpose and definition of disentanglement in

our method are different from previous work, the existing

metrics for evaluating disentanglement [4,11,17,25,27] are

not appropriate for measuring feature disentanglement for

our method. We therefore develop a new means to quantify

the hierarchical disentanglement for our approach.

3. Methods

Multimodal conditional image synthesis combines a given

input conditional code with sampled latent codes drawn

from a compact latent space (usually a standard normal

or uniform distribution) and decodes the combination into

an output image. Unlike previous efforts [20, 36, 41, 68],

we propose a cascading disentangled decoder inspired by

Laplacian image pyramid [1]. With a central multi-scale

backbone, it generates output images at every feature spa-

tial scale through a single convolutional layer. We enforce

the generated images at every scale to be average-pooled

back into a lower-resolution generated image. By doing so,

we distill features at each spatial scale to only focus on im-

age details — similar to a Laplacian image — at the corre-

sponding spatial resolution. With these scale-independent

features, we can inject random variables into each scale of

the image features to model the scale-specific stochasticity

of image details.

3.1. Multiscale Disentanglement

To enable scale-specific editing of visual contents, we need

a model that has a disentangled latent code representation.

This implies that visual content on specific scales can be

modified by changing corresponding latent codes, while vi-

sual contents on other scales remain unaffected.

In a decoder network that receives only a single latent

code at the coarsest scale, the single latent code controls

image generation at all scales and hence changing the code

will affect all scales. This motivates the multi-latent code

design: injecting latent codes on all spatial scales and al-

lowing each individual latent code to control the image on

corresponding scales. Let Z0 denote the random base latent

code, and Z1 = A1(Z0), Z2 = A2(Z0), ·Zk = Ak(Z0),
and the latent variable at each scale level i ∈ {1...k}, where

Ai is an affine mapping matrix. Intuitively, the latent code at

coarse scale may mostly affect global structure while latent

code at fine scale is more likely to alter local textureat its

respective scale. Such behavior can be seen in [7] and [25].

However, this design does not guarantee that visual in-

formation represented by the latent code at different scales

are disentangled. For example, latent code at coarse scale

might control texture and color that are also affected by la-

tent code at fine scale. With such a decoder, it is still diffi-

cult to edit the scale-specific visual information while keep-

ing information on other scales unchanged.
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Figure 3: Our decoder network takes a conditional code and a single random variable as inputs. A single latent variable is

injected into multi-scale feature representations through the first several shared layers of MLPs. Then that output is injected

into different affine transformation layers with Adaptive Instance Normalization (AdaIN) [19]. At every spatial scale, a

single convolutional layer is used to decode a real image at each corresponding resolution. Our proposed disentanglement

loss enforces the generated images at every scale to be averaged-pooled back into a lower-resolution generated image. At

each iteration, we sample four latent variables and generate four images at each spatial scale, where we also enforce the

pairwise distance between sampled images and latent variables to encourage diverse synthesized outputs.

Therefore, we propose a simple but effective approach

to disentangle features at each layer of the decoder to only

control the visual information at the corresponding spatial

scale. At each layer in the decoder, we add a single con-

volution layer to synthesize an image at the corresponding

spatial resolution. Then, we enforce that each synthesized

image, when downsampled, matches the synthesized im-

age at the previous spatial scale. We call this constraint a

multi-scale disentanglement loss Ldisent. Specifically, we

use average pooling to downsample the synthesized image

and pixel-wise Euclidean distance to constraint the down-

sampling consistency. Our intuition is that, by doing so, the

features at each layer are not allowed to change any visual

information at the previous or deeper layers. In this way, we

distill each level of features to only edit the visual informa-

tion at its corresponding spatial scale.

Formally, we denote S as the downsampling operation

on image x, specifically, average 2 × 2 pooling with stride

of 2. The loss function of progressive downsampling con-

sistency is defined as follows,

Ldisent =

n−1
∑

i=1

d(S(Gi+1(c, z)), Gi(c, z)), (1)

where n is the number of resolution scales, c is the con-

ditional code, z is random variable, and Gi is the gen-

erator, whose subscript refers to the network layers that

are responsible for synthesizing images at each scale. For

Gi(2 ≤ i ≤ n) , they have iterative format:

Gi(c, z) = U [Gi−1(c, z), Ai(z)] (2)

and,

G1(c, z) = U [c, A1(z)] . (3)

where U denotes the Upsampling Module.

At each spatial scale, we also applied conditional GAN

to synthesize photo-realistic images, where the loss func-

tions are as follows,

LGAN =E
x∼pdata(x)

[

n
∑

i=1

log(Di(S
n−i(x)|c))

]

+ E
z∼p(z)

[

n
∑

i=1

log(1−Di(Gi(z, c)))

]

.

(4)

The similar multi-scale adversarial loss has been applied

in SinGAN [47] as well.

3.2. Progressive Diversification

To avoid mode collapse and increase diversity of the syn-

thesized images, we leverage the normalized diversifica-

tion [36], which forces the normalized pairwise distance of

generative outputs to be at least as large as that of the corre-

sponding latent variables.
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Figure 4: Qualitative comparison for multimodal image outpainting.

Identity
Method Quality ↓ Diversity ↑

Shortest Distance ↓ Recovery Count(%) ↑ Landmark Alignment ↓
BicycleGAN 64.133 0.093 0.233 15.34 5.914

MSGAN 56.998 0.232 0.237 28.93 4.754

Ndiv 68.855 0.319 0.256 20.95 5.126

Ours 55.854 0.333 0.228 34.78 4.540

Table 1: Quantitative Comparison with state-of-the-art approaches in multimodal image outpainting task.

Here we introduce normalized diversification in a pro-

gressive manner, that is, we add normalized diversification

loss at each layer of the hierarchical decoder. In compari-

son, previous work [36,41,42] applied the diversity penalty

only at the final scale output of the model, which enforces in

a brute force way the final output diversity but does not pre-

vent individual levels of the model from mode collapse (for

a 3-layer model where latent code z is injected at each level,

previous efforts only enforce that the final output varies by

z, but allow individual layers to collapse. For example, the

first layer of the model utilizes the z while second and third

layer ignore z entirely).

Mode collapses at individual levels prevent us from ex-

actly controlling the diversity on a specific level of structure

or texture for synthesized data. Thus, we propose progres-

sive diversification, effectively unfolding manifold topol-

ogy for different scales. In this way, we achieve not only in-

dependent multi-scale control during the generative process

but also guarantee latent that the code z introduces variation

on every scale, likely from structure to texture.

The inserted progressive normalized diversification can

be formulated as loss function 5.

LNdiv =

n
∑

k=1

1

N2 −N

N
∑

i=1

N
∑

j=1

max(αDz
ij −D

Gk(z,c)
ij ),

(5)

where N is the number of samples to calculate the nor-

malized pairwise distance matrix and Dz
ij , D

Gk(z|y)
ij are de-

fined as elements in normalized pairwise distance matrix

Dz ,DGk(z|y) ∈ R
N×N of zi

N
i=1 ∼ p(z):

Dz
ij =

d(zi − zj)
∑

j d(zi − zj)

D
Gk(z,c)
ij =

d(Gk(z, c)i −Gk(z, c)j)
∑

j d(Gk(z, c)i −Gk(z, c)j)
.

(6)

Here, d the latent variable is the Euclidean distance, and for

generative outputs is the pixel-wise Euclidean distance.

4. Experiments

The proposed approaches were evaluated through their per-

formance on various tasks, including image outpainting,

image superresolution, and dog2cat/cat2dog translation. In
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Figure 5: Qualitative comparison for multimodal image superresolution

Identity
Method Quality ↓ Diversity ↑

Shortest Distance ↓ Recovery Count(%) ↑ Landmark Alignment ↓
BicycleGAN 40.837 0.019 0.129 26.49 7.062

MSGAN 49.647 0.0438 0.131 29.48 5.907

Ndiv 81.4213 0.0758 0.143 5.60 5.938

Ours 46.346 0.0677 0.125 38.43 4.261

Table 2: Quantitative Comparison with state-of-the-art approaches in multimodal image superresolution task.

addition to conventional quality and diversity assessment,

we propose to evaluate the extent to which diverse sampling

can improve identity recovery, especially in the context of

facial recognition. We believe that this is a first attempt

that aims to apply diverse synthesis for better recognition.

Our premise is that given a conditional code containing only

partial information of the ground truth image, a decoder ca-

pable of generating diverse output can produce at least one

or more results that is close to or recovers the ground truth

image, as long as sufficient latent code is sampled. This

property would be useful in many difficult recognition situ-

ations, such as identifying criminals in largely occluded or

very low-resolution images. Diverse sampling would pro-

vide a set of candidates, which can then be narrowed down

further by human reviewers. We describe next three newly

proposed evaluation metrics in this work for identity recov-

ery.

4.1. Evaluation Metrics

To perform evaluation of our approach, we use the follow-

ing metrics.

FID. We use FID [16] to evaluate the quality of generated

data. This metric applies the Inception Network [50] to ex-

tract features from real and synthesized data, and then cal-

culates the Frechet distance between the two distributions

of collected real and synthesized features, respectively. A

lower FID score indicates less discrepancy between real and

synthesized data and hence higher quality.

LPIPS. We apply LPIPS [67] to quantify the diversity,

which calculates the pairwise average feature distance

across the whole generated dataset. We use AlexNet [30]

pretrained on ImageNet [6] to extract features. Larger val-

ues of the pairwise LPIPS score indicate increased image

diversity.

Identity Recovery. To quantify how well diverse sam-

pling recovers the true facial identity, we propose to eval-

uate the distance between the most similar sampled output

and the ground truth image. First, we compute the shortest

embedding distance between a set of sampled outputs and

the ground truth, where the embedding distance is given by

LPIPS. We average this shortest embedding distance across

all training examples, which we denote as Shortest Dis-

tance in Table (1) and (2). We also count the chance that

each method generates the most similar outputs under eval-

uation of this embedding distance, and denote this as Re-

covery Count. We also evaluate the identity recovery of
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Figure 6: Qualitative comparison against the state-of-the-art in multi-modal translation for cat/dog identity recovery. The

input (left column) indicates a MUNIT content code. Only one channel of the content code is shown for easier .

Identity
Method Quality ↓ Diversity ↑

Shortest Distance ↓ Recovery Count(%) ↑
MUNIT [20] 15.74 0.533 0.445 15.0

Ours 21.22 0.547 0.393 85.0

Table 3: Quantitative comparison with state-of-the-art approaches on the cross-modal image-to-image translation task.

face images using facial landmarks, which are obtained us-

ing a pretrained facial landmark detector [3]. Specifically,

the similarity between a sampled output and the ground

truth is given by the mean squared error distance between

the corresponding 68 facial landmark locations for the sam-

pled and ground-truth images. We refer to this evaluation as

Landmark Alignment.

4.2. Image Outpainting

We first present experimental results in an image outpaint-

ing task, where the goal is to fill in large areas of missing

pixels in a highly occluded image, which may have many

different solutions for a given input. In terms of model im-

plementations, we only need to add our proposed multi-

scale disentanglement and diversification into a standard

conditional encoder-decoder. The experiment is conducted

over the CelebA dataset [37] with cropped 128x128 images.

We compare our model with the current state-of-the-

art multimodal conditional sysnthesis approaches, includ-

ing BicycleGAN [68], MSGAN [41], and NDiv [36]. The

experimental results show that our model can generate the

best results in terms of image quality, diversity as well as

identity, as shown in Table.1. In our qualitative comparison

figure.4, we show that one of the sampled image could best

recover the ground truth facial identity. We think that this

is because our model can sample not only very diverse but

also realistic images.

4.3. Image Super­Resolution

Another multimodal conditional synthesis we run on face

data is super-resolution. While most of other super-

resolution approaches model this task as a deterministic

image-to-image process, we consider super-resolution from

a very low resolution image as a one-to-many process be-

cause of its uncertainty in nature. For example, the 16x16

low resolution in Figure.5 can be very difficult to identi-

fied. Even for human, it is very difficult to tell what is

the ground true high-resolution image is. Or, every human

would probably have a different answer. In this task, we use

bilinearly downsampled 16x16 image as low-resolution in-

put and 128x128 image as high-resolution output in CelebA

dataset [37].

Our implementation of superresolution model is similar

to image outpainting, but we start to decode image at scale

of 16x16, which is the same as input resolution. The disen-

tanglement and diversification is added at every other higher

resolution scale. As seen from Table. (2), even though our

approach does not reach the best quality or diversity, but

it achieves the best identity score. We think that the sim-

ply measuring quality or diversity separately is not suffi-

cient. BicycleGAN has the best quality but lack diversity,

so it is difficult to “hit” the ground truth image. NDiv has

the largest diversity but lacks quality, and thus it is also

very difficult to recover the realistic ground truth image.

In contrast, our model can produce reasonably large diver-

sity and good quality, and thus has the highest chance to re-

cover the ground truth image. Our implementation of super-

resolution model is similar to image outpainting, but we

start to decode image at scale of 16x16, which is the same

as input resolution. The disentanglement and diversifica-

tion is added at every other higher resolution scale. As seen

from Table. (2), even though our approach does not reach

the best quality or diversity, but it achieves the best identity

score. We think that the simply measuring quality or diver-

sity separately is not sufficient. BicycleGAN [68] has the

best quality but lack diversity, so it is difficult to “hit” the
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Figure 7: This figure demonstrates how much the generated image would change by varying noise injection at a specific

resolution scale. This is implemented by sampling a reference code, and only varying random variable at one scale at a time

and fixing the random variables at the other scales constant.

ground truth image. NDiv [36] has the largest diversity but

lacks quality, and thus it is also very difficult to recover the

realistic ground truth image. In contrast, our model can pro-

duce reasonably large diversity and good quality, and thus

has the highest chance to recover the ground truth image.

4.4. Dog to Cat Image Translation

We conduct an unpaired cross-modal image translation us-

ing the MUNIT backbone [20] on the cat and dog dataset

from [31]. This dataset contains 1264 training/100 testing

dog and 771 training/100 testing cat images. We modify the

MUNIT backbone for multi latent codes injection and im-

plemented the disentanglement loss and progressive diver-

sification loss as mentioned in section 3.1 and 3.2. Detailed

network architecture before and after modification can be

found in the supplemental material. We compare FID and

LPIPS of our model against the original MUNIT model

trained on the cat and dog dataset and report the perfor-

mance in Table.3. For identity recovery evaluation, we pass

the ground truth image through the content encoder from

the MUNIT framework and derive a content code, which

is recombined with sampled latent codes and decoded into

images. Quantitatively, we evaluate identity recovery using

the LPIPS metric from 4.1. Qualitative results of identity

recovery is demonstrated in Fig.6.

4.5. Multi­scale Disentanglement Evaluation

To quantify the multiscale disentanglement, we evaluate

perceptual variations on output images against different

noise varying scales. In specific, for scale k in our n scale

decoder, a given fixed input condition code c, we sample

a center latent code z. We fixed the input latent codes on

every scale to be z except for for scale k, where we sam-

ple 10 latent codes centered around z and generate 10 dif-

ferent output images. Pairwise perceptual distances (using

LPIPS) among these 10 images are calculated. We calculate

the pairwise perceptual distance for scale k across 1000 dif-

ferent input condition codes and averaged them. We plotted

the averaged perceptual distance against the scale on Fig.7.

For a general decoder (left) without the the disentanglement

constraint, the perceptual variation were not monotonically

decreasing along the scale. Our scale disentangled decoder

(right) on the other hand achieves multiscale disentangle-

ment: latent codes at finer scales monotonically introduce

less variation to the image, therefore editing latent code at

finer level has little effect on visual information on coarse

scale.

5. Conclusion

We develop a conditional image synthesis network that en-

ables scale-specific and diverse control of image content.

We instantiate our design with a cascading decoder net-

work. We couple it with multi-scale feature disentangle-

ment constraints and a progressive diversification regular-

ization. In addition, we gain semantic persistency in the

decoder by sharing latent code across scales during train-

ing. This allows for stratified navigation and search within

latent code space, and motivate the task of identity recov-

ery. We propose three evaluation metrics for identity re-

covery within conditional image synthesis scenarios. On

tasks of image outpainting, image superresolution, and mul-

timodel image translation, our method consistently outper-

forms state-of-the-art counterparts in terms of identity re-

covery, while having competitive image quality and diver-

sity. Hence we believe our method may potentially be use-

ful in extreme image recognition situations, such as recog-

nizing criminals in largely occluded or very low-resolution

images, and finding lost pets from low quality surveillance

images.
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