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Abstract

Detecting pedestrians and predicting future trajectories

for them are critical tasks for numerous applications, such

as autonomous driving. Previous methods either treat the

detection and prediction as separate tasks or simply add

a trajectory regression head on top of a detector. In this

work, we present a novel end-to-end two-stage network:

Spatio-Temporal-Interactive Network (STINet). In addition

to 3D geometry modeling of pedestrians, we model the

temporal information for each of the pedestrians. To do

so, our method predicts both current and past locations

in the first stage, so that each pedestrian can be linked

across frames and the comprehensive spatio-temporal

information can be captured in the second stage. Also, we

model the interaction among objects with an interaction

graph, to gather the information among the neighboring

objects. Comprehensive experiments on the Lyft Dataset

and the recently released large-scale Waymo Open Dataset

for both object detection and future trajectory prediction

validate the effectiveness of the proposed method. For the

Waymo Open Dataset, we achieve a bird-eyes-view (BEV)

detection AP of 80.73 and trajectory prediction average

displacement error (ADE) of 33.67cm for pedestrians,

which establish the state-of-the-art for both tasks.

1. Introduction

To drive safely and smoothly, self-driving cars (SDC)

not only need to detect where the objects are currently (i.e.

object detection), but also need to predict where they will

go in the future (i.e. trajectory prediction). Among the ob-

jects, pedestrian is an important and difficult type. The dif-

ficulty comes from the complicated properties of pedestrian

appearance and behavior, e.g. deformable shape and inter-

personal relations [7]. In this paper, we tackle the problem

of joint pedestrian detection and trajectory prediction from

a sequence of point clouds, as illustrated in Figure 1.

∗ Work done during an internship at Waymo.

Figure 1. Given a sequence of current and past point clouds, our

task is to detect pedestrians in the current frame, and predict the

future trajectory of them. In this figure, white points are input

point cloud sequence (stacked for visualization), yellow boxes are

detected objects, and the cyan lines are predicted future trajectory.

Traditionally, this problem is tackled by dividing the

perception pipeline into multiple modules: object detec-

tion [6, 13, 15, 16, 20, 21, 29, 30], tracking [18] and tra-

jectory prediction [2, 7, 9]; latter modules take the outputs

from the former modules. Although such strategy makes

each sub-module easy to design and implement, it sacrifices

the potential advantage of joint optimization. Latter mod-

ules can lose critical information bottle-necked by the inter-

faces between sub-modules, e.g. a pedestrian’s future tra-

jectory depends on many useful geometry features from the

raw sensor data, which may be abstracted away in the detec-

tion/tracking stage. To this end, researchers recently have

proposed several end-to-end neural networks to detect ob-

jects and predict trajectories simultaneously. FaF [17] and

IntentNet [4] are two of the representative methods, which

are designed based on single stage detectors (SSD) [16]; in

addition to original anchor classification and regression of

SSD, they also regress a future trajectory for each anchor.

We observed that there are two major issues that are crit-

ical for joint detection and trajectory prediction, but are

not addressed by previous end-to-end methods: 1) Tem-

poral modeling on object level: existence and future tra-

jectory of an object are embedded in both current and past
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frames. Current methods simply reuse single-stage detec-

tor and fuse the temporal information in the backbone CNN

in an object-agnostic manner either via feature concatena-

tion or 3D CNN [4, 17]. Such coarse level fusion can loss

fine-grained temporal information for each object, which is

critical for both tasks. 2) Interaction modeling among ob-

jects: the future trajectory of an object could be influenced

by the other objects. E.g., a pedestrian walking inside a

group may tend to follow others. Existing methods [4, 17]

do not explicitly model interactions among objects.

To address the aforementioned issues, we propose an

end-to-end Spatio-Temporal-Interactive network (STINet)

to model pedestrians’ temporal and interactive information

jointly. The proposed network takes a sequence of point

clouds as input, detects current location and predicts future

trajectory for pedestrians. Specifically, there are three sub-

components in STINet : backbone network, proposal gen-

eration network, and proposal prediction network. In the

backbone net, we adopted a similar structure as PointPil-

lars [13], and applied it on each frame of the point cloud,

the output feature maps from multi-frames are then com-

bined. The proposal generation network takes feature maps

from the backbone net and generates potential pedestrian in-

stances with both their current and past locations (i.e. tem-

poral proposals); such temporal proposals allow us to link

the same object across different frames. In the third mod-

ule (i.e. prediction network), we use the temporal proposals

to explicitly gather the geometry appearance and temporal

dynamics for each object. To reason the interaction among

pedestrians, we build a graph layer to gather the information

from surrounding pedestrians. After extracting the above

spatial-temporal-interactive feature for each proposal, the

detection and prediction head uses the feature to regress cur-

rent detection bounding box and future trajectory.

Comprehensive experiments are conducted on Waymo

Open Dataset [1] and Lyft Dataset [12] to demonstrate the

effectiveness of the STINet. Specifically, it achieves an av-

erage precision of 80.73 for bird-eyes-view pedestrian de-

tection, and an average displacement error of 33.67 cm for

trajectory prediction on Waymo Open Dataset. It achieves

real-time inference speeds and takes only 74.6 ms for infer-

ence on a range of 100m by 100m.

The main contributions of our work come in four folds:

• We build an end-to-end network tailored to model

pedestrian past, current and future simultaneously.

• We propose to generate temporal proposals with both

current and past boxes. This enables learning a com-

prehensive spatio-temporal representation for pedestri-

ans with their geometry, dynamic movement and his-

tory path in an end-to-end manner without explicitly

associating object across frames.

• We propose to build a graph among pedestrians to rea-

son the interactions to further improve trajectory pre-

diction quality.

• We establish the state-of-the-art performance for both

detection and trajectory prediction on the Lyft Dataset

and the recent large-scale challenging Waymo Open

Dataset.

2. Related work

2.1. Object detection

Object detection is a fundamental task in computer vi-

sion and autonomous driving. Recent approaches can be

divided into two folds: single-stage detection [15, 16, 20]

and two-stage detection [6, 21]. Single-stage detectors

do classification and regression directly on backbone fea-

tures, while two-stage detectors generate proposals based

on backbone features, and extract proposal features for

second-stage classification and regression. Single-stage de-

tectors have simpler structure and faster speed, however,

they lose the possibility to flexibly deal with complex ob-

jects behaviors, e.g., explicitly capturing pedestrians mov-

ing across frames with different speeds and history paths.

In this work, we follow the two-stage detection framework

and predict object boxes for both current and past frames as

proposals, which are further processed to extract their ge-

ometry and movement features.

2.2. Temporal proposals

Temporal proposals have been shown beneficial in action

localization in [10, 11]. They showed associating temporal

proposals from different video clips can help to leverage the

temporal continuity of video frames. [25] proposed to link

temporal proposals throughout the video to improve video

object detection. In our work, we also exploit temporal

proposals and step further to investigate and propose how

to build comprehensive spatio-temporal representations of

proposals to improve future trajectory prediction. This is a

hard task since there are no inputs available for the future.

Also we investigate to learn interactions between proposals

via a graph. We show that these spatio-temporal features

can effectively model objects’ dynamics and provide accu-

rate detection and prediction of their future trajectory.

2.3. Relational reasoning

An agent’s behavior could be influenced by other agents

and it is naturally connected to relational reasoning [3, 23].

Graph neural networks have shown its strong capability in

relational modeling in recent years. Wang et al. formulated

the video as a space-time graph, show the effectiveness on

the video classification task [26]. Sun et al. designed a re-

lational recurrent network for action detection and anticipa-

tion [24]. Yang et al. proposed to build an object relation-

ship graph for the task of scene graph generation [28].
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Figure 2. The overview of the proposed method. It takes a sequence of point clouds as input, detects pedestrians and predicts their future

trajectories simultaneously. The point clouds are processed by Pillar Feature Encoding [13, 30] to generate Pillar Features. Then each Pillar

Feature is fed into a backbone ResUNet [22] to get backbone features. A Temporal Region Proposal Network (T-RPN) takes backbone

features and generated temporal proposal with past and current boxes for each object. Spatio-Temporal-Interactive (STI) Feature Extractor

learns features for each temporal proposal which are used for final detection and trajectory prediction.

2.4. Trajectory prediction

Predicting the future trajectory of objects is an impor-

tant task, especially for autonomous driving. Previous re-

search has been conducted based on perception objects as

inputs [2, 5, 7, 9, 14]. Recently FaF [17] and IntentNet [4]

focused on end-to-end trajectory prediction from raw point

clouds as input. However, they simply re-used single-

stage detection framework and added new regression heads

on it. In our work, we exploit temporal region proposal

network and explicitly model Spatio-Temporal-Interaction

(STI) representations of pedestrians, and our experiments

show that the proposed STI modeling is superior on both

detection and trajectory prediction for pedestrians.

3. Proposed method

In this section, we discuss our proposed network in de-

tails. The overview of our proposed method is shown in

Figure 2, which can be divided into three steps. For each of

these steps, we discuss in the following subsections.

3.1. Backbone network

The backbone of our network is illustrated in Figure 3.

The input is a sequence of point clouds with t′ frames noted

as [PC−(t′−1), PC−(t′−2), · · · , PC0], which corresponds to

the lidar sensor input from the past t′ − 1 frames as well

as the current frame. All point clouds are calibrated to

SDC’s pose at the current frame so that the ego-motion

is discarded. To build rich pillar features while keeping

a feasible memory usage, we generate t pillar features

from the t′ input frames. Consecutive t′/t point clouds

PC−(j+1)t′/t+1, · · · , PC−jt′/t are processed with Voxeliza-

tion [13, 30] and then concatenated to generate a pseudo

image Ij (i.e. Pillar Features) with shape H × W × Cin.

ResBlock

ResBlock

1x Upsample

2x Upsample

4x Upsample

Concat

x

y

z

Pillar 
Features

ResUNetPillar Feature 
Encoding

Backbone 
Features

Figure 3. Backbone of proposed network. Upper: overview of

the backbone. The input point cloud sequence is fed to Voxeliza-

tion and Point net to generate pseudo images, which are then pro-

cessed by ResNet U-Net to generate final backbone feature se-

quence. Lower: detailed design of ResNet U-Net.

Thus the output of Pillar Feature Encoding is a sequence of

t Pillar Features [I−(t−1), I−(t−2), · · · , I0].

Next we adopt a similar backbone CNN network pro-

posed as in [22], as shown in the lower part of Figure 3.

Each of the Pillar Features Ij is first processed by three

ResNet-style blocks to generate intermediate features with

shape R
H×W×C0 ,R

1

2
H× 1

2
W×C1 and R

1

4
H× 1

4
W×C2 . Then

we use deconvolution layers to upsample them to the same

spatial shape with Ij . The concatenation of the upsampled

features serve as the backbone feature of Ij , noted as Bj .
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3.2. Temporal proposal generation

In order to explicitly model objects’ current and past

knowledge, we propose a temporal region proposal net-

work (T-RPN) to generate object proposals with both cur-

rent and past boxes. T-RPN takes the backbone feature se-

quence [B−(t−1), B−(t−2), · · · , B0] as the input, concate-

nates them in the channel dimension and applies a 1×1 con-

volution to generate a temporal-aware feature map. Classifi-

cation, current frame regression and past frames regression

are generated by applying 1 × 1 convolutional layers over

the temporal-aware feature map, to classify and regress the

pre-defined anchors.

The temporal region proposal network is supervised by

ground-truth objects’ current and past locations. For each

anchor a = (xa, ya, wa, la, ha) (x, y, w, l, h correspond

to x coordinate of box center, y coordinate of box center,

width of box, length of box and heading of box respec-

tively), it is assigned to a ground-truth object with largest

IoU of the current frame box gt = (xgt
0 , ygt0 , wgt, lgt, hgt

0 ).
Similar to SECOND [27], we compute the regression tar-

get in order to learn the difference between the pre-defined

anchors and the corresponding ground-truth boxes. For the

current frame, we generate a 5-d regression target da
0 =

(dxa
0 , dy

a
0 , dw

a, dla, dha
0):

dxa
0 = (xgt

0 − xa)/
√

(xa)2 + (ya)2 (1)

dya0 = (ygt0 − ya)/
√

(xa)2 + (ya)2 (2)

dwa = log
wgt

wa
(3)

dla = log
lgt

la
(4)

dha
0 = sin

hgt
0 − ha

2
(5)

With similar equations, we also compute t − 1 past regres-

sion targets for anchor a against the same ground-truth ob-

ject: da
j = (dxa

j , dy
a
j , dh

a
j ) for j ∈ {−1,−2, · · · ,−(t −

1)}. Width and length are not considered for the past re-

gression since we assume the object size does not change

across different frames. For each anchor a, the classifica-

tion target sa is assigned as 1 if the assigned ground-truth

object has an IoU greater than th+ at the current frame. If

the IoU is smaller than th−, classification target is assigned

as 0. Otherwise the classification target is −1 and the an-

chor is ignored for computing loss.

For each anchor a, T-RPN predicts a classification score

ŝa, a current regression vector d̂a
0 = (d̂xa

0 , d̂y
a
0 , d̂w

a, d̂la,

d̂ha
0) and t− 1 past regression vectors d̂a

j = (d̂xa
j , d̂y

a
j ,

d̂ha
j ) from the aforementioned 1 × 1 convolutional layers.

The objective of T-RPN is the weighted sum of classifica-

tion loss, current frame regression loss and past frames re-

gression loss as defined in the equations below, where ✶(x)

is the indicator function and returns 1 if x is true otherwise

0.

LT-RPN = λclsLcls + λcur regLcur reg + λpast regLpast reg (6)

Lcls =

∑

a
CrossEntropy(sa, ŝa)✶(sa ≥ 0)

∑

a
✶(sa ≥ 0)

(7)

Lcur reg =

∑

a
SmoothL1(da

0 , d̂
a
0)✶(s

a ≥ 1)
∑

a
✶(sa ≥ 1)

(8)

Lpast reg =
t−1
∑

j=1

∑

a
SmoothL1(da

−j , d̂
a
−j)✶(s

a ≥ 1)
∑

a
✶(sa ≥ 1)

(9)

For proposal generation, classification scores and regres-

sion vectors are applied on pre-defined anchors to generate

temporal proposals, by reversing Equations 1-5. Thus each

temporal proposal has a confidence score as well as the re-

gressed boxes for the current and past frames. After that,

non-maximum suppression is applied on the current frame

boxes of temporal proposals to remove redundancy.

3.3. Proposal prediction

3.3.1 Spatio-temporal-interactive feature extraction

Given backbone features [B−(t−1), · · · , B0] and temporal

proposals, spatio-temporal-interactive features are learned

for each temporal proposal to capture the comprehensive in-

formation for detection and trajectory prediction. Different

ways for modeling objects are combined to achieve this.

Local geometry feature: To extract object geometry

knowledge, we use the proposal boxes at j-th frame (i.e.

xj , yj , w, l, and hj) to crop features from Bj , as shown in

the lower left part of Figure 4. This is an extension of tradi-

tional proposal feature cropping used in Faster-RCNN [21],

to gather position-discarded local geometry features from

each frame. To simplify the implementation on TPU, we

rotate the 5-DoF box (xj , yj , w, l, hj) to the closest stand-

ing box (xmin,j , ymin,j , xmax,j , ymax,j) for ROIAlign [8].

Local dynamic feature: As illustrated in the lower mid-

dle part of Figure 4, we use a meta box (drawn in yel-

low) which covers the whole movement of the pedes-

trian to crop features for all Bj’s. The meta box is the

smallest box which contains all current and history pro-

posal boxes. Formally, after transferring all rotated pro-

posal boxes (xj , yj , w, l, hj) to the closest standing boxes

(xmin,j , ymin,j , xmax,j , ymax,j), the meta box is computed

with the following equations:

xmin = min
j

(xmin,j); ymin = min
j

(ymin,j)

xmax = max
j

(xmax,j); ymax = max
j

(ymax,j)

This feature captures the direction, curvature and speed of

the object, which are useful for future trajectory prediction.
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Figure 4. Spatial-Temporal-Interactive Feature Extractor (STI-

FE): Local geometry, local dynamic and history path features are

extracted given a temporal proposal. For local geometry and local

dynamics features, the yellow areas are used for feature extraction.

Relational reasoning is performed across proposals’ local features

to generate interactive features.

History path feature: In order to directly encode objects’

past movement, we exploit the location displacement over

different frames as the history path feature. To be specific,

given a temporal proposal with xj , yj as the box centers,

the history path feature is MLP([x0 − x−1, y0 − y−1, x0 −
x−2, y0 − y−2, · · · , x0 − x−(t−1), y0 − y−(t−1)]).

To aggregate spatial and temporal knowledge for each

proposal, the concatenation of local geometry feature and

the local dynamic feature is fed into a ResNet block fol-

lowed by a global average pooling. The pooled feature is

then concatenated with the history path feature, and serves

as the proposal-local feature, noted as fi for the i-th tempo-

ral proposal.

As discussed before, the future trajectory of a pedestrian

could be influenced by the surrounding pedestrians’ behav-

iors. In order to model such interactions among pedestrians,

we design an interaction layer which uses a graph to prop-

agate information among objects, as shown in the middle

part of Figure 4. Specifically, we represent each tempo-

ral proposal as a graph node i; the embedding of node i is

noted as fi, which is the corresponding proposal-local fea-

ture. The edge vij represents the interaction score between

node i and node j. vij is learned from fi and fj , which can

be represented as below.

vij = α([φ1(fi);φ2(fj)])

where α and φ’s can be any learnable functions. In our

implementation, we use fully-connected layer for α and φ’s.

Given the interaction scores among all pairs of nodes, we

can gather the information for each node from the neighbor-

ing nodes. Specifically, the interaction embedding gi gath-

ered for node i is calculated as follows:

gi =
∑

j

exp {vij}

Vi
γ([fi; fj ])

where Vi =
∑

j exp {vij} is the normalization constant,

and γ is a mapping function (a fully-connected layer is

adopted in our implementation).

3.3.2 Proposal classification and regression

Given proposal-local features fi for each temporal propos-

als, two fully-connected layers are applied to do classifica-

tion and regression respectively for the current frame. To

be aligned with our intuitions, the proposal-local feature fi
combined with the interaction feature gi is used to predict

future frame boxes, by one fully-connected layer with 3t
output channels where t is the number of future frames to

predict and 3 stands for x coordinate, y coordinate and head-

ing respectively. During the training, temporal proposals

are assigned classification and regression targets with the

same strategy discussed in Subsection 3.2 and the objective

is the weighted sum of classification loss, current frame re-

gression loss and future frames regression loss similar to

Equations 6-9. During inference, each proposal is predicted

with a classification score and current/future boxes. Non-

maximum suppression is applied on them based on the IoU

between their current boxes, to remove redundancy.

4. Experiment

4.1. Experiment settings

Dataset: We conduct experiments on the Waymo Open

Dataset (WOD) [1] and the Lyft Dataset (Lyft) [12]. WOD

contains lidar data from 5 sensors and labels for 1000 seg-

ments. Each segment contains roughly 200 frames and has a

length of 20 seconds. Train and validation subsets have 798

and 202 segments respectively. To model the history and

predict the future, we take 1 second history frames and 3

second future frames for each example and extract examples

from the center 16 seconds (1s∼17s) from each segment.

Thus 126,437 train examples and 31,998 validation exam-

ples are extracted, and each of them contains history frames

of 1 second and future frames of 3 seconds. We sample 6

frames including 5 history frames and the current frame,

with tinput = {−1.0,−0.8,−0.6,−0.4,−0.2, 0}, and the

point clouds from those frames are fed into the network as

inputs. In order to build richer voxel features while saving

computation and memory, every two frames are combined
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Model MF TS DE@1 ↓ DE@2 ↓ DE@3 ↓ ADE ↓ HR@1 ↑ HR@2 ↑ HR@3 ↑

IntentNet X 21.17±0.02 39.74±0.07 61.60±0.12 36.04±0.12 93.18±0.03 76.50±0.08 61.60±0.12

MF-FRCNN X X 20.87±0.08 39.23±0.14 60.59±0.22 35.57±0.13 93.45±0.05 76.69±0.18 61.57±0.21

STINet X X 19.63±0.03 37.07±0.08 57.60±0.14 33.67±0.07 94.36±0.05 78.91±0.06 64.43±0.15

Table 1. Trajectory prediction performance for different models on WOD. MF indicates whether the corresponding model takes multiple

frames as input. TS indicates whether the model has a two-stage framework. ↑ and ↓ indicate the higher/lower numbers are better for the

corresponding metric. DE and ADE are in centimeters. For models implemented by us, we train and evaluate the model for five times and

compute the average and standard deviation shown around ± in the table.

Model MF TS BEV AP ↑

PointPillar [29] 68.57

MVF [29] 74.38

StarNet [19] 72.50

IntentNet [4]1 X 79.43±0.10

MF-FRCNN X X 79.69±0.19

STINet X X 80.73±0.26

Table 2. Detection performance for different methods on WOD.

MF indicates whether the corresponding model takes multiple

frames as input. TS indicates whether the model has a two-stage

framework. BEV AP is computed with an IoU threshold of 0.5.

↑ indicates the higher numbers are better for the corresponding

metric.

by concatenating the voxelization output features thus we

have three pillar features as discussed in Subsection 3.1.

For the future prediction, we predict trajectory for 6 future

frames with tfuture = {0.5, 1.0, 1.5, 2.0, 2.5, 3.0}. The range

is 150m by 150m around the self-driving car, and we use a

pillar size of 31.25cm by 31.25cm to generate pillar features

of shape 480 × 480. Lyft contains lidar data from 1 sensor

and labels for only 180 segments, with 140 and 40 segments

for train and validation respectively. With the same settings,

14,840 and 4,240 examples are extracted for train and val-

idation. Each example has 1-second history and 3-second

future. We have tfuture = {0.6, 1.2, 1.8, 2.4, 3.0} for Lyft

due to its 5Hz sampling rate.

Evaluation metric: The evaluation metric for detection is

BEV AP (Bird-Eyes-View Average Precision) with the IoU

threshold set to 0.5. Objects with fewer than 5 points are

considered hard and are excluded during evaluation. For

trajectory prediction, we employ the metrics used in [4, 9].

For t ∈ tfuture, we compute the DE@t (Displacement Error)

and the HR@t (Hit Rate) with a displacement error thresh-

old of 0.5m. We also compute the ADE (Average Displace-

ment Error) which equals to 1
|tfuture|

∑

t∈tfuture
DE@t.

Implementation: Our models are implemented in Ten-

sorFlow and we train the model with Adam optimizer

on TPUv3 for 140k and 70k iterations for Waymo Open

Dataset and Lyft Dataset respectively. The learning rate is

4×10−4 and batch size is 1 per TPU. We use 32 TPU cores

together for the training, thus the effective batch size is 32.

1IntentNet without intent prediction head implemented by us.

We also implement IntentNet [4] and Faster-RCNN [21] in

TensorFlow as the baselines, which are noted as “Intent-

Net” and “MF-FRCNN”. Our implemented IntentNet (1)

takes multiple frames as input and share the same back-

bone net as STINet; (2) removes the intent classification

part, and only regresses a future trajectory. MF-FRCNN

refers to a Faster-RCNN [21] model with several changes:

(1) It uses the same backbone net as STINet, please refer

to Section 3.1; (2) for each object proposal, in addition to

the bounding box, we also regress future trajectories and

headings. Note that the difference between proposals from

MF-FRCNN and our method is that MF-FRCNN only pre-

dicts the current box of objects, while our method exploits a

novel Temporal RPN which also generates the correspond-

ing history boxes associated to each current box.

4.2. Results on Waymo Open Dataset

The main results on Waymo Open Dataset of pedestrian

detection and trajectory prediction are summarized in Ta-

ble 2 and Table 1. For detection we compare our proposed

method (in the last row) with the current state-of-the-art

detectors [19, 29] and our method surpasses the off-the-

shelf baselines by a very large margin, improving the BEV

AP from 74.38 to 80.73. To avoid the effects from multi-

frame inputs and different implementation details, we also

compare with our implementation of IntentNet and multi-

frame Faster RCNN [21], which are noted as “IntentNet”

and “MF-FRCNN” in Table 2. Our proposed method out-

performs all baselines and it confirms the effectiveness of

our T-RPN and the STI modeling of proposals.

In Table 1 we compare the trajectory prediction perfor-

mance between our proposed method, IntentNet and MF-

FRCNN. Our proposed method surpasses all competitors

by a large margin, and the improvement is larger than the

improvement on detection. It aligns with our intuition since

T-RPN and STI modeling are designed to better model ob-

jects’ movement and more useful to forecast their trajectory.

For a detailed comparison of STINet and MF-FRCNN,

we evaluate the detection and trajectory prediction by

breaking down the objects into five bins based on the future

trajectory length in 3s. The five bins are 0∼2.5m, 2.5∼5m,

5∼7.5m, 7.5∼10m and 10m∼ ∞ respectively. We report

BEV AP, ADE and the relative improvement in Table 3

and 4. The STINet is consistently better than MF-FRCNN
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Model 0∼2.5 2.5∼5 5∼7.5 7.5∼10 10∼ ∞

MF-FRCNN 63.07 90.44 93.27 88.00 77.15

STINet 64.23 91.15 94.46 88.97 80.50

∆% 1.8% 0.8% 1.3% 1.1% 4.3%

Table 3. Bird-eyes-view average precision (BEV-AP) breakdown

comparison of MF-FRCNN and STINet on WOD. Objects are split

into five bins base on the future trajectory length with a bin size of

2.5m. Last row is the relative improvement of STINet.

Model 0∼2.5 2.5∼5 5∼7.5 7.5∼10 10∼ ∞

MF-FRCNN 26.90 37.56 46.39 104.60 173.50

STINet 26.73 35.42 41.18 89.74 137.17

∆% 0.6% 6.0% 11.2% 14.2% 20.9%

Table 4. Average displacement error (ADE, in centimeters) break-

down comparison of MF-FRCNN and STINet on WOD. Objects

are split into five bins base on the future trajectory length with a

bin size of 2.5m. Last row is the relative improvement of STINet.

Model BEV AP ↑ DE@3 ↓ ADE ↓ HR@3 ↑

MF-FRCNN 33.90 82.61 51.11 49.74

STINet 37.15 76.17 46.09 50.73

Table 5. Detection and trajectory prediction performance on Lyft.

LG LD BEV AP ↑ DE@3 ↓ ADE ↓ HR@3 ↑

X 80.38 64.15 37.67 58.46

X 79.69 59.71 34.96 62.22

X X 80.53 58.95 34.49 62.99

Table 6. Ablation studies on local geometry and local dynamic

features (noted as LG and LD in the table respectively). All entries

are trained without History Path and Interactive features.

L+G Path DE@3 ↓ ADE ↓ HR@3 ↑

X 58.95 34.49 62.99

X X 58.04 33.92 63.87

† X 67.80 39.86 52.25
Table 7. Ablation studies on history path feature. † indicates the

corresponding feature is used only for detection and ignored while

prediction the trajectory.

for both tasks. For trajectory prediction on objects moving

more than 5m, the relative improvements are significant and

consistently more than 10%. It confirms that the proposed

method can leverage the details of history information and

provide much better trajectory predictions, especially for

pedestrians with a larger movement.

4.3. Results on Lyft Dataset

The detection and trajectory prediction results on the

Lyft Dataset are summarized in Table 5. The performances

on both tasks are improved largely and the results confirm

the effectiveness of proposed method a small-scale dataset.

4.4. Ablation studies

In this section we conduct ablation experiments to ana-

lyze the contribution of each component and compare our

Breakdown I DE@3 ↓ ADE ↓ HR@3 ↑

All
58.04 33.92 63.87

X 57.60 33.67 64.43

Group
49.67 30.85 64.87

X 48.89 30.40 65.55
Table 8. Ablation studies on interaction features. ‘I’ indicates

whether the proposal interaction modeling is adopted. “All” and

“Group” correspond to evaluation on all pedestrians and pedestri-

ans belonging to a group with at least 5 pedestrians respectively.

model with potential alternative methods on the Waymo

Open Dataset. The results are summarized below. For clar-

ity, we only show DE@3, ADE and HR@3 for trajectory

prediction. The other metrics have the same tendency.

Effect of local geometry and local dynamic features: We

conduct experiments to analyze the effect of local geome-

try and local dynamic features, summarized in Table 6. The

local geometry feature is good at detection and the local dy-

namic feature is good at trajectory prediction. Geometry

feature itself does not work well for trajectory prediction

since it ignores dynamics for better detection. By combin-

ing both of the features, the benefits in detection and trajec-

tory prediction can be obtained simultaneously.

Effect of history path: Although objects’ geometry and

movement are already represented by local geometry dy-

namic features, taking history path as an extra feature can

give another performance gain by improving the DE@3

from 58.95 to 58.04 and the HR@3 from 62.99 to 63.87

(as shown in the first two row of Table 7). This suggests the

history path, as the easiest and most direct representation of

objects’ movement, can still help based on the rich repre-

sentations. However history path itself is far from enough

to give accurate trajectory prediction, suggested by the poor

performance in the last row of Table 7.

Effect of proposal interaction modeling: To demonstrate

the effectiveness of the proposed pedestrian interaction

modeling, we measure the performance for all pedestrians

as well as pedestrians in a group. Specifically, we design

a heuristic rule (based on locations and speeds) to discover

pedestrian groups and assign each pedestrian a group label

on the evaluation set. The details about the grouping al-

gorithm can be found in supplementary. We evaluate the

trajectory prediction performance on all pedestrians and the

pedestrians belonging to a group with at least 5 pedestri-

ans, shown in Table 8. The interaction modeling improves

trajectory prediction performance on “all pedestrians” and

achieve a larger boost for pedestrians that belong to groups

(DE@3 improved from 49.67 to 48.89 by 1.6%).

4.5. Model inference speed

We measure the inference speed of our proposed model

as well as baseline models on context range of 100m by
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Figure 5. Qualitative examples of STINet. The blue box are de-

tected pedestrians. The cyan and yellow lines are predicted future

and history trajectories of STINet respectively.

100m as well as 150m by 150m. All models are imple-

mented in TensorFlow and the inference is executed on a

single nVIDIA Tesla V100 GPU. For the context range of

100m by 100m, IntentNet, MF-FRCNN and STINet have

inference time of 60.9, 69.4 and 74.6ms respectively. Both

two-stage models (MF-FRCNN and STINet) are slower

than the single-stage model, and STINet is slightly slower

than MF-FRCNN. However, all three models can achieve

a real-time inference speed higher than 10Hz. For the

maximum range of Waymo Open Dataset, i.e., 150m by

150m, three models have inference time of 122.9, 132.1 and

144.7ms respectively.

4.6. Qualitative results

The visualization for the predictions of STINet is shown

in Figure 5. The blue boxes are the detected pedestrians.

The cyan and yellow lines are the predicted future and his-

tory trajectory for each detected pedestrian respectively. We

show two scenarios where the SDC is stationary in the up-

per sub-figure and the SDC is moving fast in the lower sub-

figure. It demonstrates that our model detects and predicts

very accurately in both cases.

Figure 6 shows a detailed comparison between STINet

and MF-FRCNN against the ground-truth for trajectory pre-

diction. Green boxes are the ground-truth boxes. Yel-

low, pink and cyan lines are the ground-truth future trajec-

Figure 6. Comparison between MF-FRCNN and STINet. The yel-

low line is the ground-truth future trajectory for pedestrians. The

pink and cyan lines are the predicted future trajectory from MF-

FRCNN and STINet respectively. It is clear that our proposed

method gives a much better prediction compared with the baseline,

for all three pedestrians. Upper: the overview of three pedestrians.

Lower: zoom-in visualization for three pedestrians.

tory as well as the predicted future trajectories from MF-

FRCNN and STINet respectively. For the left two pedestri-

ans who are walking in a straight line, both MF-FRCNN

and STINet predict future trajectory reasonably well but

the MF-FRCNN still has a small error compared with the

ground-truth; for the right-most pedestrian who is making

a slight left turn, MF-FRCNN fails to capture the details of

its movement and gives an unsatisfactory prediction, while

STINet gives a much better trajectory prediction.

5. Conclusion

In this paper, we propose STINet to perform joint de-
tection and trajectory prediction with raw lidar point clouds
as the input. We propose to build temporal proposals with
pedestrians’ both current and past boxes and learn a rich
representation for each temporal proposal, with local ge-
ometry, dynamic movement, history path and interaction
features. We show that by explicitly modeling the spatio-
temporal-interaction features, both detection and trajectory
prediction quality can be drastically improved compared
with single-stage and two-stage baselines. This also makes
us to re-think the importance of introducing second-stage
and proposals, especially for the joint detection and trajec-
tory prediction task. Comprehensive experiments and com-
parisons with baselines and state-of-the-arts confirm the ef-
fectiveness of our proposed method, and our method signif-
icantly improves the prediction quality while still achieves
the real-time inference speed which makes our model prac-
tical to be used in real-world applications. Combining cam-
era/map data and utilizing longer history with LSTMs could
be investigated to further improve the prediction and we will
explore them in future work.
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