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Abstract

Depth data containing a preponderance of discrimina-

tive power in location have been proven beneficial for

accurate saliency prediction. However, RGB-D saliency de-

tection methods are also negatively influenced by randomly

distributed erroneous or missing regions on the depth map

or along the object boundaries. This offers the possibility of

achieving more effective inference by well designed models.

In this paper, we propose a new framework for accurate

RGB-D saliency detection taking account of global location

and local detail complementarities from two modalities.

This is achieved by designing a complimentary interaction

module (CIM) to discriminatively select useful representa-

tion from the RGB and depth data, and effectively integrate

cross-modal features. Benefiting from the proposed CIM,

the fused features can accurately locate salient objects with

fine edge details. Moreover, we propose a compensation-

aware loss to improve the network’s confidence in detecting

hard samples. Comprehensive experiments on six public

datasets demonstrate that our method outperforms 18 state-

of-the-art methods.

1. Introduction

Salient object detection (SOD) aims to distinguish

the most attractive object in a scene. This fundamental

task plays an important role in a wide range of computer

vision and robotic vision tasks [3], such as video/image

segmentation [11], visual tracking [18], image captioning

[9]. Many previous works in SOD focus on RGB images.

Despite great progress RGB SOD methods have achieved,

they may remain sensitive when it comes to challenging

scenes. This is mainly because without accurate spatial

constraints, appearance features alone are often intrinsically
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Figure 1. Samples from RGB-D saliency datasets. First row shows

that ideal depth maps can significantly help the detection task.

However, as shown in the other rows, undesirable depth maps can

also significantly affect the prediction effect.

less predictive for saliency detection when the color

contrasts between foreground and background are quite

low, or the background is cluttered.

Depth maps with affluent spatial structure information

have been proven beneficial for accurate saliency predic-

tion. Within the last few years, tremendous efforts have

been made towards RGB-D saliency detection [27, 37, 6,

5, 1]. The accuracy in RGB-D saliency detection is highly

rely on the quality of the depth maps, which can be easily

influenced by a variety of noise, such as the temperature

of the camera, background illumination, and distance and

reflectivity of the observed objects. Therefore, depth maps

captured in real-life scenarios pose huge challenges to ac-

curate RGB-D saliency detection in terms of two aspects.

First, randomly distributed erroneous or missing regions are

introduced on the depth map [33]. This is usually produced

from sensors, absorption, or poor reflection, for example, a

part of the object appears at the incorrect depth as shown in

the 3rd row of Figure 1. We also demonstrate in Figure 2

that the latest representative RGB-D methods are gradually

losing the battle against the top ranking RGB method as

similarity errors in the depth map increase. Second, erro-

neous depth measurements occur predominantly near object
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Figure 2. We show the performance comparisons of MAE regard-

ing R. R represents the depth contrast value between the saliency

region and the background of the input depth map, formulated as

R = |Ds − Dns|. Ds is the average depth value of the saliency

region, and Dns is the average depth value of the background

region. We test two state-of-the-art RGB-D methods [27, 37]

(remarked with ∗), one top ranking RGB method [32] as well as

our proposed method in the NJUD+LFSD+NLPR dataset.

boundaries [37]. This is usually caused by the imaging

principles, for example, the missing regions present along

the depth boundaries as shown in the 4th row of Figure 1.

Unreliable boundary information in the depth map can also

significantly affect subsequent performance.

In this work, we strive to embrace challenges towards

accurate RGB-D saliency detection. The primary challenge

towards this goal is in the design of a model that is discrim-

inative enough to simultaneously reason about useful rep-

resentation from the RGB-D data for cross-modal comple-

ments. The second challenge is in the design of the loss that

has high confidence in the hard samples of the unreliable

depth maps, leading to inaccurate and blurry predictions.

Our core insight is that we leverage the depth infor-

mation despite the fact that the quality of some depth

maps is far from perfection, to address the aforementioned

challenges. Our approach focuses on effectively exploring

and establishing complementarity and cooperation of

cross-model features and meanwhile avoiding negative

influence introduced by erroneous depth maps. The source

code is released 1. Concretely, our contributions are:

• We design a complimentary interaction module (CIM)

for discriminatively exploring cross-modal comple-

mentarities, and effectively fusing cross-modal fea-

tures. Our CIM associates the two modalities through

a region-wise attention, and enhances each modality

by supplementing rich boundary information.

• We introduce a compensation-aware loss to improve

the networks’s confidence for hard samples. To this

end, the proposed loss further helps our network mine

the structure information contained in the cross-modal

features ensuring high stability for saliency detection

in the challenging scenes.

• Our model outperforms 18 state-of-the-art SOD meth-

ods, including 9 RGB methods and 9 RGB-D method-

s, over 6 benchmark datasets.

1https://github.com/OIPLab-DUT/CVPR SSF-RGBD

2. Related Work

RGB-D Saliency Detection: A great number of RGB

salient object detection (SOD) methods [19, 35, 36, 10, 23]

have achieved outstanding performance. However, they

may potentially appear fragile in some complex scenarios,

such as similar foreground and background, complex

background, transparent objects and low illumination.

Therefore, additional auxiliary information should be

exploited to assist the SOD task. Some works [37, 5] focus

on the RGB-D saliency detection which uses depth cues to

improve the performance in those complex scenes.

Traditional RGB-D saliency detection approaches most-

ly focus on introducing more effective cross-modal fusion

methods, which can be divided into three categories: (a)

[26, 31] concatenate the input depth map and the RGB

image. (b) [13, 14] individually produce predictions from

both RGB images and depth maps, and then integrate the

results. (c) [15, 29] combine handcrafted RGB and depth

saliency features to infer the final result.

Recently, CNNs are adopted in the RGB-D saliency

detection to learn more discriminative RGB-D features.

[28] feed handcrafted RGB-D features to a CNN for deep

representations. [39] use a CNN-based network to pro-

cess RGB information and a contrast-enhanced net to ex-

tract depth cues. [17, 5, 7] propose multi-modal multi-

level fusion strategies to capture complementary informa-

tion from RGB-D features. [6] propose a three-stream

architecture to augment the RGB-D representation capacity

in a bottom-up way, and introduce a top-down inference

way to combine the cross-modal information. [37] enhance

depth maps to work with RGB features, and design a fluid

pyramid integration method to make better use of multi-

scale cross-modal features. [27] use a depth included multi-

scale weighting module to locate and identify salient objects

and progressively generate more accurate saliency results

through a recurrent attention model.

Different from the aforementioned methods, our work

takes negative impacts caused by unreliable depth maps into

account, and strives to exploit useful and precise informa-

tion for cross-modal fusion.

3. The Proposed Framework

Overview. In this section, we describe the details of our

proposed framework for the RGB-D saliency detection.

Figure 3 shows an overview of the proposed network which

consists of three main parts. First, two VGG-16 [30] based

encoders learn feature representation from the RGB and

depth images, respectively. Then we propose a cross modal

attention unit (CAU) and a boundary refine unit (BSU)

in Sec.3.1 to generate effective features of salient object

location and boundary details. In the decoder part, we adopt

a partial decoder to effectively fuse the extracted features.
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Figure 3. The overall architecture of our proposed network.

Details of this part are introduced in Sec.3.2. To guide

the network to further learn from challenging scenes, we

introduce a compensation-aware loss in Sec.3.3.

3.1. Complimentary Interaction Module

3.1.1 Cross-modal Attention Unit

The gap between different modalities makes linear fusion

strategies of multi-modal features less adaptive to complex

scenes. To tackle this dilemma, [37][5] propose fusion

methods to better fuse cross-modal features. These meth-

ods are based on inputting depth maps with high contrast

between the foreground and background objects. However,

the ideal depth maps can not be always guaranteed during

training and testing. Thus, these methods are easy to be

negatively affected by erroneous depth maps.

To solve this problem, we propose a cross-modal atten-

tion unit, as shown in Figure 4(a). It aims to effectively

select useful information from the RGB and depth modal

features. First, we divide the depth map (0-1) into m binary

mask maps to help find useful regions for salient object

detection. The binary mask maps share the same spatial

resolution with the depth map. To be specific, for the depth

map, we set pixels in the depth region ( i−1
m

, i
m
) as 1, and

other pixels as 0 to generate the ith mask map. For the RG-

B modal, we firstly generate a rough saliency map, namely

the initial saliency map from the 5th level of the RGB en-

coder through a 1×1 convolution ( Spr = Conv(F 5
r )).

Spr is supervised by the saliency ground truth. The initial

saliency map guides the choice of depth layers, which is

formulated as:

F̃ [l]
r = CA(F [l]

r

m∑

i=1

di

N∑
j=1

(di,jS
pr
j )

N∑
j=1

di,j

), (1)

where F
[l]
r is the lth level RGB features generated from

the RFB block[34]. di represents the ith binary mask map.

Spr represents the initial saliency map. N is the total num-

ber of pixels in the image. m is the number of the binary

mask maps. CA denotes the channel-wise attention. F̃
[l]
r

is the output features generated from the channel-wise at-

tention at the lth level. When it comes to unreliable depth

maps, it is hard to provide effective complementary from

depth maps. To alleviate the above issue, we introduce

another RGB attention block to work with the cross-modal

attention block, denoted as: CA(S∗ ∗ F
[l]
r ). If l=5, S∗ =

Spr, else S∗=(1 − Spr). This block maintains the high-

level semantic information with the contribution of Spr and

residual details with the help of (1− Spr). In this case, our

network can maintain the reliable information learned from

the RGB modal. And the final output RGB features F̄
[l]
r is

formulated as:

F̄ [l]
r = Conv(Cat(F̃ [l]

r , CA(S∗ ∗ F [l]
r ))), (2)

where Conv() represents a convolutional layer with 64 in-

put channels and 32 output channels. For the depth modal,

we also use the initial saliency map to weight the depth lay-

ers according to the proportion of saliency area. This pro-

cess can be formulated as:
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Figure 4. Detailed diagram of sub-units of the complimentary interaction model. (a) is the details of Cross-modal Attention Unit (CAU),
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Figure 5. We generate the saliency edge prediction from each level

of the VGG-16. (a): bpri represents the side out edge prediction

from the ith level when inputting the RGB image. (b): bpdi
represents the side out edge prediction from the ith level when

inputting the depth map. It is seen that bpr5, bpr4, bpr3 can maintain

the pure and complete saliency edge information.

F̃
[l]
d = CA(F

[l]
d

m∑

i=1

di

N∑
j=1

(di,jS
pr
j )

N∑
j=1

S
pr
j

), (3)

where F
[l]
d represents RGB modal features from lth level

after the RFB block. This selection step can help our net-

work focus on the important regions as well as channels of

cross-modal features.

3.1.2 Boundary Supplement Unit

Existing RGB-D saliency detection methods still hold the

problem of blurred boundaries due the the pooling opera-

tions. Specifically, as shown in Figure 5, it’s hard to extract

boundary details from the depth stream which leads to the

blurred predictions. Based on this observation, we pro-

pose the boundary supplement unit, as shown in Figure

4(b). Different from previous methods which extract local

edge information from low-level features [38], this unit

aims to effectively explore edge details from high-levels

(VGG16: l3, l4, l5) of the RGB modal encoder. This is

motivated by high level features of the RGB modal con-

taining purer boundary information, as shown in Figure

5. Specifically, we design a multi-scale boundary feature

extractor, which contains four parallel dilated convolutional

blocks with different receptive fields (1, 3, 5, 7). Then we

fuse the obtained complementary salient edge features and

the saliency features at each level, shown as:

F̃b = Fb ⊗ F [l] ⊕ F [l], (4)

where ⊗ denotes the element-wise multiplication, and ⊕
represents the element-wise addition. Fb denotes the ex-

tracted boundary features from RGB modal after the multi-

scale boundary feature extractor. F̃b represents the bound-

ary enhanced features. We decode Fb to the boundary pre-

diction, supervised by the boundary ground truth generated

by the saliency ground truth, to encourage Fb obtaining

discriminative boundary inference. Then we concatenate

features after the CAU and the BSU in each modal, and

generate the enhanced feature F
[l]
dout, F

[l]
rout from the depth

modal and the RGB modal, respectively. Finally, we fuse

cross-modal features, which is shown as:

F
[l]
f = Conv(cat(F

[l]
dout, F

[l]
rout)), (5)

where Conv(·) represents a convolutional layer with 64 in-

put channels and 32 output channels.
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Table 1. Quantitative comparisons of S-measure, F-measure and MAE scores on six RGB-D datasets. Methods with/without ∗ represent

RGB-D methods and RGB methods respectively. The best three results are shown in red, green, and blue.

Methods Year
DUT-RGBD NJUD NLPR STEREO LFSD RGBD135

Sα ↑ Fβ ↑ MAE↓ Sα ↑ Fβ ↑ MAE↓ Sα ↑ Fβ ↑ MAE↓ Sα ↑ Fβ ↑ MAE↓ Sα ↑ Fβ ↑ MAE↓ Sα ↑ Fβ ↑ MAE↓

DSS CVPR17 .767 .732 .127 .807 .776 .108 .816 .755 .076 .841 .814 .087 .718 .694 .166 .763 .697 .098

Amulet ICCV17 .846 .803 .083 .843 .798 .085 .848 .722 .062 .881 .842 .062 .827 .817 .101 .842 .725 .070
∗CTMF Tcyb17 .833 .792 .097 .849 .788 .085 .860 .723 .056 .853 .786 .087 .796 .781 .120 .863 .765 .055

∗DF TIP17 .730 .748 .145 .735 .744 .151 .769 .682 .099 .763 .761 .142 .685 .566 .130 .685 .566 .130
∗CDCP ICCV17 .687 .633 .159 .673 .618 .181 .724 .591 .114 .727 .680 .149 .658 .634 .199 .706 .583 .119

PiCAN CVPR18 .832 .826 .080 .847 .806 .071 .834 .761 .053 .868 .835 .062 .761 .730 .134 .854 .797 .042

PAGRN CVPR18 .831 .836 .079 .829 .827 .081 .844 .795 .051 .851 .856 .067 .779 .786 .117 .858 .834 .044

R3Net IJCAI18 .819 .781 .113 .837 .775 .092 .798 .649 .101 .855 .800 .084 .797 .791 .141 .847 .728 .066
∗PCA CVPR18 .801 .760 .100 .877 .844 .059 .873 .794 .044 .880 .845 .061 .800 .794 .112 .845 .763 .049

∗MMCI PR19 .791 .753 .113 .859 .813 .079 .855 .729 .059 .856 .812 .080 .787 .779 .132 .847 .750 .064
∗TANet TIP19 .808 .779 .093 .878 .844 .061 .886 .795 .041 .877 .849 .060 .801 .794 .111 .858 .782 .045
∗PDNet ICME19 .799 .757 .112 .883 .832 .062 .835 .740 .064 .874 .833 .064 .845 .824 .109 .868 .800 .050
∗CPFP CVPR19 .749 .736 .099 — — — .888 .822 .036 — — — .828 .813 .088 .874 .819 .037

PoolNet CVPR19 .892 .871 .049 .872 .850 .057 .867 .791 .046 .898 .877 .045 .826 .830 .094 .888 .852 .031

BASNet CVPR19 .900 .881 .042 .872 .841 .055 .890 .838 .036 .896 .865 .042 .823 .825 .086 .889 .861 .030

CPD CVPR19 .875 .872 .055 .862 .853 .059 .885 .840 .037 .885 .880 .046 .806 .808 .097 .893 .860 .028

EGNet ICCV19 .872 .866 .059 .869 .846 .060 .867 .800 .047 .889 .876 .049 .818 .812 .101 .878 .831 .035
∗DMRA ICCV19 .888 .883 .048 .886 .872 .051 .899 .855 .031 .886 .868 .047 .847 .849 .075 .901 .857 .029

Ours - .915 .915 .033 .899 .886 .043 .914 .875 .026 .893 .880 .044 .859 .867 .066 .905 .876 .025

3.2. Decoder

For the mth layer, we first adopt a backward dense con-

nection to skip-connect features of all deeper layers. Con-

sidering that the mth layer only learns the level-specific

representations, we use deeper features to complement con-

text information for the mth layer. Then, we upsample the

multi-layer features to the spatial resolution with 128×128,

and concatenate them. The final results can be generated

using a 1×1 convolution, which is defined as:

F̃
[l]
f = Conv(Cat(F

[l]
f ,

n∑

i=l+1

Conv(up(F
[i]
f )))), (6)

where F
[l]
f represents the fused features of the lth level. F̃

[l]
f

represents the updated feature of the lth level. up(·) is the

upsample operation. n is the total number of levels (n = 5).

We achieve the final results S
pr
f from F̃

[3]
f .

3.3. CompensationAware Loss

The proposed CIM can effectively enhance the extracted

features from location and boundary details. However, for

some hard samples, the extracted cross-modal compensa-

tion and the boundary details still remain unreliable.

Thus, we involve a tailor-made loss function to pay more

attention to those hard samples. Specifically, we mine these

samples from two aspects: (1) samples with challenging

boundary information. (2) samples with unreliable depth

information. First, we use the boundary predictions as

the privileged information to mine challenging boundary

regions of RGB images. After generating the boundary

predictions, we use the following operation to generate a

weight map of the challenging region wb:

wb = Max(pmax
k (bgtl ), pmax

k (bprl ))− pmax
k (bgtl ) ∗ pmax

k (bprl ), (7)

where pmax
k represents the max-pooling operation with ker-

nel size k. The max-pooling is used to enlarge the coverage

area of the boundary. We set k = 8 in our paper. Max()
means the max operation. bgt is the ground truth of the

saliency edge and bpr is the predicted saliency edge.

For those unreliable depth samples, the depth value of

saliency regions is similar to that of the background. Thus,

we calculate the average depth value of the saliency region

Ds, and non-saliency region Dns. The sample weight is

defined as: wsample = 1 − |Ds − Dns|. Then, we weight

depth samples by region to further evaluate those samples.

The region weight map is defined as follows:

wd =

mf∑

i=1

di(1− (

N∑
k=1

(dki g
k
s )

N∑
k=1

dki

)), (8)

where mf represents a collection of the binary mask maps
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Figure 6. Visual comparisons of the proposed method and the state-of-the-art algorithms.

(di) that contain the saliency region. N is the total num-

ber of pixels. gs is the saliency ground truth. We use the

wsample, wd, ws to work with the cross-entropy loss, and

our compensation-aware loss can be given as:

Lcl = − 1
N

N∑
i=1

∑
c∈{0,1}

wi(y(vi) = c)(log(ŷ(vi) = c)), (9)

where wi = λ1w
i
b + λ2w

i
d + λ3wsample. We set λ1 = 1

λ2 = 1 and λ3 = 0.5. y represents the saliency ground

truth. ŷ is the saliency prediction. Our final loss that com-

bines the BCE loss and the compensation-aware loss is giv-

en as:

L = lbce(S
pr
f , gs) + lbce(S

pr, gs) + lbce(B
pr, gb) + Lcl,

(10)

where lbce represents the BCE loss. S
pr
f is the final predic-

tion. Spr is the initial saliency map generated by the RGB

modal. Bpr is the boundary prediction. gb is the boundary

ground truth of salient objects, which is generated by the

saliency ground truth through the Prewitt operator.

4. Experiments

4.1. Experimental Setup

Implementation details. We implement the proposed mod-

el based on the Pytorch toolbox with a Nvidia RTX 2080Ti

Table 2. Ablation analyses on DUT-RGBD, LFSD and STEREO.

Baseline denotes the baseline architecture shown in Figure 8.

CAU and BSU are introduced in the Sec.3.1. closs represents

the proposed compensation-aware loss introduced in the Sec.3.3.

Methods
DUT-RGBD LFSD STEREO

Sα ↑ Fβ ↑ MAE↓ Sα ↑ Fβ ↑ MAE↓ Sα ↑ Fβ ↑ MAE↓

Baseline .869 .876 .053 .775 .808 .103 .791 .810 .085

Baseline+CAU .894 .897 .042 .824 .823 .084 .867 .859 .056

Baseline+BSU .900 .904 .039 .823 .843 .082 .869 .870 .055

Baseline+CAU+BSU .904 .904 .038 .845 .851 .074 .883 .874 .050

Baseline+CAU+BSU+closs .915 .915 .033 .859 .867 .066 .893 .880 .044

GPU. The parameters of the backbone network are initial-

ized by the VGG-16 [30]. Other convolutional parameters

are randomly assigned. All the training and test images

are resized to 256×256. The batch size is set as 20. The

proposed model is trained by the Adam optimizer [21] with

the initial learning rate of 1e-4 which is divided by 10 after

35 epochs. Our network is trained for 40 epochs in total.

Evaluation Metrics. We adopt 3 commonly used metrics,

namely mean F-measure [2], mean absolute error (MAE)

[4], and recently released structure measure (S-measure)

[12], to evaluate the performance of each method.

4.2. Datasets

We conduct our experiments on six widely used RGB-

D benchmark datasets. DUT-RGBD [27]: contains 1200
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Figure 7. Visual comparisons of ablation analysis. The meaning

of indexes has been explained in the caption of Table 2.

images captured by Lytro camera in real life scenes. NJUD

[20]: includes 1985 RGB-D stereo images, in which the

stereo images are collected from the Internet, 3D movies

and photographs taken by a Fuji W3 stereo camera. NLPR

[26]: contains 1000 image pairs captured by Kinect under

different illumination conditions. LFSD [22]: contains 100

images captured by the Lytro camera. STEREO [25]: con-

tains 797 stereoscopic images downloaded from the Inter-

net. RGBD-135 [8]: contains 135 indoor images collected

by Microsoft Kinect. As the same splitting way in [27], we

split 800 samples from DUT-RGBD 1485 samples from N-

JUD and 700 samples from NLPR for training. The remain-

ing images in these three datasets and other three datasets

are all for testing.

4.3. Comparison With the Stateoftheart

We compare our model with 18 salient object detection

models including 9 latest CNNs-based RGB-D methods

(remarked with ∗): *DMRA [27], *CPFP [37], *PDNet

[39], *TANet [6], *MMCI [7], *PCA [5], *CDCP [40],

*DF [28], *CTMF [17]; 9 top ranking CNNs-based RGB

methods: EGNet [38], CPD [34], BASNet [32], PoolNet

[23], R3Net [10], PAGRN [36], Amulet [35],PiCAN [32],

DSS [19]. For fair comparisons, we use the released code

and their default parameters to reproduce those methods.

In terms of methods without released source code, we use

their published results for comparisons.

Quantitative Evaluation. Table 1 shows the validation

results in terms of three metrics including Mean F-measure,

MAE and S-measure on six datasets. As can be seen in

Table 1, our method significantly outperforms the exist-

ing methods, improving the MAE by 15.6% on the NJUD

dataset. The improvement is consistently observed on other

two metrics. Especially, benefitting from the proposed

complimentary interaction module (CIM) and the helpful

compensation-aware loss, ours results outperform all other

methods on the STEREO and NLPR, where the scenes are

considered to be relatively complicated.

Qualitative Evaluation. For a more intuitive view, we

show some visualization results to exhibit the superiority of

the proposed approach in Figure 6. The first 4 rows show

the challenging scenes, including transparent object (Row

1), multiple objects (Row 2), low contrast scene (Row 3),

Decoder

Conv1_2 Conv2_2 Conv3_3 Conv4_3 Conv5_3

Conv1_2 Conv2_2 Conv3_3 Conv4_3 Conv5_3

prediction

RGB

depth

Figure 8. The baseline of our proposed network. © represents

concatenating features from RGB and depth modalities.
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Figure 9. Visualizing feature maps around the CAU. The top two

rows show the features from the depth modal, and the 3 and 4

rows show the features from the RGB modal. (a): RGB and depth

inputs. (b): saliency ground truths. (c-f): visualization feature

maps at different places. CAU: the proposed cross-modal attention

unit. Conv: two convolution layers.

and small object (Row 4). These results indicate that our

network is capable of accurately capturing salient regions

under these challenging situations. Furthermore, Row 5-6

demonstrate the superiority of our method when it comes

to the unreliable depth maps. In these scenes, the existing

RGB-D methods fail to detect the saliency part, misled by

undesirable depth maps. On the other hand, our network

can mine useful information to cope with these scenes by

the proposed cross-modal attention unit (CAU). Addition-

ally, we select two examples both with complex salient

objects boundaries (Row 7-8) to show that our model not

only locates the salient object but also segments objects

with more accurate boundary details.

4.4. Ablation Studies

In this section, we perform ablation analysis to demon-

strate the effect of each component on three testing dataset-

s in Table 2. The baseline is the VGG16-based architecture

shown in Figure 8.

Effect of the Cross-modal Attention Unit (CAU). To ver-

ify the effectiveness of the CAU, we analyse the perfor-

mance of enabling our CAU as shown in Table 2. It is seen

that our CAU improves the baseline across three datasets.

Intuitively, we visualize the results before/after employing

the CAU as shown in Figure 7. We observe that the pre-

dictions produced by our CAU can better locate the salient

object. Furthermore, we visualize the feature maps be-

fore/after employing the CAU to validate its ability of se-

3478



RGB                baseline        AFNet[16]       NLDF[24]         EGNet[38]          +BRU        GT

Figure 10. Visual comparisons of different methods for boundary

refinement of the salient object.

Table 3. Ablation analyses on different mechanisms of using

edge cues. Baseline+AFNet edge, Baseline+NLDF edge and

Baseline+EGNet edge are introduced in the Sec.4.4.

Methods
DUT-RGBD LFSD STEREO

Sα ↑ Fβ ↑ MAE↓ Sα ↑ Fβ ↑ MAE↓ Sα ↑ Fβ ↑ MAE↓

Baseline .869 .876 .053 .775 .808 .103 .791 .810 .085

Baseline+AFNet edge .873 .879 .051 .784 .814 .099 .796 .809 .083

Baseline+NLDF edge .875 .882 .050 .793 .815 .093 .815 .826 .072

Baseline+EGNet edge .882 .882 .048 .792 .823 .098 .806 .820 .081

Baseline+BSU .900 .904 .039 .823 .843 .082 .869 .870 .055

lecting useful information, shown in Figure 9. Evidently,

feature maps after the CAU show more precisely extract-

ed the location information of salient objects (Column f),

compared to those after two convolution layers (Column d).

Effect of the Boundary Supplement Unit (BSU). We com-

pare our BSU with some other designs using edge informa-

tion [24, 16, 38] to evaluate its effectiveness. The results

are shown in Table 3. NLDF edge: we add the same IoU

loss as [24] to the baseline for minimizing the error of

edges. AFNet edge: we add the same CE loss as [16] to the

baseline. EGNet edge: based on [38], we adjust our RGB

stream into the EGNet fashion, and extract local boundary

features from the Conv2-2. Edge supplement is added to

the saliency features through the O2OGM. As shown in

Table 3, considerable performance boosts are achieved on

three datasets. These improvements are logical since our

BSU extract purer boundary details from the high level-

s, as shown in Figure 5. Meanwhile, the visual effects

of enabling our BSU in Figure 10 illustrate the ability of

capturing the edge of the salient objects.

Effect of the Compensation-Aware Loss. We verify the

strength of the compensation-aware loss by employing the

loss to the baseline+CAU+BSU, as shown in Table 2. It is

seen that our compensation-aware loss improves the base-

line+CAU+BSU across three datasets. Furthermore, we vi-

sualize the predictions before/after adding the compensation-

aware loss to demonstrate its ability. As shown in Fig-

ure 11(a), for challenging samples which are hard to sup-

plement boundary details, our loss helps our network pay

more attention to hard pixels in the training stage for more

accurate predictions. Moreover, the proposed loss can also

help samples with unreliable depth maps to generate useful

knowledge from the RGB images, shown in Figure 11(b).

(a) (b)

Figure 11. Visual comparisons of the results with/without the

compensation-aware loss. Row 2 and Row 1 show the boundary

and saliency predictions with/without the compensation-aware

loss, respectively. Column 2 show the edge predictions. Column

3 and 6 show the saliency predictions. Column 4 and 7 represent

the saliency ground truths.

Table 4. The effect of the number of binary maps (m).

Methods
DUT-RGBD LFSD STEREO

Sα ↑ Fβ ↑ MAE↓ Sα ↑ Fβ ↑ MAE↓ Sα ↑ Fβ ↑ MAE↓

m=2 .898 .898 .040 .810 .841 .088 .835 .842 .069

m=5 .911 .914 .035 .853 .866 .071 .869 .869 .055

m=10 .915 .915 .033 .859 .867 .066 .893 .880 .044

m=20 .910 .917 .035 .842 .853 .070 .890 .882 .045

Hyperparameters Setting. m represents the number of the

binary masks in our CAU. We increase m from 2 to 20 and

measure the corresponding scores, shown in Table 4. As

m increases, the depth map is divided more precisely for

helping select accurate cross-modal information. However,

when m is greater than 10, the accuracy gain is not signifi-

cant, but with more computation costs. In our experiment,

m is set to 10.

5. Conclusion

In this paper, we strive to embrace challenges towards

accurate RGB-D saliency detection. We propose a new

framework for accurate RGB-D saliency detection taking

account of local and global complementarities from two

modalities. It includes a complimentary interaction model,

which consists of a cross-modal attention unit and a bound-

ary supplement unit to capture effective features for salient

object location and boundary detail refinement. Moreover,

we propose a compensation-aware loss to improve the net-

works confidence in detecting hard samples. Experimen-

tal results demonstrate that the proposed method achieves

state-of-the-art performance on 6 public saliency bench-

marks.
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and Sabine Süsstrunk. Frequency-tuned salient region

detection. In IEEE International Conference on Computer

Vision and Pattern Recognition (CVPR 2009), number

CONF, pages 1597–1604, 2009.

[3] Ali Borji, Ming Ming Cheng, Qibin Hou, Huaizu Jiang, and

Jia Li. Salient object detection: A survey. Eprint Arxiv,

16(7):3118, 2014.

[4] Ali Borji, Ming-Ming Cheng, Huaizu Jiang, and Jia Li.

Salient object detection: A benchmark. IEEE transactions

on image processing, 24(12):5706–5722, 2015.

[5] Hao Chen and Youfu Li. Progressively complementarity-

aware fusion network for rgb-d salient object detection. In

Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition, pages 3051–3060, 2018.

[6] Hao Chen and Youfu Li. Three-stream attention-aware net-

work for rgb-d salient object detection. IEEE Transactions

on Image Processing, PP(99):1–1, 2019.

[7] Hao Chen, Youfu Li, and Dan Su. Multi-modal fu-

sion network with multi-scale multi-path and cross-modal

interactions for rgb-d salient object detection. Pattern

Recognition, 86:376–385, 2019.

[8] Yupeng Cheng, Huazhu Fu, Xingxing Wei, Jiangjian Xiao,

and Xiaochun Cao. Depth enhanced saliency detection

method. In Proceedings of international conference on

internet multimedia computing and service, page 23. ACM,

2014.

[9] Abhishek Das, Harsh Agrawal, Larry Zitnick, Devi Parikh,

and Dhruv Batra. Human attention in visual question

answering: Do humans and deep networks look at the same

regions? Computer Vision and Image Understanding,

163:90–100, 2017.

[10] Zijun Deng, Xiaowei Hu, Lei Zhu, Xuemiao Xu, Jing Qin,

Guoqiang Han, and Pheng-Ann Heng. R3net: Recurrent

residual refinement network for saliency detection. In

Proceedings of the 27th International Joint Conference on

Artificial Intelligence, pages 684–690. AAAI Press, 2018.

[11] Michael Donoser, Martin Urschler, Martin Hirzer, and Horst

Bischof. Saliency driven total variation segmentation. In

2009 IEEE 12th International Conference on Computer

Vision, pages 817–824. IEEE, 2009.

[12] Deng-Ping Fan, Ming-Ming Cheng, Yun Liu, Tao Li, and Ali

Borji. Structure-measure: A new way to evaluate foreground

maps. In Proceedings of the IEEE international conference

on computer vision, pages 4548–4557, 2017.

[13] Xingxing Fan, Zhi Liu, and Guangling Sun. Salient region

detection for stereoscopic images. In 2014 19th International

Conference on Digital Signal Processing, pages 454–458.

IEEE, 2014.

[14] Yuming Fang, Junle Wang, Manish Narwaria, Patrick

Le Callet, and Weisi Lin. Saliency detection for stereo-

scopic images. IEEE Transactions on Image Processing,

23(6):2625–2636, 2014.

[15] David Feng, Nick Barnes, Shaodi You, and Chris McCarthy.

Local background enclosure for rgb-d salient object detec-

tion. In Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition, pages 2343–2350, 2016.

[16] Mengyang Feng, Huchuan Lu, and Errui Ding. Attentive

feedback network for boundary-aware salient object detec-

tion. In Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition, pages 1623–1632, 2019.

[17] Junwei Han, Hao Chen, Nian Liu, Chenggang Yan, and

Xuelong Li. Cnns-based rgb-d saliency detection via cross-

view transfer and multiview fusion. IEEE transactions on

cybernetics, 48(11):3171–3183, 2017.

[18] Seunghoon Hong, Tackgeun You, Suha Kwak, and Bohyung

Han. Online tracking by learning discriminative saliency

map with convolutional neural network. Computer Science,

pages 597–606, 2015.

[19] Qibin Hou, Ming-Ming Cheng, Xiaowei Hu, Ali Borji,

Zhuowen Tu, and Philip HS Torr. Deeply supervised salient

object detection with short connections. In Proceedings

of the IEEE Conference on Computer Vision and Pattern

Recognition, pages 3203–3212, 2017.

[20] Ran Ju, Ling Ge, Wenjing Geng, Tongwei Ren, and

Gangshan Wu. Depth saliency based on anisotropic center-

surround difference. In 2014 IEEE International Conference

on Image Processing (ICIP), pages 1115–1119. IEEE, 2014.

[21] Diederik P. Kingma and Jimmy Ba. Adam: A method for

stochastic optimization. Computer Science, 2014.

[22] Nianyi Li, Jinwei Ye, Yu Ji, Haibin Ling, and Jingyi Yu.

Saliency detection on light field. In Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition,

pages 2806–2813, 2014.

[23] Jiang-Jiang Liu, Qibin Hou, Ming-Ming Cheng, Jiashi

Feng, and Jianmin Jiang. A simple pooling-based design

for real-time salient object detection. arXiv preprint

arXiv:1904.09569, 2019.

[24] Zhiming Luo, Akshaya Mishra, Andrew Achkar, Justin

Eichel, Shaozi Li, and Pierre-Marc Jodoin. Non-local

deep features for salient object detection. In Proceedings

of the IEEE Conference on Computer Vision and Pattern

Recognition, pages 6609–6617, 2017.

[25] Yuzhen Niu, Yujie Geng, Xueqing Li, and Feng Liu.

Leveraging stereopsis for saliency analysis. In 2012 IEEE

Conference on Computer Vision and Pattern Recognition,

pages 454–461. IEEE, 2012.

[26] Houwen Peng, Bing Li, Weihua Xiong, Weiming Hu, and

Rongrong Ji. Rgbd salient object detection: A benchmark

and algorithms. In European conference on computer vision,

pages 92–109. Springer, 2014.

[27] Yongri Piao, Wei Ji, Jingjing Li, Miao Zhang, and Huchuan

Lu. Depth-induced multi-scale recurrent attention network

for saliency detection. In ICCV, 2019.

[28] Liangqiong Qu, Shengfeng He, Jiawei Zhang, Jiandong

Tian, Yandong Tang, and Qingxiong Yang. Rgbd salient

object detection via deep fusion. IEEE Transactions on

Image Processing, 26(5):2274–2285, 2017.

[29] Riku Shigematsu, David Feng, Shaodi You, and Nick

Barnes. Learning rgb-d salient object detection using back-

ground enclosure, depth contrast, and top-down features.

3480



In Proceedings of the IEEE International Conference on

Computer Vision, pages 2749–2757, 2017.

[30] Karen Simonyan and Andrew Zisserman. Very deep

convolutional networks for large-scale image recognition.

Computer Science, 2014.

[31] Hangke Song, Zhi Liu, Huan Du, Guangling Sun, Olivier

Le Meur, and Tongwei Ren. Depth-aware salient object

detection and segmentation via multiscale discriminative

saliency fusion and bootstrap learning. IEEE Transactions

on Image Processing, 26(9):4204–4216, 2017.

[32] Jinming Su, Jia Li, Changqun Xia, and Yonghong Tian.

Selectivity or invariance: Boundary-aware salient object

detection. arXiv preprint arXiv:1812.10066, 2018.

[33] Guijin Wang, Cairong Zhang, Xinghao Chen, Xiangyang

Ji, Jing-Hao Xue, and Hang Wang. Bi-stream pose guided

region ensemble network for fingertip localization from

stereo images. arXiv preprint arXiv:1902.09795, 2019.

[34] Zhe Wu, Li Su, and Qingming Huang. Cascaded partial

decoder for fast and accurate salient object detection. In

Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition, pages 3907–3916, 2019.

[35] Pingping Zhang, Dong Wang, Huchuan Lu, Hongyu Wang,

and Xiang Ruan. Amulet: Aggregating multi-level convo-

lutional features for salient object detection. In Proceedings

of the IEEE International Conference on Computer Vision,

pages 202–211, 2017.

[36] Xiaoning Zhang, Tiantian Wang, Jinqing Qi, Huchuan Lu,

and Gang Wang. Progressive attention guided recurrent

network for salient object detection. In Proceedings of

the IEEE Conference on Computer Vision and Pattern

Recognition, pages 714–722, 2018.

[37] Jia-Xing Zhao, Yang Cao, Deng-Ping Fan, Ming-Ming

Cheng, Xuan-Yi Li, and Le Zhang. Contrast prior and fluid

pyramid integration for rgbd salient object detection. In

Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition (CVPR), 2019.

[38] Jia-Xing Zhao, Jiangjiang Liu, Den-Ping Fan, Yang Cao,

Jufeng Yang, and Ming-Ming Cheng. Egnet: Edge

guidance network for salient object detection. arXiv preprint

arXiv:1908.08297, 2019.

[39] Chunbiao Zhu, Xing Cai, Kan Huang, Thomas H Li, and Ge

Li. Pdnet: Prior-model guided depth-enhanced network for

salient object detection. 2018.

[40] Chunbiao Zhu, Ge Li, Wenmin Wang, and Ronggang Wang.

An innovative salient object detection using center-dark

channel prior. In Proceedings of the IEEE International

Conference on Computer Vision, pages 1509–1515, 2017.

3481


