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Abstract

Clothes category classification and attribute recognition

have achieved distinguished success with the development

of deep learning. People have found that landmark de-

tection plays a positive role in these tasks. However, lit-

tle research is committed to analyzing these tasks from the

perspective of clothing attributes. In our work, we explore

the usefulness of landmarks and find that landmarks can

assist in extracting shape features; and using landmarks

for joint learning can increase classification and recogni-

tion accuracy effectively. We also find that texture fea-

tures have an impelling effect on these tasks and that the

pre-trained ImageNet model has good performance in ex-

tracting texture features. To this end, we propose to use

two streams to enhance the extraction of shape and tex-

ture, respectively. In particular, this paper proposes a sim-

ple implementation, Texture and Shape biased Fashion Net-

works (TS-FashionNet). Comprehensive and rich experi-

ments demonstrate our discoveries and the effectiveness of

our model. We improve the top-3 classification accuracy

by 0.83% and improve the top-3 attribute recognition recall

rate by 1.39% compared to the state-of-the-art models.

1. Introduction

Nowadays, fashion image analysis has a rapid expan-

sion in both academy and industry, with its growing ap-

plication in e-commerce and online shopping. Many stud-

ies are committed to clothes recognition ([25], [1], [32]),

retrieval ([9], [8], [18]), recommendation ([15], [19]) and

fashion trend prediction ([1], [28]). The development of ef-

ficient deep learning methods and availability of large-scale

rich-annotated fashion dataset are also stupendous impetus

* Corresponding authors. ({yuanc,wangzhi}@sz.tsinghua.edu.cn).

to the progress of these works. All these make various fash-

ion works that seemed impossible to achieve come true.

Among them, we target at clothing classification and at-

tribute recognition, which are fundemental components for

other tasks and can generally bring improvements to them

(e.g., clothing recommendation).

Previous works are aware of the importance of landmark

detection to the clothes classification and attribute recog-

nition and have achieved particular success. For example,

Liu et al. [25] annotated the fashion dataset with landmark

information and proposed a model that could predict the

landmarks and attributes simultaneously; Wang et al. [32]

introduced Bidirectional Convolutional Recurrent Neural

Networks (BCRNNs) for the use of the fashion gram-

mars (i.e., kinematics grammar and symmetry grammar) to

detect landmarks and used landmark-aware attention and

category-driven attention to enhance clothing recognition.

However, these studies have neglected the importance of

joint texture and shape features in fashion classification and

recognition.

Though the idea of using both texture and shape fea-

tures is straightforward, it is challenging when we incorpo-

rate them into real-world tasks, including fashion classifica-

tion and recognition. In our experiments, we have tried to

combine the two features by adding a branch to an existing

model, which learns jointly with the landmark on an Ima-

geNet pre-trained single-stream network and fine-tune it on

the DeepFashion-C [25] dataset. However, the experimen-

tal results show that the accuracy of attribute recognition has

not been improved. It is still challenging to design proper

network architecture to integrate texture and shape features.

To make full use of these two features, we use measure-

ment studies to find the factors that affect the accuracies

when integrating the features into different models. Based

on our measurement insights, we design our Texture and

Shape biased Two-Stream Networks that use joint texture
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and shape features for fashion classification and attribute

recognition. The contributions of this paper are summarized

as follows.

⊲ We carry out measurement studies and analysis to

highlight the usefulness of texture features and shape fea-

tures in fashion tasks, including clothing classification and

attribute recognition. On the one hand, motivated by the

recent study [12] that ImageNet [7] pre-trained CNNs are

biased towards recognizing textures than shapes, we fur-

ther discover that ImageNet pre-trained models can specifi-

cally promote the recognition of texture-related clothing at-

tributes. On the other hand, we find that the detection of

clothing landmarks helps the model to learn the shape char-

acteristics of the garment. Jointly using the two features is

of importance for fashion tasks.

⊲ Based on our insights, we propose a two-stream archi-

tecture to better combine the advantages of the texture and

shape features for the clothes classification and attributes

recognition tasks. To tackle the ineffectiveness of the naive

branch scheme above, we explore to extract and make use of

the texture and shape features separately. In particular, we

propose a two-stream structure with a texture-biased stream

that is fine-tuned from an ImageNet pre-trained model, and

a shape-biased stream derived from landmark features.

⊲ Based on our design, we provide a simple implementa-

tion, Texture and Shape biased Fashion networks. Compre-

hensive experiments and evaluations demonstrate that our

model outperforms the state-of-the-art, and our insights pro-

vided are valid. Mainly, TS-FashionNet improves the top-

3 classification accuracy by 0.83% and improves the top-3

attribute recognition recall rate by 1.39% compared to the

state-of-the-art models.

2. Related Work

Fahion Image Understanding

Deep learning based models have achieved great success

in fashion field, such as clothes classification ([4], [25],

[17]) and attribute recognition ([14], [1], [3], [32], [11] ),

fashion items recommendation ([15], [19], [30]) and clothes

retireval ([33], [13], [24], [34], [9], [8], [18], [25], [21]).

Earlier works used traditional image analysis methods (e.g.

SIFT [27], HOG [6]) to extract fashion image features for

the follow-up work, which are hard to grasp the most useful

features of fashion images.

With the development of deep learning methods and the

growth of the large-scale rich-annotated fashion datasets

([25], [11], [37], [39], [40]), fashion models have achieved

prodigious success. They use convolutional neural net-

works to extract image features and process the images and

obtain significant improvement in performance. In 2016,

Liu et al. [25] introduced a large-scale fashion dataset with

comprehensive annotations DeepFashion and proposed a

deep model FashionNet to learn the clothing features by

jointly predicting clothes category and landmark localiza-

tion. In 2018, Wang et al. [32] introduced a deep gram-

mar model, Bidirectional Convolutional Recurrent Neural

Networks (BCRNNs), with two attention mechanisms for

fashion landmark detection and clothing category classifica-

tion. However, the previous work is rarely carried out from

the perspective of the clothing attribute itself, and the accu-

racy of the recognition is rarely improved via analyzing the

characteristics of various clothing attributes. In this paper,

we analyze the characteristics of various attributes from the

perspective of features and give corresponding optimization

methods.

Landmark localization

The accurate locations and rich amounts of landmarks in

the fashion images can be a good assistance to fashion tasks

such as clothes attribute recognition and clothing retrieval.

In the early works, they used bounding box ([13], [5]) to

help the fashion tasks. A finer-level annotation landmark

is desired than the existing bounding-box annotation. Re-

cently many researches ([26], [23], [35], [36], [38], [32])

are dedicated to landmark detection. Liu et al. ([25]) used a

branch network to predict the landmark location and vis-

ibility. Wang et al. [32] leveraged the high-level human

knowledge of landmarks and proposed two important fash-

ion grammars, dependency grammar capturing kinematics-

like relation and symmetry grammar accounting for the bi-

lateral symmetry of clothes. Yu et al. ([38]) proposed a

general Layout-Graph Reasoning (LGR) layer and enforced

structural layout relationships among landmarks for fashion

landmark detection. In this paper, we analyze the method

of landmark detection that can promote the recognition of

clothing attributes, and analyze its practical effect on at-

tribute recognition from the perspective of attributes.

ImageNet-trained CNNs are Biased Towards Texture

Previous works ([20], [22], [29], [16]) tended to think

that it is the representation of shapes that counted for the

impressive performance on complex understanding tasks

(e.g. object recognition). On the other hand, some research

([10], [2], [12]) found the important role of object textures

for CNNs recognition tasks. In 2015, Gatys et al. [10]

found that texture representations based on CNNs could in-

creasingly capture the statistical characteristics of images

and optimize for object recognition. In 2016, Ballester et

al. ([2]) showed that classic CNNs were unable to recog-

nize sketches where textures are missing and shapes are

left. More recently, Geirhos et al. ([12]) discovered and

validated that ImageNet-trained CNNs were biased towards

recognizing textures than shapes and increasing shape bias

could be a benefit to increase the classification accuracy and

robustness. In our work, we use the clothing attributes to

verify the validity of this conclusion, and use the ImageNet

pre-trained model to enhance texture feature learning and

extraction.
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Figure 1. Texture and Shape biased Two-Stream Networks Illus-

tration

3. Our Method

3.1. Overview

Attributes of DeepFashion-C [25] dataset are divided

into five groups. Among them, the ‘texture’ and ‘fabric’

attributes are primarily determined by the texture features,

while the ‘shape’ and ‘part’ attributes are primarily deter-

mined by the shape features. For the ‘style’ attributes, the

pattern on the clothing is the basis for judging the style of

the clothing. So, ‘style’ attributes are determined by the

combination of color and texture features. If these corre-

sponding features can be extracted and learned in a better

way, they will bring a massive promotion to clothes classi-

fication and attribute recognition.

In our work, we propose an effective method to lever-

age texture and shape features. We propose Texture and

Shape biased Two-Stream Networks (Fig. 1): one stream

is texture-biased stream, and the other is shape-biased

stream. For the shape-biased stream, we use a landmark

branch to help extract shape features; for the texture-biased

stream, we use ImageNet pre-trained model to emphasize

on the extraction of texture features. Then we concatenate

the features extracted by the two streams together to predict

the clothing attributes and classify the clothes categories.

Moreover, we give a simple implementation of this

method, TS-FashionNet (Fig. 3 ).

3.2. ShapeBiased Stream

We use joint learning with landmarks to enhance the

model’s understanding of shape features.

The Role of Landmark Information. Previous work

[25, 32] has concluded that the rational use of landmark in-

formation can effectively improve the accuracy of clothing

attribute recognition. We have found that the detection of

fashion landmarks can improve the accuracy of the ‘shape’

attribute and ‘part’ attribute recognition (Sec. 4.3) through

experiments. Then we speculate that localizations of land-

marks can enhance the extraction and learning of shape fea-

tures. Moreover, we also find that joint learning with fash-

ion landmarks plays the main role in achieving such an ef-

fect. (Sec. 4.4). Therefore, we choose to jointly learn at-
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Figure 2. Landmark Processing Module

tributes and landmarks as the method to enhance shape fea-

ture extraction.

Fashion Landmark Detection. Fashion landmark de-

tection aims to predict the positions of K landmarks corre-

sponding to the clothing. Following [32], we transform this

problem to achieve the prediction of K heatmaps, which

denotes the confidence in the corresponding landmark po-

sition. The ground truth of the heatmaps is obtained by

adding Gaussian filters at the ground-truth locations.

There are two approaches to handle invisible landmarks.

The first one is to set the ground truth of the invisible land-

marks heatmap as an all-zero heatmap. The other is to pre-

dict the visibility and location of landmarks separately, and

only backpropagate the loss of the visible landmarks when

predicting the locations. We have adopted the second way.

Joint Learning with Landmark. To jointly learn at-

tributes and landmarks, we design a landmark branch. The

structure of the landmark branch is shown in Fig. 2. This

module will learn the visibility information of the land-

marks prior to the location information of the landmarks.

Visibility information is represented by the output of a fully

connected layer with K neurons. The ground truth of visi-

bility is a vector of length K. The value of the element in

the vector is 0 or 1. 0 means that the landmark is invisi-

ble and 1 means that the landmark is visible. We adopt the

sigmoid cross-entropy loss as the loss of landmark visibil-

ity, denoted as Lvisibility , to discriminate if the landmark

is visible. When learning location information, we use the

ground truth of visibility to weigh the squared error to en-
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sure that only the loss of the visible point is backpropagated:

Llandmark =

K∑

k=1

vGT
k

∑

x,y

||Sk(x, y)− SGT
k (x, y)||2 (1)

where SGT
k is the ground truth of the landmark heatmap, Sk

is the predicted heatmap, and vGT
k is the ground truth of the

k-th point visibility.

3.3. TextureBiased Stream

Since clothing is the product of fashion design, the tex-

ture of the garment contains quite complex and high-level

semantic information. The recognition accuracy of some at-

tributes (stripe, print, graphic) of the clothing is also highly

dependent on the understanding of the texture features.

Robert Geirhos et al. [12] found that the ImageNet clas-

sification task was biased towards texture. We also demon-

strate that the ImageNet pre-trained model focuses more on

the texture features in the clothing attribute recognition task

through experiments. (Sec. 4.3). In our work, we use the

ImageNet pre-trained model as our texture-biased branch in

virtue of the rich semantic information in ImageNet.

3.4. Two Streams Integration

We have tried two methods to integrate the shape-biased

stream and texture-biased stream. The first method is to

share the weights of the two streams. It is to use the pre-

trained weights of ImageNet in the front part of the network

and freeze them. Then we add a landmark branch to the

deeper part of the network to jointly learn the attributes and

landmarks. The second method is that the weights of the

two streams are not shared. It is to concatenate the feature

maps of the two streams together before entering the dis-

criminative module.

We have tried these two methods separately, and find that

the method of not sharing weights is better (Sec. 4.5). This

is also in line with our assumption: the ability to specifi-

cally enhance the neural network’s extraction and learning

of texture features and shape features, respectively, can help

to improve the accuracy of attribute recognition.

3.5. Network Structure

To demonstrate our method, we design TS-FashionNet.

The architecture is shown in Fig. 3. Following the baseline

of [25, 32], we use VGG16 [31] as our backbone. In the

shape-biased stream, we use the output of the layer conv5-

3 as the input of the landmark branch. The size of predicted

heatmaps is 28 × 28 × K. For texture-biased models, we

freeze the model weights till conv4-3. Then we concatenate

the output of the pool5 layer of the two streams together.

The size of the concatenated features is 7× 7× 1024.

In order to make the model converge efficiently, we re-

place two fully connected layers of VGG16 fc6 and fc7
with two convolution layers: fc6-conv and fc7-conv. The

convolution kernel size of both convolutional layers is 3×3.

The padding method of fc6-conv is ‘valid’, the number of

channels is 2048, and the fc7-conv is ‘same’ and 4096. A

dropout layer with a probability of 0.5 is then added to pre-

vent overfitting. We also replace the last fully connected

layer fc8 with two fully connected layers to jointly predict

the categories and attributes. We adopt 1-of-K softmax loss

to classify categories and sigmoid cross-entropy loss to rec-

ognize attributes, denoted as Lcategory and Lattribute.
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Category Texture Fabric Shape Part Style All

top-3 top-5 top-3 top-5 top-3 top-5 top-3 top-5 top-3 top-5 top-3 top-5 top-3 top-5

WTBI [4] 43.73 66.26 24.21 32.65 25.38 36.06 23.39 31.26 26.31 33.24 49.85 58.68 27.46 35.37

DARN [18] 59.48 79.58 36.15 48.15 36.64 48.52 35.89 46.93 39.17 50.17 66.11 71.36 42.35 51.95

FashionNet [25] 82.58 90.17 37.46 49.52 39.30 49.84 39.47 48.59 44.13 54.02 66.43 73.16 45.52 54.61

Wang et al. [32] 90.99 95.78 50.31 65.48 40.31 48.23 53.32 61.05 40.65 56.32 68.70 74.25 51.53 60.95

re-impl of [32] 91.16 95.86 56.48 65.85 44.10 54.40 61.30 70.30 49.24 59.36 33.58 42.44 49.19 58.80

ours 91.99 96.44 58.52 68.19 46.44 57.02 61.86 70.81 49.82 60.36 34.40 43.44 50.58 60.43

Table 1. Quantitative results for category classification and attribute prediction on the DeepFashion-C [25] dataset. Since the dataset is

different, we have marked the best scores for the two cases.

4. Experiments

4.1. DeepFashionC Dataset

DeepFashion-C [25] dataset is a universal dataset for

clothing classification and attribute recognition, collected

by Liu et al. [25] in 2016. DeepFashion-C dataset divides

the clothes into 50 fine-grained categories, and 46 of them

have corresponding images. Each image in this dataset is

extensively labeled with 1,000 attributes, 8 landmarks, and

a bounding box of target clothing. The attributes are split

into five groups, characterizing ‘texture’, ‘fabric’, ‘shape’,

‘part’, and ‘style’, respectively. There are 289,222 im-

ages in this dataset, of which 209,222 are used for training,

40,000 are used for verification, and the remaining 40,000

are test samples.

In our experiments, we follow the split of training data

and test data in DeepFashion-C. Following [32], we crop

the image using the bounding box given in the dataset and

scale it to 224 × 224. For images that are not square after

cropping, we use black to complete it as a square. Hori-

zontal flipping is the only form we use for data augmenta-

tion. For category classification, we employ the standard

top-k classification accuracy as evaluation metric. For at-

tribute prediction, our measuring criteria is the top-k recall

rate following [25].

4.2. Comparison with the stateofthearts

Implementation Details. Our model is shown in Fig. 3.

The texture stream loads the weights of ImageNet pre-

trained VGG16 till conv4-3 and freezes it. The optimizer

is Adam, and the batch size is 16. We first pre-train the

shape-biased stream with clothing landmarks for 3 epochs.

The learning rate is 1e-4 and the weights of Lvisibility and

Llandmark are both 1. Then we train our entire model on all

tasks for 12 epochs. The learning rate of the first 6 epochs is

1e-4, and the learning rate of the last 6 epochs is 1e-5. The

weights of Lcategory , Lattribute, Lvisibility and Llandmark

are 1:500:1:1.

Performance Evaluation. We compare our model to

Wang et al. [32]. As shown in the Table 1, [32] is the

state-of-the-art network structure for clothing classification

and attribute recognition. Nevertheless, in our experiments

for its re-implementation, the experimental results of at-

tribute recognition are quite different from theirs. We sus-

pect that it may be because they used extra data related to

fashion (mentioned in [32]). Another possible reason is that

some annotations of attributes in DeepFashion-C have been

changed later. So for reliability and reality, we compare

our results with the re-implementation results on the same

dataset, only DeepFashion-C dataset. The experimental re-

sults in Table 1 show that our method has improvement in

all indicators. The classification accuracies of top-3 and

top-5 are increased by 0.83% and 0.56% respectively. The

top-3 recall rate and top-5 recall rate of attribute recogni-

tion are improved respectively by 1.39% and 1.63%. For

each group of attributes, our method performs much better

on ‘texture’ and ‘fabric’ (∆top-3 > 2.0%) while improves a

little bit on ‘shape’ and ‘part’ (∆top-3 < 0.6%). The big

promotion of ‘texture’ and ‘fabric’ is caused by that our

proposed texture-biased stream can enable the network to

learn the texture feature better. And the small promotion

of ‘shape’ and ‘part’ is because that landmark detection has

also been used in [32].

4.3. Pretraining and Joint Learning

We analyze the results of finetuning the ImageNet

pre-trained model and joint training with landmark from

scratch. Since the finetuning on the pre-trained model will

result in faster convergence of the training, the number of

iterations of training in these two methods is different. We

select the best models that performed on the validation set

and test them.

The backbone adopts VGG16 [31] architecture, and the

designs of ‘fc6’, ‘fc7’ and ‘fc8’ follows Sec. 3.5. For joint

learning, we use the output of the layer conv5-3 as the in-

put of the landmark branch. For the pre-trained model, we

freeze the model weights till conv4-3.

The results in Table 2 show that the ImageNet pre-trained

model performs better on ‘texture’, ‘fabric’, and ‘style’ at-

tribute recognition tasks, while the landmark joint learn-

ing model performs better on ‘shape’ and ‘part’ attribute

recognition tasks. This means that the ImageNet pre-trained

model is more concerned with texture features, which is

consistent with the conclusions of Robert Geirhos et al.
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(a) The comparison of the results of different bias methods: only shape-biased stream, only texture-biased stream and two streams. The ‘attribute’ shows

the top-5 list of all the predicted attributes. The attributes predicted by the three methods are marked with green, attributes predicted by only one methods

marked with red, and the left marked with blue.

(b) The result of the two stream network. The ‘attribute’ shows the top-5 list of all attributes predicted by the network. If ground truth has the corresponding

attribute, it is shown in green, and the contrary is in red.

Figure 4. The results of clothing classification and attribute recognition.

Category Texture Fabric Shape Part Style

top-3 top-5 top-3 top-5 top-3 top-5 top-3 top-5 top-3 top-5 top-3 top-5

baseline 89.94 95.05 55.73 65.27 43.32 53.34 60.03 69.24 47.07 57.32 32.68 41.43

joint learning 91.54 96.13 56.05 65.51 44.16 54.67 61.70 70.66 50.07 60.51 32.88 42.26

pre-trained 90.82 95.70 58.34 67.81 46.12 56.53 60.41 69.58 48.24 58.60 34.83 43.31

Table 2. Results of the joint learning model and the pre-trained model.

[12]. And joint learning with landmark can make the model

focus more on the shape features.

4.4. Analysis for LandmarkAware Attention

Wang el al. [32] used an attention mechanism that com-

bined landmark information. For the predicted heatmaps

{Si}
K
i=1

, they averaged these heatmaps to get a weighed

map AL:

AL =
1

K

K∑

k=1

Sk (2)

Then they added the AL-weighed feature map of conv4-3

as a residual to the original network:

G = (1 +AL) ◦ F (3)

where F denotes feature map, G denotes refined feature

map and ◦ denotes the Hadamard product.

We also try a similar approach. Since we have respec-

tively predicted visibility and position, our heatmap are

weighed by the visibility vector:

AL =
1

K

K∑

k=1

vkSk (4)

where vk is the network’s prediction of the visibility of the

k-th point, which can be understood as the probability that

the point is visible. We add the landmark branch after the

layer conv4-3. To ensure that the input and output size of

the landmark branch are the same, we remove the deconvo-

lution layer from the landmark branch.

However, during the experiment, we find that such an

attention mechanism does not effectively improve the per-

formance of the network. It can be seen from the results in

Table 3 that the performance of the network has been signif-

icantly improved after the addition of the landmark branch,

but it seems to have no effect after adding the attention on

the basis of landmark branch.

We initially think that this is due to the inaccurate predic-

tion of the landmark location, which causes the model not

to focus on the features near the landmark correctly. So we

evaluate the precision of landmarks predicted by the model.

Following [32], we adopt normalized error (NE) metric for

evaluation. We find that the results after the evaluation are

only a little worse than BCRNNs (NE: 0.0547 vs 0.0484).

This is not a discrepancy that can make a big difference. We

also visualize AL, as shown in Fig. 6. It can be perceived

that the landmark branch has a strong judgment on the vis-
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Category Attribute

(a) Without joint learning and atten-

tion

Category Attribute Landmark

(b) Joint learning only.

AttentionCategory Attribute

Average

Landmark

(c) Joint learning and attention

Figure 5. Three network structures for exploring the landmark at-

tention mechanism.

(a) Landmark-Aware Attention

(b) Ground truth (only visible points)

Figure 6. Visualization of attention mechanisms and ground truth.

ibility and location of the landmark. The position of the

attention mechanism is also correct. So it can be speculated

that not the attention mechanism fails to detect the correct

landmarks, but it is because attention does not work in this

experiment.

Therefore, we surmise that the process of joint learning

of landmarks has played a role in attention. Based on this

inference, we choose to not use the attention mechanism in

our two-stream network, and add the landmark branch after

the conv5-3 layer, so that joint learning can be used in a

better way.

4.5. Comparison of SingleStream and TwoStream

Firstly, we use a single-stream network to combine the

enhancement of the two features. That is to load the weights

of the ImageNet pre-trained model till conv4-3 and freezes

method
Category Attributes

top-3 top-5 top-3 top-5

baseline 89.94 95.05 48.08 57.73

+joint(conv4-3) 91.59 96.11 49.13 58.81

+ attention 91.56 96.11 49.10 58.90

Table 3. Results of the three landmark processing methods.

method
Category Attributes

top-3 top-5 top-3 top-5

joint learning 91.54 96.13 49.23 59.05

pre-trained 90.82 95.70 49.97 59.65

single-stream 91.24 95.86 48.77 58.70

two-stream 91.99 96.44 50.58 60.43

Table 4. Results of the single-stream model and the two-stream

model.

F
r
e
e
z
e
d

(a) Single-stream network

concat

F
r
e
e
z
e
d

(b) Two-stream network

Figure 7. Illustration of single-stream network and two-stream net-

work.

them, and add the landmark branch after conv5-3. Ex-

periments show that this method damages recognition per-

formance. Afterward, we adopt another architecture: the

two-stream networks we mentioned above. We do exper-

iments for more in-depth analysis with these two methods

and compare the results of extensive experiments using each

enhancement (Sec. 4.3).

The results are shown in Table 4. Experimental results

show that the method of adding two enhancements to a

single-stream network performs less effectively than using

only one enhancement. The top-3 attribute recall rate of

the single-stream network is fewer than only shape-biased

stream by 0.46%, and it is also less than texture-biased

stream by 1.20%. Conversely, our two-stream network

ourperforms the above three methods. Therefore, we con-

clude that the enhancement of the extraction of shape fea-

tures and texture features is more conducive to the full use

of the two features. Based on the results of such experi-

ments, we finally adopt the two-stream network.

4.6. Further Analysis (Category and Attribute)

We also explore the relationship between clothing clas-

sification and clothing attribute recognition. The results are
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Category Texture Fabric Shape Part Style

top-3 top-5 top-3 top-5 top-3 top-5 top-3 top-5 top-3 top-5 top-3 top-5

category only 87.64 93.74 - - - - - - - - - -

attribute only - - 55.66 65.25 42.02 52.25 58.50 67.59 45.07 55.46 31.56 40.47

category+attribute 89.94 95.05 55.73 65.27 43.32 53.34 60.03 69.24 47.07 57.32 32.68 41.43

Table 5. Results of learning category only, learning attributes only and jointly learning category and attributes.

method
Inshop Consumer-to-Shop

top-30 top-50 top-20 top-30

BCRNN[32] 74.91 83.86 67.07 76.51

baseline 75.29 84.13 65.29 74.99

joint learning 75.33 84.15 68.42 77.85

pre-trained 79.04 87.13 69.33 78.66

Ours 78.45 86.69 70.40 79.71

Table 6. Results on clothes retrieval datasets.

shown in Table 5. Joint learning of category and attribute

can improve the accuracy of both tasks. However, the clas-

sification task promotes the recognition of various attributes

in different degrees. The classification task has little ef-

fect on the attribute recognition of the ‘texture’ group (only

0.07% higher for top-3 recall rate), but has more consider-

able influence on the ‘shape’ group (1.53% higher for top-

3 recall rate) and the ‘part’ group (2.00% higher for top-

3 recall rate). Moreover, according to the results in Ta-

ble 2, the shape-biased stream performs significantly better

on the task of clothing classification than the texture-biased

stream. Therefore, we conclude that clothing classification

is more dependent on the shape features. Enhancing the ex-

traction and understanding of shape features is more helpful

in improving the accuracy of clothing classification. Cor-

respondingly, clothing classification can also promote the

understanding of shape features.

4.7. Results on Clothes Retrieval Datasets

Experimental Setup. In-shop Clothes Retrieval and

Consumer-to-Shop Clothes Retrieval are two of the bench-

marks out of DeepFashion. In-shop Clothes Retrieval con-

tains 52,712 images of 7,982 clothing items. And each item

has 19.28 attributes on average. Consumer-to-Shop Clothes

Retrieval contains 239,557 consumer/shop clothes images

of 33,881 items and each item has 11.28 attributes on aver-

age. For these two datasets, we choose half of images of ev-

ery item as training data and one image of every item as val-

idation data at random. The remained are the testing data.

We use top-30 and top-50 recall rate as measuring criteria

of attribute recognition for In-shop Clothes Retrieval, and

top-20 and top-30 recall rate for Consumer-to-Shop Clothes

Retrieval.

Performance Evaluation. The results are shown in Ta-

ble 6. We find that joint learning with landmark and pre-

training on ImageNet both bring improvement to the recog-

nition of Consumer-to-Shop dataset. While for In-shop

dataset, landmark plays little role and sometimes the per-

formance may exist negative transfer.

This may be caused by that: The images of In-shop

dataset have no complicated background and the clothes

have nearly none complex shape transforming so that the

shape feature can be extracted easily. When the training

data is not much, the landmark branch can help extract the

shape feature, but when training data increases a lot, the

baseline is enough to learn this simple shape feature. In con-

trast, for the Consumer-to-Shop dataset of which the shape

features are hard to learn, landmark promotes the learning

of shape features effectively and brings more improvement.

5. Conclusion

In this paper, we point out that compared to enhancing

the ability to extract and learn shape features and texture

features together, targeted enhancements are more helpful

in improving the accuracy of attribute recognition. At the

same time, we find that joint learning with landmarks helps

extract shape features, while ImageNet pre-train process

helps extract texture features. We also find that joint learn-

ing with landmarks is a major factor in promoting shape at-

tribute recognition compared to attention mechanisms, and

that clothing classification is more dependent on the shape

features of clothing. Based on such knowledge and findings,

we propose a network that can individually enhance shape

and texture features: Texture and Shape biased Fashion Net-

works (TS-FashionNet). We demonstrate our model in two

basic tasks (clothing classification and attributes recogni-

tion) on Deepfashion-C dataset, and the performances both

surpass the previous SOTA structure.
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