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Abstract

A wide variety of works have explored the reason for the

existence of adversarial examples, but there is no consensus

on the explanation. We propose to treat the DNN logits as

a vector for feature representation, and exploit them to an-

alyze the mutual influence of two independent inputs based

on the Pearson correlation coefficient (PCC). We utilize this

vector representation to understand adversarial examples

by disentangling the clean images and adversarial pertur-

bations, and analyze their influence on each other. Our re-

sults suggest a new perspective towards the relationship be-

tween images and universal perturbations: Universal per-

turbations contain dominant features, and images behave

like noise to them. This feature perspective leads to a new

method for generating targeted universal adversarial per-

turbations using random source images. We are the first to

achieve the challenging task of a targeted universal attack

without utilizing original training data. Our approach us-

ing a proxy dataset achieves comparable performance to the

state-of-the-art baselines which utilize the original training

dataset.

1. Introduction

Deep neural networks (DNNs) have shown impressive

performance in numerous applications, ranging from im-

age classification [16, 48] to motion regression [8, 47].

However, DNNs are also known to be vulnerable to ad-

versarial attacks [42, 37]. A wide variety of previous

works [14, 43, 44, 21, 33, 3] explore the reason for the ex-

istence of adversarial examples, but there is a lack of con-

sensus on the explanation [1]. While the working mecha-
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Figure 1. Based on our observation that adversarial perturbations

contain dominant features and images behave like noise to them,

we design a new method of generating targeted universal adversar-

ial perturbations without data, by using a proxy dataset.

nism of DNNs is not fully understood, one widely accepted

interpretation considers DNNs as feature extractors [16],

which inspires the recent work [17] to link the existence of

adversarial examples to non-robust features in the training

dataset.

Contrary to previous works analyzing adversarial exam-

ples as a whole (summation of image and perturbation), we

instead propose to analyze adversarial examples by disen-

tangling image and perturbations and studying their mutual

influence. Specifically, we analyze the influence of two

independent inputs on each other in terms of contributing

to the obtained feature representation when the inputs are

combined. We treat the network logit outputs as a means

of feature representation. Traditionally, only the most im-

portant logit values, such as the highest logit value for

classification tasks, are considered while other values are

disregarded. We propose that all logit values contribute

to the feature representation and therefore treat them as a
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logit vector. We utilize the Pearson correlation coefficient

(PCC) [2] to analyze the extent of linear correlation between

logit vectors. The PCC values computed between the logit

vectors of each independent input and the input combina-

tion gives insight on the contribution of the two indepen-

dent inputs towards the combined feature representation.

Our proposed general analysis framework is shown to be

useful for analyzing influence of any two independent in-

puts, such as images, Gaussian noise, perturbations, etc. In

this work, we limit the focus on analyzing the influence of

image and perturbation in universal attacks. Our findings

show that for a universal attack, the adversarial examples

(AEs) are strongly correlated to the UAP, while a low corre-

lation is observed between AEs and input images (see Fig-

ure 4). This suggests that for a DNN, UAPs dominate over

the clean images in AEs, even though the images are visu-

ally more dominant. Treating the DNN as feature extrac-

tor, we naturally conclude that the UAP has features that

are more dominant compared to the features of the images

to attack. Consequently we claim that “UAPs are features

while images behave like noise to them”. This is contrary

to the general perception that treats the perturbation as noise

to images in adversarial examples. Our interpretation thus

provides a simple yet intuitive insight on the working of

UAPs.

The observation, that images behave like noise to UAPs

motivates the use of proxy images to generate targeted

UAPs without original training data, as shown in Figure 1.

Our proposed approach is more practical because the train-

ing data is generally inaccessible to the attacker [32]. Our

contributions can be summarized as follows:

• We propose to treat the DNN logits as a vector for fea-

ture representation. These logit vectors can be used to

analyze the contribution of features of two independent

inputs when summed towards the output. In particular,

our analysis results regarding universal attacks reveal

that in an AE, the UAP has dominant features, while

the image behaves like noise to them.

• We leverage this insight to derive a method using ran-

dom source images as proxy dataset to generate tar-

geted UAPs without original training data. To our best

knowledge, we are the first to fulfill this challenging

task while achieving comparable performance to the

state-of-the-art baselines utilizing the original training

dataset.

2. Related Work

We summarize previous works with two focuses: (1) ex-

planations of adversarial vulnerability and (2) existing ad-

versarial attack methods.

Explanation of adversarial vulnerability. Goodfel-

low et al. attribute the reason of adversarial examples to

the local linearity of DNNs, and support their claim by

their proposed simple yet effective FGSM [14]. However,

this linearity hypothesis is not fully compatible with the

existence of adversarial examples which violate local lin-

earity [24]. Moreover, it can not fully explain the phe-

nomenon that greater robustness is not observed in less

linear classifiers [3, 43, 44]. Another body of works at-

tributes the reason for low adversarial robustness to high-

dimensional input properties [40, 10, 25, 13]. However,

reasonably robust DNNs of high-dimensional inputs can

be trained in practice [24, 36]. One recent work [17] at-

tributes the reason for the existence of adversarial exam-

ples to non-robust features in the dataset. Some previous

explanations, ranging from limited training data induced

over-fitting [39, 44] to robustness under noise [11, 12, 6],

are well aligned with their framework [17]. The concept

of non-robust features is also implicitly explored in other

works [4, 33]. On the other hand, possible reasons for vul-

nerability against universal adversarial perturbations have

been explored in [27, 28, 18, 29]. Their analysis is mainly

based on the network decision boundaries, in particular, the

existence of universal perturbations is linked to the large

curvature of decision boundary. Our work mainly focuses

on the explanation of universal adversarial vulnerability.

One core aspect that differentiates our analysis framework

from previous works is that we explore the influence of im-

ages and perturbations on each other, while previous works

mainly analyze adversarial example as a whole [27, 28, 18].

We explicitly analyze how the image and perturbations in-

fluence each other. Our analysis framework is mainly based

on the proposed logit vector interpretation of how DNNs

respond to the features in the input, without relying on the

curvature property of decision boundaries [27, 28, 18].

Existing adversarial attack methods. The existing at-

tacks are commonly categorized under image-dependent at-

tacks [42, 14, 22, 30, 5] and universal (i.e. image-agnostic)

attacks [27, 19, 32, 26, 35, 46, 34] which devise one single

perturbation to attack most images. Image-dependent attack

techniques have been explored in a variety of works rang-

ing from optimization based techniques [42, 5] to FGSM

related techniques [14, 22, 7, 45]. Universal adversarial per-

turbations (UAPs) were first proposed by [27], and deploy

the DeepFool attack [30] iteratively on single data samples.

Due to the nature of being image-agnostic, universal attacks

constitute a more challenging task than image-dependent

ones.

Another way to categorize attacks is non-targeted vs. tar-

geted attacks. Generative targeted universal perturbations

have been explored by [35]. Targeted attacks can be seen as

a special, but more challenging case of non-targeted attacks.

Class discriminative (CD) UAPs were proposed in [46],

aiming to fool only a subset of classes. The above men-

tioned universal attacks require utilization of the original
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training data. However, in practice the attacker often has

no access to the training data [32]. To overcome this lim-

itation, Mopuri et al. propose to generate universal pertur-

bation without training data [32]. However, their approach

is specifically designed for non-targeted attacks by maxi-

mizing the activation scores in every layer, and their perfor-

mance is inferior to approaches with access to original train-

ing data. Another attempt for data-free non-targeted univer-

sal attack by training a network to generate proxy images is

explored in [38] . No prior work is found to have achieved

targeted universal attack without access to the original train-

ing data, and our work is the first attempt in this direction.

3. Analysis Framework

3.1. Logit Vector

Following the common consensus that DNNs are fea-

ture extractors, we intend to analyze adversarial examples

from the feature perspective. The logit values are often

used as an indicator of feature presence in an image. Pre-

vious works [18, 17], however, mainly focus only on the

DNN highest logit output indicating the predicted class,

while all other logits are usually neglected. “Logits” re-

fer to the DNN output before the final softmax layer. In this

work, we assume that all DNN output logit values represent

the network response to features in the input. One concern

about this vector interpretation is that only the logits of the

ground-truth classes or other semantically similar classes

are meaningful, while the other logits might be just random

(small) values and thus do not carry important information.

We address this concern after introducing the terms and no-

tation used throughout this work.

A deep classifier Ĉ maps an input image x ∈ R
d with a

pixel range of [0, 1] to an output logit vector Lx = Ĉ(x).
The vector Lx has K entries corresponding to the total num-

ber of classes. The predicted class yx of an input x can then

be calculated from the logit vector as yx = argmax(Lx).
We adopt the logit vector to facilitate the analysis of the

mutual influence of two independent inputs in terms of

their contribution to the combined feature representation.

We mainly consider two independent inputs a ∈ R
d and

b ∈ R
d, which can be images, Gaussian noise, perturba-

tions, etc., whose corresponding logit vectors are denoted

as La and Lb, respectively. The summation of these two

inputs c = a + b, when fed to a DNN, leads to the feature

representation Lc. Both inputs a and b contribute partially

to Lc. Moreover, it is reasonable to expect that the con-

tribution of each input will be influenced by the other one.

Specifically, the extent of influence will be reflected in the

linear correlation between the individual logit vector La (or

Lb) and Lc.

Figure 2. Images and their logit vector analysis. The first row

shows the sample images a and b and the resulting image c. The

second row shows the plots of logit vector Lc over La (left) and

Lb (right), with their respective PCC values.

3.2. Pearson Correlation Coefficient

In statistics, the Pearson correlation coefficient (PCC) [2]

is a widely adopted metric to measure the linear correlation

between two variables. In general, this coefficient is defined

as

PCCX,Y =
cov(X,Y )

σXσY

, (1)

where cov indicates the covariance and σX and σY are the

standard deviation of vector X and Y , respectively, and the

PCC values range from −1 to 1. The absolute value indi-

cates the extent to which the two variables are linearly cor-

related, with 1 indicating perfect linear correlation, 0 indi-

cating zero linear correlation, and the sign indicates whether

they are positively or negatively correlated. Treating the

logit vector as a variable, the PCC between different logit

vectors can be calculated. We are mainly concerned about

PCCLa,Lc
and PCCLb,Lc

, since PCCLa,Lb
is always close

to zero due to independence. Comparing PCCLa,Lc
and

PCCLb,Lc
can provide insight about the contribution of the

two inputs to Lc, with a higher PCC value indicating the

more significant contributor. For example, if PCCLa,Lc
is

larger than PCCLb,Lc
, input a’s share can be seen as more

dominant than input b towards the final feature response.

The relationship of two logit vectors, La and Lc for in-

stance, can be visualized by plotting each logit pair. The

extent of their correlation can be observed and quantified

by the PCC.

As a basic example, we show the logit vector analysis of

two randomly sampled images from ImageNet [41] in Fig-

ure 2. The plot shows a strong linear correlation between Lb

and Lc (PCCLb,Lc
= 0.88), while La and Lc are practically

uncorrelated (PCCLa,Lc
= 0.19). These observations sug-
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gest a dominant contribution of input b towards logit vector

Lc. As a result, the same label “Wood rabbit” is predicted

for c and b. Such combination of images has also been ex-

plored in Mixup [49] for training classifiers.

Table 1. PCC analysis for VGG19 using 1000 image pairs ran-

domly sampled from the ImageNet test set. Here, for each image

pair, the mean and standard deviations of higher and lower PCC

values are reported under PCCh and PCCl, respectively.

|S| PCCh PCCl PCCh − PCCl PPCC

Sm 445 0.74± 0.10 0.27± 0.23 0.47± 0.27 96%
Sn 555 0.63± 0.13 0.33± 0.20 0.30± 0.22 -

To establish the reliability of the PCC value as a metric,

we repeat the above experiment with 1000 image pairs and

report results on the effectiveness of PCC to predict label

c in Table 1. We divide the image pairs into two groups:

Sm and Sn. Sm comprises of image pairs having the same

predicted class yc as the prediction ya or yb. For Sn, the

predicted class yc is different from both ya and yb. More-

over, we use the parameter PPCC to show the proportion of

predictions correctly inferred from the PCC values relative

to the network predictions for c. For the image pairs from

set Sm, the PPCC is 96%, confirming the reliability of the

PCC as our metric. The high gap between PCCh and PCCl

further provides evidence for the high PPCC. For the im-

age pairs from Sn, PCCh − PCCl is smaller, implying that

neither of the inputs is significantly dominant.

Recall that there is a concern that most logit values might

be just random values, which is partially addressed by ob-

serving the correlation between PCC and yc as shown in

Figure 2. If the concern were valid, such that only a few log-

its are meaningful (i.e. only the highest logits or the logits

for semantically similar classes), a high divergence should

be observed for the less significant logits. However, this as-

sumption does not align well with the results in Figure 2,

thus confirming the importance of all logit values. A higher

PCC value for the dominant input further rules out the con-

cern that the lower logit values are random.

4. Influence of Images and Perturbations on

Each Other

In this section, we analyze the interaction of clean im-

ages with Gaussian noise perturbation, universal perturba-

tions and image-dependent perturbations. In doing so, input

a is the image and input b the perturbation. The analysis is

performed on VGG19 pretrained on ImageNet. For consis-

tency, a randomly chosen a (shown in Figure 2, top left) is

used for all experiments. Along the same lines, for targeted

perturbations we randomly set ‘sea lion’ as the target class t.

For more results with different images and target classes on

different networks, please refer to the supplementary mate-

rial.

Figure 3. Logit vector analysis for an input image and Gaussian

noise N (µ, σ). The analysis is shown for µ = 0 and σ = 0 (left),

σ = 0.1 (middle) and σ = 0.2 (right))

Figure 4. Logit vector analysis for input image (a) and targeted

UAP (b). The targeted UAP was trained for target class ‘sea lion’

and loss function Lt

CL2

4.1. Analysis of Gaussian Noise

To facilitate the interpretation of our main experiment of

performing analysis for perturbations, we first show the in-

fluence of noise (Gaussian noise) on images. The Gaussian

noise is sampled from N (µ, σ) with µ = 0 and different

standard deviations. The relationship between La, Lc is vi-

sualized in Figure 3. As expected, by adding zero magni-

tude Gaussian noise (i.e. no Gaussian noise) to the image,

La and Lc are perfectly linearly correlated (PCCLa,Lc
= 1).

If the Gaussian noise magnitude is increased (σ = 0.1 for

instance), La and Lc still show a high linear correlation

(PCCLa,Lc
= 0.91). Investigating the relationship between

Lb and Lc, a low correlation can be observed for all noise

inputs b indicating a low contribution to the final prediction.

4.2. Analysis of Universal Perturbations

Universal perturbations come in two flavors: targeted

and non-targeted. We use Algorithm 1 with loss function

Lt
CL2

to generate targeted universal perturbations, and gen-

erate non-targeted universal perturbations using Equation 4

as the loss function. The results of this analysis are shown

for a targeted and non-targeted UAP in Figure 4 and Fig-

ure 5, respectively. For the targeted scenario, two major
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Figure 5. Logit vector analysis for input image (a) and non-

targeted UAP (b). The UAP was trained with loss function Equa-

tion 4

Figure 6. Logit vector analysis for input image (a) and targeted

image-dependent perturbation (b). The perturbation was crafted

with PGD [24], with target class ‘sea lion’

observations can be made: First, PCCLa,Lc
is smaller than

PCCLb,Lc
, indicating a higher linear correlation between Lc

and Lb than Lc and La. In other words, the features of the

perturbation are more dominant than that of the clean im-

age. Second, PCCLa,Lc
is close to 0, indicating that the

influence of the perturbation on the image is so significant

that the clean image features are seemingly unrecognizable

to the DNN. In fact, comparing the logit analysis of La and

Lc in Figure 4 with that of Gaussian noise and image in Fig-

ure 3 (bottom), a striking similarity is observed. This offers

a novel interpretation of targeted universal perturbations:

Targeted universal perturbations themselves (indepen-

dent of the images to attack) are features, while images

behave like noise to them. We further explore the non-

targeted perturbations, and report the results in Figure 5.

Similar to targeted universal perturbations, the PCCLa,Lc

is smaller than PCCLb,Lc
for the non-targeted perturbation.

However the dominance of the non-targeted perturbation is

not as significant as that of the targeted perturbation.

4.3. Analysis of ImageDependent Perturbations

The logit vector analysis results for targeted and non-

targeted image-dependent perturbations are reported in Fig-

ure 6 and Figure 7, respectively. Contrary to the univer-

sal perturbations, the image-dependent perturbations are

weakly correlated to c, and have a noise-like behaviour

(Figure 3). However, the image gets misclassified even

Figure 7. Logit vector analysis for input image (a) and non-

targeted image-dependent perturbation (b). The perturbation was

crafted with PGD [24]

though the image features appear to be more dominant than

the perturbation. This is because the image features are

more strongly corrupted through the image-dependent per-

turbation than Gaussian noise. This special behavior ap-

pears due to the fact that the image-dependent perturbations

are crafted to form concrete features only in combination

with the image. Such image-dependent behavior violates

our assumption of independent inputs. However, we include

these results since they offer additional insight into adver-

sarial examples.

4.4. Why Do Adversarial Perturbations Exist?

A wide variety of works have explored the existence of

adversarial examples as discussed in section 2. Based on

our previous analyses, we arrive at the following explana-

tion for the existence of UAPs:

Universal adversarial perturbations contain features in-

dependent of the images to attack. The image features are

corrupted to an extent of being unrecognizable to a DNN,

and thus the input images behave like noise to the perturba-

tion features.

The finding in [18] that universal perturbations behave

like features of a certain class aligns well with our state-

ment. Jetley et al. argue that universal perturbations ex-

ploit the high-curvature image-space directions to behave

like features, while our finding suggests that universal per-

turbations themselves contain features independent of the

images to attack. Utilizing the perspective of positive cur-

vatures of decision boundaries, Jetley et al. adopt the deci-

sion boundary-based attack DeepFool [30]. However, our

explanation does not explicitly rely on the decision bound-

ary properties, but focuses on the occurrences of strong fea-

tures, robust to the influence of images. We can therefore

deploy the PGD algorithm to generate perturbations con-

sisting of target class features similar to [17].

If universal perturbations themselves contain features in-

dependent of the images to attack, do image-dependent per-

turbations behave in a similar way? As previously dis-

cussed, the analysis results in Figure 6 reveal that the be-

havior of image-dependent perturbations is not like features,
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but noise. On the other hand, the original image features

are retained to a high extent. Ilyas et al. [17] revealed that

image-dependent adversarial examples include the features

of the target class. However, as seen from the analysis in

subsection 4.4, the isolated perturbation seems not to retain

independent features due its low PCC value, but rather in-

teracts with the image to form the adversarial features.

5. Targeted UAP with Proxy Data

Our above analysis demonstrates that images behave like

noise to the universal perturbation features. Since the im-

ages are treated like noise, we can exploit proxy images

as background noise to generate targeted UAPs without the

original training data. The proxy images do not need to have

any class object belonging to the original training class and

their main role is to make the targeted UAP have strong

background-robust target class features.

5.1. Problem Definition

Formally, given a data distribution X ∈ R
d of images,

we compute a single perturbation vector v that satisfies

Ĉ(x+ v) = t for most x ∼ X

||v||p ≤ ǫ.
(2)

The magnitude of v is constrained by ǫ to be imperceptible

to humans. || · ||p refers to the lp-norm and in this work,

we set p = ∞ and ǫ = 10 for images in range [0, 255]1 as

in [27]. Specifically, we assume having no access to original

training data. Thus, the training data Xv for v generation

can be different from the original dataset X . We denote the

proxy dataset as Xv .

To evaluate targeted UAPs, we use the targeted fooling

ratio metric [35], i.e. the ratio of samples fooled into the

target class to the number of all data samples. We also use

the non-targeted fooling ratio [35, 27], calculating the ratio

of misclassified samples to the total number of samples, for

evaluation.

5.2. Loss Function and Algorithm

To achieve the desired objective Eq. 2 most naively, the

commonly used cross-entropy loss function LCE can be uti-

lized. Since cross-entropy loss holistically incorporates log-

its of all classes, this loss function leads to overall lower

fooling ratios. This behavior can be resolved by using a

loss function LL that only aims to increase the logit of the

target class.

Since we consider universal perturbations, to balance the

above objective between different samples in training, we

extend LL by clamping the logit values as follows:

Lt
CL1

= max(max
i 6=t

Ĉi(xv + v)− Ĉt(xv + v),−κ) (3)

1For images in the range [0, 1], ǫ = 10

255

Algorithm 1: UAP algorithm

Input: Proxy data Xv , Classifier Ĉ, Loss function

L, mini-batch size m, Number of iterations

I , perturbation magnitude ǫ

Output: Perturbation vector v

v ← 0 ⊲ Initialize

for iteration = 1, . . . , I do

B ∼ Xv: |B| = m ⊲ Randomly sample

gv ← E
x∼B

[∇vL] ⊲ Calculate gradient

v ← Optim(gv) ⊲ Update

v ← ǫ v
||v||p

⊲ Norm projection

end

where κ indicates the confidence value, xv are samples from

the proxy data Xv and Ĉi indicates the i-th entry of the logit

vector. In this case, the proxy data can be either a random

source dataset or the original training data, depending on

data availability. Note that similar techniques of clamping

the logits have also been used in [5], however, their moti-

vation is to obtain minimum-magnitude (image-dependent)

perturbations. While the target logit in loss function Lt
CL1

is increased, the logit values of max Ĉi(xv + v) are de-

creased simultaneously during the training process. This

effect is undesirable for generating a UAP with strong target

class features, since other classes except the target classes

will be included in the optimization, which might have neg-

ative effects on the gradient update. To prevent manipula-

tion of logits other than the target class, we exclude the non-

targeted class logit values in the optimization step, such that

these values are only used as a reference value for clamping

the target class logit. We indicate this loss function asLt
CL2

.

We report an ablation study of the different loss function

performances in Table 2. The results suggest that Lt
CL2

,

in general, outperforms all other discussed loss functions.

We further provide a loss function resembling Lt
CL2

for the

generation of non-targeted UAPs.

Lnt = max(Ĉgt(xv + v)−max
i 6=gt

Ĉi(xv + v),−κ) (4)

In the special case of crafting non-targeted UAPs, the proxy

dataset has to be the original training dataset.

We provide a simple, yet effective algorithm in Algo-

rithm 1. Our gradient based method adopts the ADAM [20]

optimizer and mini-batch training, which have also been

adopted in the context of data-free universal adversarial per-

turbations [38]. Mopuri et al. train a generator network for

crafting UAPs with this configurations, which can be con-

sidered more complex.
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Table 2. Ablation study on the performance of different loss functions, for the proposed targeted UAP. The values in each column represent

mean and standard deviation of the non-targeted fooling ratio (%) and targeted fooling ratio (%) obtained for 5 runs and target class ‘sea

lion’.

Loss AlexNet GoogleNet VGG16 VGG19 ResNet152

LCE 90.5± 0.6 55.4± 1.0 70.8± 1.5 55.2± 2.2 89.1± 0.3 75.9± 0.9 87.9± 0.5 70.8± 1.1 78.2± 0.9 66.5± 1.3
LL 89.2± 0.4 47.1± 1.1 71.6± 0.8 56.9± 1.1 91.0± 0.3 79.0± 0.6 90.8± 0.2 73.1± 0.8 80.1± 0.8 69.1± 0.4

Lt

CL1 90.2± 0.3 57.6± 1.4 71.7± 1.4 57.9± 2.3 90.1± 0.4 80.3± 0.5 88.2± 0.3 75.5± 0.6 80.2± 0.3 71.4± 0.5

Lt

CL2 90.5± 0.3 49.4± 1.2 73.0± 1.5 58.4± 2.2 93.5± 0.3 82.8± 0.7 92.7± 0.1 72.3± 2.5 81.3± 1.1 70.6± 2.1

Table 3. Results for targeted UAPs trained on four different datasets. The values in each column represent mean and standard deviation of

the non-targeted fooling ratio (%) and targeted fooling ratio (%) obtained for 8 different target classes.

Proxy Data AlexNet GoogleNet VGG16 VGG19 ResNet152

ImageNet [41] 89.9± 2.2 48.6± 13.3 77.7± 3.2 59.9± 6.6 92.5± 1.3 75.0± 7.8 91.6± 1.3 71.6± 6.9 80.8± 2.6 66.3± 7.0
COCO [23] 89.9± 2.6 47.2± 13.1 76.8± 3.7 59.8± 7.5 92.2± 1.7 75.1± 12.3 91.6± 1.5 68.8± 9.4 79.9± 2.9 65.7± 7.8

VOC [9] 88.9± 2.6 46.9± 12.7 76.7± 3.2 58.9± 6.0 92.2± 1.6 74.7± 7.9 90.5± 2.3 68.8± 8.2 79.1± 3.3 65.2± 7.1
Places365 [50] 90.0± 2.1 42.6± 16.4 76.4± 3.7 60.0± 5.4 92.1± 1.5 73.4± 9.6 91.5± 1.6 64.5± 17.0 78.0± 3.2 62.5± 9.9

Table 4. Comparison of the proposed method to other methods.

The results are divided in universal attacks with access to the orig-

inal ImageNet training data (upper) and data-free methods (lower).

The metric is reported in the non-targeted fooling ratio (%))

Method AlexNet GoogleNet VGG16 VGG19 ResNet152

UAP [27] 93.3 78.9 78.3 77.8 84.0
GAP [35] - 82.7 83.7 80.1 -

Ours(ImageNet) 96.17 88.94 94.30 94.98 90.08

FFF [32] 80.92 56.44 47.10 43.62 -

AAA [38] 89.04 75.28 71.59 72.84 60.72
GD-UAP [31] 87.02 71.44 63.08 64.67 37.3
Ours (COCO) 89.9 76.8 92.2 91.6 79.9

Table 5. Transferability results for the proposed targeted universal

adversarial attack. The attack was performed for target class ‘sea

lion’ and proxy dataset MS-COCO. The rows indicate the source

model and the columns indicates the target model. The values in

each column are reported in the non-targeted fooling ratio (%) and

targeted fooling ratio (%)

AlexNet GoogleNet VGG-16 VGG19 ResNet152

AlexNet 90.45 49.61 54.77 0.01 60.43 0.13 58.66 0.09 47.02 0.02
GoogleNet 53.25 0.02 75.47 62.06 50.51 0.17 48.79 0.14 34.94 0.34

VGG16 53.71 0.03 41.26 0.02 93.62 82.90 82.99 13.69 36.73 0.01
VGG19 53.67 0.02 39.78 0.02 83.40 44.53 92.53 75.61 35.36 0.01

ResNet152 54.46 0.03 42.43 0.07 55.05 1.63 55.12 1.05 80.47 70.20

Table 6. Results for Transferability measured with PCC values.

Generated with COCO as background, for target class sea lion.

The rows indicate the source model and the columns indicates the

target model.

AlexNet GoogleNet VGG-16 VGG19 ResNet152

AlexNet 1.00 0.09 0.24 0.14 −0.05
GoogleNet 0.24 1.00 0.24 0.14 0.00

VGG16 0.36 0.09 1.00 0.48 −0.11
VGG19 0.19 0.07 0.55 1.00 −0.09

ResNet152 0.28 0.11 0.36 0.30 1.00

5.3. Main Results

We generate the targeted UAPs for four different

datasets, the ImageNet training set as well as three proxy

datasets. In Algorithm 1, we set the number of iterations to

1000, use loss function Lt
CL2

and a learning rate of 0.005
with batch-size 32. As the proxy datasets, we use images

from MS-COCO [23] and Pascal VOC [9], two widely used

object detection datasets, and Places365 [50], a large-scale

scene recognition dataset. We generated targeted UAPs

with the 4 datasets for 8 different target classes and evaluate

them on the ImageNet test dataset. The average over the 8
target scenarios are reported in Table 3. Two major observa-

tions can be made: First, a significant difference can not be

observed for the three different proxy datasets. Moreover,

there is only a marginal performance gap between training

with the proxy datasets and training with the original Ima-

geNet training data. The results support our assumption that

the influence of the input images on targeted UAPs is like

noise.

We also explored generating targeted UAPs with white

images and Gaussian noise as the proxy dataset. In both

scenarios, inferior performance was observed. We refer the

reader to the supplementary material for a discussion about

possible reasons and further results.

Targeted perturbations for different networks are shown

in Figure 8. Since the target class is sea lion, we can no-

tice the existence of sea lion-like patterns by taking a closer

look. Samples of clean images and perturbed images mis-

classified as sea lion are shown in Figure 9.

5.4. Comparison with Previous Methods

To the best of our knowledge, this is the first work to

achieve targeted UAP without original training data, thus

we can only compare our performance with previous works

on related tasks. The authors of [35] report a targeted fool-
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Figure 8. Targeted universal perturbations (target class ‘sea lion’)

for different network architectures.

Figure 9. Qualitative Results. Clean images (top) and perturbed

images (bottom) for VGG19

ing ratio of 52% for Inception-V3 with access to the Ima-

geNet training dataset. We use COCO as the proxy dataset

and achieve a superior performance of 53.4%. We can not

find any other targeted UAP method available in the litera-

ture but other previous works report the (non-targeted) fool-

ing ratio and we compare our performance with them and

the results are available in Table 4. We distinguish between

methods with and without data availability. To compare

with the methods with data-availability we trained a non-

targeted UAP on ImageNet utilizing our introduced non-

targeted loss function from Equation 4. Note that we do

not block the gradient for max
i 6=gt

Ĉi(xv + v) to let the algo-

rithm automatically search a dominant class for an effec-

tive attack. We observe that our approach achieves superior

performance than both UAP [27] and GAP [35]. For the

case without access to the original training dataset, we use

the COCO dataset to generate the UAP, and report the av-

erages of performance on 8 target classes. Note that our

method still generates a targeted UAP, but we use the non-

targeted metric for performance evaluation. This setting is

in favor of other methods, since ideally, we could report the

best performance of a certain target class. Without bells and

whistles, our method achieves comparable performance to

the state-of-the-art data-free methods, constituting evidence

that our simple approach is efficient.

5.5. Transferability

The transferability results are available in Table 5. We

observe that the non-targeted transferability performs rea-

sonably well, while targeted transferability does not. We

find no previous work reporting the targeted transferability

for universal perturbations. For image-dependent perturba-

tions, the targeted transferability has been explored in [15],

which reveals that the targeted transferability is unsatisfac-

tory when source network and target network belong to dif-

ferent network families. When the networks belong to the

same network family, relatively higher transferability can

be observed [15]. This aligns well with our finding that

VGG16 and VGG19 transfer reasonably well between each

other as presented in Table 5. We further report the PCC of

the two network UAPs in Table 6. We observe that the PCC

values are relatively higher between VGG16 and VGG19

than other networks, indicating an additional benefit of PCC

to provide insight to network transferability.

6. Conclusion

In this work, we treat the DNN logit output as a vector to

analyze the influence of two independent inputs in terms of

contributing to the combined feature representation. Specif-

ically, we demonstrate that the Pearson correlation coef-

ficient (PCC) can be used to analyze relative contribution

and dominance of each input. Under the proposed analysis

framework, we analyze adversarial examples by disentan-

gling images and perturbations to explore their mutual influ-

ence. Our analysis results reveal that universal perturbations

have dominant features and the images to attack behave like

noise them. This new insight yields a simple yet effective al-

gorithm, with a carefully designed loss function, to generate

targeted UAPs by exploiting a proxy dataset instead of the

original training data. We are the first to achieve this chal-

lenging task and the performance is comparable to state-of-

the-art baselines utilizing the original training dataset.

7. Acknowledgement

We thank Francois Rameau and Dawit Mureja Argaw

for their comments and suggestions throughout this project.

This work was supported by NAVER LABS and the Insti-

tute for Information & Communications Technology Pro-

motion (2017-0-01772) grant funded by the Korea govern-

ment.

References

[1] Naveed Akhtar and Ajmal Mian. Threat of adversarial at-

tacks on deep learning in computer vision: A survey. IEEE

Access, 2018. 1

14528



[2] TW Anderson. An introduction to multivariate statistical

analysis (wiley series in probability and statistics). 2003. 2,

3

[3] Anish Athalye, Nicholas Carlini, and David Wagner. Obfus-

cated gradients give a false sense of security: Circumventing

defenses to adversarial examples. In International Confer-

ence on Machine Learning (ICML), 2018. 1, 2

[4] Sebastien Bubeck, Yin Tat Lee, Eric Price, and Ilya Razen-

shteyn. Adversarial examples from computational con-

straints. In International Conference on Machine Learning

(ICML), 2019. 2

[5] Nicholas Carlini and David Wagner. Towards evaluating the

robustness of neural networks. In Symposium on Security

and Privacy (SP), 2017. 2, 6

[6] Jeremy Cohen, Elan Rosenfeld, and Zico Kolter. Certified

adversarial robustness via randomized smoothing. In Inter-

national Conference on Machine Learning (ICML), 2019. 2

[7] Yinpeng Dong, Fangzhou Liao, Tianyu Pang, Hang Su, Jun

Zhu, Xiaolin Hu, and Jianguo Li. Boosting adversarial at-

tacks with momentum. In Conference on Computer Vision

and Pattern Recognition (CVPR), 2018. 2

[8] Alexey Dosovitskiy, Philipp Fischer, Eddy Ilg, Philip

Hausser, Caner Hazirbas, Vladimir Golkov, Patrick Van

Der Smagt, Daniel Cremers, and Thomas Brox. Flownet:

Learning optical flow with convolutional networks. In Inter-

national Conference on Computer Vision (ICCV), 2015. 1

[9] M. Everingham, L. Van Gool, C. K. I. Williams, J. Winn,

and A. Zisserman. The pascal visual object classes (voc)

challenge. International Journal of Computer Vision, 2010.

7

[10] Alhussein Fawzi, Hamza Fawzi, and Omar Fawzi. Adver-

sarial vulnerability for any classifier. In Advances in Neural

Information Processing Systems (NeurIPS), 2018. 2

[11] Alhussein Fawzi, Seyed-Mohsen Moosavi-Dezfooli, and

Pascal Frossard. Robustness of classifiers: from adversarial

to random noise. In Advances in Neural Information Pro-

cessing Systems (NeurIPS), 2016. 2

[12] Justin Gilmer, Nicolas Ford, Nicholas Carlini, and Ekin

Cubuk. Adversarial examples are a natural consequence of

test error in noise. In International Conference on Machine

Learning (ICML), 2019. 2

[13] Justin Gilmer, Luke Metz, Fartash Faghri, Samuel S Schoen-

holz, Maithra Raghu, Martin Wattenberg, and Ian Goodfel-

low. Adversarial spheres. arXiv preprint arXiv:1801.02774,

2018. 2

[14] Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy.

Explaining and harnessing adversarial examples. In Inter-

national Conference on Learning Representations (ICLR),

2015. 1, 2

[15] Jiangfan Han, Xiaoyi Dong, Ruimao Zhang, Dongdong

Chen, Weiming Zhang, Nenghai Yu, Ping Luo, and Xiao-

gang Wang. Once a man: Towards multi-target attack via

learning multi-target adversarial network once. In Interna-

tional Conference on Computer Vision (ICCV), 2019. 8

[16] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.

Identity mappings in deep residual networks. In European

Conference on Computer Vision (ECCV), 2016. 1

[17] Andrew Ilyas, Shibani Santurkar, Dimitris Tsipras, Logan

Engstrom, Brandon Tran, and Aleksander Madry. Adversar-

ial examples are not bugs, they are features. In Advances in

Neural Information Processing Systems (NeurIPS), 2019. 1,

2, 3, 5, 6

[18] Saumya Jetley, Nicholas Lord, and Philip Torr. With friends

like these, who needs adversaries? In Advances in Neural

Information Processing Systems (NeurIPS), 2018. 2, 3, 5

[19] Valentin Khrulkov and Ivan Oseledets. Art of singular vec-

tors and universal adversarial perturbations. In Conference

on Computer Vision and Pattern Recognition (CVPR), 2018.

2

[20] Diederik P Kingma and Jimmy Ba. Adam: A method

for stochastic optimization. In International Conference on

Learning Representations (ICLR), 2015. 6

[21] Pang Wei Koh and Percy Liang. Understanding black-box

predictions via influence functions. In International Confer-

ence on Machine Learning (ICML), 2017. 1

[22] Alexey Kurakin, Ian Goodfellow, and Samy Bengio. Adver-

sarial machine learning at scale. In International Conference

on Learning Representations (ICLR), 2017. 2

[23] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays,

Pietro Perona, Deva Ramanan, Piotr Dollár, and C Lawrence

Zitnick. Microsoft coco: Common objects in context. In

European Conference on Computer Vision (ECCV), 2014. 7

[24] Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt,

Dimitris Tsipras, and Adrian Vladu. Towards deep learn-

ing models resistant to adversarial attacks. In International

Conference on Learning Representations (ICLR), 2018. 2, 5

[25] Saeed Mahloujifar, Dimitrios I Diochnos, and Mohammad

Mahmoody. The curse of concentration in robust learning:

Evasion and poisoning attacks from concentration of mea-

sure. In AAAI Conference on Artificial Intelligence (AAAI),

2019. 2

[26] Jan Hendrik Metzen, Mummadi Chaithanya Kumar, Thomas

Brox, and Volker Fischer. Universal adversarial perturba-

tions against semantic image segmentation. In International

Conference on Computer Vision (ICCV), 2017. 2

[27] Seyed-Mohsen Moosavi-Dezfooli, Alhussein Fawzi, Omar

Fawzi, and Pascal Frossard. Universal adversarial perturba-

tions. In Conference on Computer Vision and Pattern Recog-

nition (CVPR), 2017. 2, 6, 7, 8

[28] Seyed-Mohsen Moosavi-Dezfooli, Alhussein Fawzi, Omar

Fawzi, Pascal Frossard, and Stefano Soatto. Analy-

sis of universal adversarial perturbations. arXiv preprint

arXiv:1705.09554, 2017. 2

[29] Seyed-Mohsen Moosavi-Dezfooli, Alhussein Fawzi, Omar

Fawzi, Pascal Frossard, and Stefano Soatto. Robustness of

classifiers to universal perturbations: A geometric perspec-

tive. In International Conference on Learning Representa-

tions (ICLR), 2018. 2

[30] Seyed-Mohsen Moosavi-Dezfooli, Alhussein Fawzi, and

Pascal Frossard. Deepfool: a simple and accurate method

to fool deep neural networks. In Conference on Computer

Vision and Pattern Recognition (CVPR), 2016. 2, 5

[31] Konda Reddy Mopuri, Aditya Ganeshan, and

Venkatesh Babu Radhakrishnan. Generalizable data-free

14529



objective for crafting universal adversarial perturbations.

Transactions on Pattern Analysis and Machine Intelligence

(TPAMI), 2018. 7

[32] Konda Reddy Mopuri, Utsav Garg, and R. Venkatesh Babu.

Fast feature fool: A data independent approach to universal

adversarial perturbations. In British Conference on Machine

Vision (BMVC), 2017. 2, 3, 7

[33] Preetum Nakkiran. A discussion of ’adversarial examples

are not bugs, they are features’: Adversarial examples are

just bugs, too. Distill, 2019. https://distill.pub/2019/advex-

bugs-discussion/response-5. 1, 2

[34] Muhammad Muzammal Naseer, Salman H Khan, Muham-

mad Haris Khan, Fahad Shahbaz Khan, and Fatih Porikli.

Cross-domain transferability of adversarial perturbations.

In Advances in Neural Information Processing Systems

(NeurIPS), 2019. 2

[35] Omid Poursaeed, Isay Katsman, Bicheng Gao, and Serge Be-

longie. Generative adversarial perturbations. In Conference

on Computer Vision and Pattern Recognition (CVPR), 2018.

2, 6, 7, 8

[36] Aditi Raghunathan, Jacob Steinhardt, and Percy Liang. Cer-

tified defenses against adversarial examples. In International

Conference on Learning Representations (ICLR), 2018. 2

[37] Anurag Ranjan, Joel Janai, Andreas Geiger, and Michael J

Black. Attacking optical flow. In International Conference

on Computer Vision (ICCV), 2019. 1

[38] Konda Reddy Mopuri, Phani Krishna Uppala, and R

Venkatesh Babu. Ask, acquire, and attack: Data-free uap

generation using class impressions. In European Conference

on Computer Vision (ECCV), 2018. 3, 6, 7

[39] Ludwig Schmidt, Shibani Santurkar, Dimitris Tsipras, Kunal

Talwar, and Aleksander Madry. Adversarially robust gener-

alization requires more data. In Advances in Neural Infor-

mation Processing Systems (NeurIPS), 2018. 2

[40] Ali Shafahi, W Ronny Huang, Christoph Studer, Soheil

Feizi, and Tom Goldstein. Are adversarial examples in-

evitable? arXiv preprint arXiv:1809.02104, 2018. 2

[41] Ilya Sutskever, Geoffrey E Hinton, and A Krizhevsky. Im-

agenet classification with deep convolutional neural net-

works. Advances in Neural Information Processing Systems

(NeurIPS), 2012. 3, 7

[42] Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan

Bruna, Dumitru Erhan, Ian Goodfellow, and Rob Fergus.

Intriguing properties of neural networks. arXiv preprint

arXiv:1312.6199, 2013. 1, 2

[43] Pedro Tabacof and Eduardo Valle. Exploring the space of

adversarial images. In 2016 International Joint Conference

on Neural Networks (IJCNN), 2016. 1, 2

[44] Thomas Tanay and Lewis Griffin. A boundary tilting

persepective on the phenomenon of adversarial examples.

arXiv preprint arXiv:1608.07690, 2016. 1, 2

[45] Lei Wu, Zhanxing Zhu, Cheng Tai, et al. Understanding and

enhancing the transferability of adversarial examples. arXiv

preprint arXiv:1802.09707, 2018. 2

[46] Chaoning Zhang, Philipp Benz, Tooba Imtiaz, and In-So

Kweon. Cd-uap: Class discriminative universal adversarial

perturbation. In AAAI Conference on Artificial Intelligence

(AAAI), 2020. 2

[47] Chaoning Zhang, Francois Rameau, Junsik Kim,

Dawit Mureja Argaw, Jean-Charles Bazin, and In So

Kweon. Deepptz: Deep self-calibration for ptz cameras.

In Winter Conference on Applications of Computer Vision

(WACV), 2020. 1

[48] Chaoning Zhang, Francois Rameau, Seokju Lee, Junsik

Kim, Philipp Benz, Dawit Mureja Argaw, Jean-Charles

Bazin, and In So Kweon. Revisiting residual networks with

nonlinear shortcuts. In British Machine Vision Conference

(BMVC), 2019. 1

[49] Hongyi Zhang, Moustapha Cisse, Yann N. Dauphin, and

David Lopez-Paz. mixup: Beyond empirical risk minimiza-

tion. In International Conference on Learning Representa-

tions (ICLR), 2018. 4

[50] Bolei Zhou, Agata Lapedriza, Aditya Khosla, Aude Oliva,

and Antonio Torralba. Places: A 10 million image database

for scene recognition. Transactions on Pattern Analysis and

Machine Intelligence (TPAMI), 2017. 7

14530


