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Abstract

The key for fusion based hyperspectral image (HSI)

super-resolution (SR) is to infer the posteriori of a latent

HSI using appropriate image prior and likelihood that de-

pends on degeneration. However, in practice the priors of

high-dimensional HSIs can be extremely complicated and

the degeneration is often unknown. Consequently most ex-

isting approaches that assume a shallow hand-crafted im-

age prior and a pre-defined degeneration, fail to well gener-

alize in real applications. To tackle this problem, we present

an unsupervised adaptation learning (UAL) framework. In-

stead of directly modelling the complicated image prior, we

propose to first implicitly learn a general image prior using

deep networks and then adapt it to a specific HSI. Following

this idea, we develop a two-stage SR network that leverages

two consecutive modules: a fusion module and an adapta-

tion module, to recover the latent HSI in a coarse-to-fine

scheme. The fusion module is pretrained in a supervised

manner on synthetic data to capture a spatial-spectral pri-

or that is general across most HSIs. To adapt the learned

general prior to the specific HSI under unknown degenera-

tion, we introduce a simple degeneration network to assist

learning both the adaptation module and the degeneration

in an unsupervised way. In this way, the resultant image-

specific prior and the estimated degeneration can benefit the

inference of a more accurate posteriori, thereby increasing

generalization capacity. To verify the efficacy of UAL, we

extensively evaluate it on four benchmark datasets and re-

port strong results that surpass existing approaches.

1. Introduction

Hyperspectral images (HSIs) consists of hundreds of

spectral bands that record the reflectance of an imaging

scene across a consecutive wavelengths with narrow inter-

val (e.g. 10nm) [1, 32], where each pixel contains a spec-
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trum. Due to the discriminative power of their spectra [13],

HSIs have been widely applied to various computer vi-

sion tasks, such as target detection [17], classification [13],

tracking [22] etc. However, physical limitations on spectral

sensor [12, 7] often prevent the collection of high resolution

(HR) HSIs in practice. Hence increasing efforts have been

put forwards to HSI super-resolution (SR).

Recent studies [4, 14, 19] have shown that fusing a low

resolution (LR) HSI with an HR multispectral image (M-

SI) using maximum a posteriori (MAP) estimation [32] is

a promising approach for HSI SR. The key lies on infer-

ring the posteriori of the latent HSI using an appropriate

image prior and the likelihood determined by the degener-

ation from the latent HSI to the observed LR HSI. To this

end, existing approaches have handcrafted various shallow

prior models, e.g. sparsity [12, 8], low-rank [30] etc. To-

gether with pre-defined degeneration models, e.g. Gaussian

blur based down-sampling [8, 30], they can successfully re-

cover simple structures of HSIs under given degenerations.

However, due to the countless number of imaging scenes

that exist, real HSIs often contain abundant complex struc-

tures and the true prior can be extremely complicated, e.g.

multi-mode, image-specific. In addition, random factors in

imaging procedure (e.g. sensor shaking, noise corruption)

usually introduce unknown degeneration into observations.

Hence, when applied to real scenarios, most existing ap-

proaches fail to generalize appropriately or obtain pleasing

SR performance, as shown in Figure 1.

In this study, we propose an unsupervised adaptation

learning (UAL) framework and demonstrate good general-

ization efficacy in HSI SR. In contrast to existing approach-

es, we propose to learn a deep image-specific prior for each

HSI. Instead of directly modelling such a complicated prior,

we first utilize deep networks to implicitly learn an image

prior that is general across most HSIs and then adapt it to a

specific HSI. Following this idea, we propose a two-stage S-

R network that employs two consecutive modules to recov-

er the latent HSI in a coarse-to-fine scheme: a fusion mod-

ule and an adaptation module. The fusion module adopts

a brand-new mutual-guiding architecture, and is pretrained
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(a) NSSR [8] (b) CMS [30] (c) DIP [21] (d) MHF-net [25] (e) YONG [15] (f) UAL (ours) (g) Ground truth

Figure 1. Visual SR results and reconstruction error maps on an image from the CAVE dataset [28] with unknown degeneration (e.g.,

no-Gaussian blur and random noise) when SR scale s is 8. Most existing methods shows obvious artifacts and reconstruction error.

on synthetic data in a supervised manner to learn a general

spatial-spectral prior, which it employs for rough SR recov-

ery. To adapt the learned general image prior to a specific

HSI, the key is to extract image-specific knowledge from t-

wo observed images under unknown degeneration. To this

end, we introduce a simple degeneration network to assist

learning both the adaptation module and the degeneration in

an unsupervised manner. By doing this, we can jointly ob-

tain an image-specific prior and estimate the degeneration,

ultimately inferring the posteriori of the latent HSI accu-

rately and increasing the generalization capacity. Extensive

experiments demonstrate the efficacy of UAL in generaliz-

ing to unknown degenerations and different datasets.

In summary, we provide four main contributions: 1) we

present an UAL framework to generalize fusion based SR

to real cases; 2) we propose to learn the complicated im-

age prior via adapting deep general image priors to a spe-

cific image; 3) we develop a new mutual-guiding module

for images fusion, which is an universal module and can be

plugged into any other fusion or multi-input networks; 4)

we show state-of-the-art SR performance on four datasets.

2. Related works

According to the image prior utilized, existing fusion-

based SR methods can be divided into two categories.

Shallow image prior Existing methods have handcraft-

ed various shallow image prior models [24, 3, 12, 8, 30].

For example, Wycoff et al. [24] and Lanaras [12] propose

to decompose the latent HR HSI into a non-negative end-

member matrix and an abundance matrix, and then impose

a sparse prior on the abundance matrix. Akhtar [2] exploit

the signal sparsity, nonnegativity and spatial structure of the

latent HSI by projecting each spectrum onto a pre-extracted

spectral dictionary. In [3], a Bayesian sparse representation

scheme is utilized to infer the probability distributions of

spectra and their proportions decomposed from the latent

HSI. Recently, Dong et al. [8] further consider the spatial-

ly non-local similarity of the latent HSI. Zhang et al. [30]

exploit the spatial manifold structure. Due to the limited

expressiveness of shallow image priors, these methods fail

to generalize well in challenging cases, especially when the

degeneration in observation is unknown [15, 10]. In con-

trast, we learn a deep image-specific prior for each HSI.

The deep structure and image-specific nature provide good

generalization performance in practice.

Deep image prior Inspired by the great success of deep

learning, several deep image priors have been proposed for

HSIs. For example, Ulyanov et al. [21] employ a randomly

initialized deep convolutional neural network as an image

prior and achieve unsupervised image recovery under a giv-

en degeneration. When the degeneration is unknown, fur-

ther introducing a degeneration network seems to be help-

ful [5]. However, since the observation only contains limit-

ed information for the latent image, unsupervised learning

in this case often results in over-fitting and incurs expen-

sive computational costs. With special design, the proposed

UAL effectively avoids over-fitting and reduces the compu-

tational cost. Very recently, Xie et al [25] implicitly learn a

deep image prior by training a SR network under supervi-

sion. The learned prior can effectively capture the general

structure, however fails to depict the image-specific detail-

s and cope with unknown degenerations. In contrast, the

proposed UAL can address these problems successfully.

3. Unsupervised adaptation learning

3.1. Problem formulation

Given two observed images, including an HR MSI X ∈
R

b×N consisting of b spectral bands with N pixels in the

spatial domain and an LR HSI Y ∈ R
B×n, the fusion-based

HSI SR aims to produce a latent HR HSI Z ∈ R
B×N (e.g.

b ≪ B, n ≪ N ). The relation between the latent Z and the

other two observations can be formulated as

X = PZ, Y = ZH, (1)

where P ∈ R
b×B denotes the spectral response function,

and H ∈ R
N×n represents the degeneration from Z to Y.
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Figure 2. Flow chart of the proposed UAL and the proposed two-stage SR network. In figure (a), red arrows indicate the back-propagated

gradient in unsupervised learning, and we denote the fusion module in gray to indicate that its weights are fixed in unsupervised learning.

When both P and H are predefined, the MAP estimation of

fusion-based HSI SR can be formulated as

min
Z

‖X−PZ‖2 + ‖Y − ZH‖2 + λR(Z), (2)

where the first two terms represent the likelihood-based en-

ergy and R(Z) denotes the regularization introduced by im-

age prior on Z. Since P is determined by the parameters of

camera and often can be obtained in advance [12, 8, 14, 30],

in this study we assume P is given and mainly focus on cop-

ing with the unknown degeneration H in practice.

3.2. Unsupervised adaptation learning

Instead of separately modelling the likelihood and pri-

or as in Eq. (2), we employ a deep SR network to directly

model the maximum posteriori of Z, which learns the image

prior implicitly during network training. To learn an image-

specific prior under unknown degeneration, we first design a

two-stage SR network as shown in Figure 2(a), which con-

sists of two modules: a fusion module and an adaptation

module. Then, we carry out the following two steps to ac-

complish prior learning and degeneration estimation.

Pre-train fusion module We train the fusion module in a

supervised manner to learn a general prior and utilize it for

rough SR recovery. To this end, we first employ extensive

synthetic degenerations {Hj} to produce training pairs on

a set of HSIs {Zi} (see details in Section 4.1). Then, we

solve the following problem to learn the fusion module.

min
θf

∑
i,j

‖Zi − Ẑij‖
2
,

s.t., Ẑij = F(Xij ,Yij ; θf ),Xij = PZi,Yij = ZiHj ,

(3)

where {Zi,Xij ,Yij} denotes the training pair generated by

the degeneration Hj . F denotes the fusion module param-

eterized by θf . ‖ · ‖ denotes the reconstruction loss.

Unsupervised adaptation learning To adapt the general

image prior learned in the fusion module to a specific HSI

under unknown degeneration, the solution lies on exploit-

ing the image-specific statistics. Previous work [33] has

shown that the degenerated observation often contains some

image-specific statistics, and can supervise the learning of

an image-specific prior when the degeneration is given [21].

To generalize this idea to real cases with unknown degener-

ations, we introduce a degeneration network together with

the given spectral response function P to map the image Z

generated from the fusion module back into the observed X

and Y, respectively, as shown in Figure 2(a). In this way,

both the adaptation module and degeneration can be jointly

learned in an unsupervised manner as

min
θ,ϑ

‖X−PZ‖2 + ‖Y − ZH‖2,

s.t., Z = G(X,Y; θ),ZH = H(Z;ϑ),
(4)

where G(·; θ) denotes the proposed two-stage SR network

that takes both observed images as input and outputs the

latent HSI. In Eq. (4), we fix the fusion module, and let θ

denote the parameters in the adaptation module. H(·;ϑ)
denotes the degeneration network parameterized by ϑ.

The UAL proposed above provides a promising way to

jointly achieve degeneration estimation and HSI SR with

a deep image-specific prior. However, due to the limit-

ed amount of data in X and Y, designing casual archi-

tectures for the SR and degeneration networks may cause

over-fitting and incur expensive computational costs in un-

supervised learning. To address this problem, we propose

to largely reduce the number of parameters to learn in the

unsupervised learning via two strategies: 1) we implement

the degeneration network H with a very simple architecture;

2) we construct the fusion module with a complex architec-

ture so that it contains most parameters of the SR network,

while adopting a light-weight architecture with only a few

parameters as the adaptation module. By doing these, only

a few parameters will be learned in Eq. (4), thus effectively

avoiding over-fitting and reducing computational cost. In

the following, we will discuss these two strategies in detail.

3.3. Simple degeneration network

Before designing the degeneration network H, we first

revisit the physical structure of the degeneration H. In prac-

tice, H involves both spatial down-sampling and noise cor-

ruption [9]. Down-sampling often convolves the image with

a specific kernel beforehand [9, 29], while noise corruption

is close to the additive zero-mean random noise [18, 31].

Thus, degeneration H on Z can be formulated as

ZH = (Z⊛ k) ↓s +N, (5)
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(a) Ground truth (b) Fusion module (c) SR network

Figure 3. Reconstruction error maps generated by the pre-trained

fusion module and the proposed two-stage SR network.

where k denotes a 2-D spatial kernel and ⊛ indicates con-

volving each band of Z with the same kernel k. ↓s rep-

resents the down-sampling operation in the spatial domain

with a scaling factor s. N denotes the random noise cor-

ruption. As shown in Eq (5), the major parameter in H is

the kernel k, e.g. a k × k-sized k that only involves k2 pa-

rameters with k < 30. Inspired by this, we adopt a single

convolutional layer with a kernel k and a stride s as the de-

generation network H. Since noise corruption N can be ab-

sorbed into the loss function in Eq. (4) as discussed in [21],

no specific structure is further designed for the noise N.

3.4. Twostage SR network

As shown in Figure 2(b), we implement the fusion mod-

ule with a new mutual-guiding architecture to exploit the

general spatial-spectral prior for rough SR recovery, while

implementing the adaptation module with a light-weight ar-

chitecture to refine image-specific details. This enables a

coarse-to-fine SR, as shown in Figure 3. In the following,

we discuss both modules in detail.

3.4.1 Mutual-guiding fusion module

For deep fusion-based HSI SR, a direct way is to concate-

nate the observed images X and Y along the spectral di-

mension and feed them into an appropriate deep SR net-

work. The concatenation enables the correlation between

two observed images to be exploited. However, it fails to

explicitly leverage specific knowledge from each input.

To sufficiently utilize both intra-input and inter-input

knowledge, we propose a mutual-guiding fusion module

that takes three different inputs, including the HR MSI X,

LR HSI Y 1 and their concatenation [X;Y]. As shown in

Figure 2(b), this module first utilizes three parallel branch-

es to separately map the three inputs into deep features, and

then the concatenation of deep features is convolved to pro-

duce a rough estimate Z̃ for the latent HSI Z. Each branch

consists of two basic blocks, including a mapping block and

a mutual-guiding block. The mapping block stacks M con-

volutional blocks (i.e., a convolutional layer followed by

a ReLu [16]), while the mutual guiding block separately

transforms each feature from the three branches under the

guidance of the other two features. Specifically, let Fx,

1In this study we employ bicubic interpolation to upsample the spatial

dimension of Y to the same as that of X as input.

(a) Mutual-guiding block (b) Self-guiding block

Figure 4. Architecture of mutual-guiding and self-guiding blocks.

Fy and Fxy denote three features produced by a mapping

block. Taking Fx as an example, the mutual guiding block

linearly transforms Fx as

F
′

x = Fx ⊙A+B, (6)

where F
′

x denotes the transformed Fx, and ⊙ indicates

point-wise product. A and B represent the guidance. Sim-

ilar to [23], this transformation regulates each entry of Fx

accordingly, thus improving the flexibility in fusion. We

compute A and B separately using two individual guidance

blocks as shown in Figure 4(a), which can be formulated as

A = Pa ([Fx;Fy;Fxy] ;πa) ; B = Pb ([Fx;Fy;Fxy] ;πb) ,
(7)

where Pa(·;πa) and Pb(·;πb) denote the guidance blocks

for A and B, respectively. [Fx;Fy;Fxy] denotes the con-

catenation of three features. In this study, we stack M

convolutional blocks as Pa and Pb. To avoid the abuse

of notations, we utilize the same Pa and Pb to separately

transform Fx, Fy and Fxy as Eq. (6). When computing

the guidance for Fy and Fxy , we employ the concatenation

[Fy;Fx;Fxy] and [Fxy;Fx;Fy], respectively.

3.4.2 Self-guiding adaptation module

To recover image-specific details, we implement the adap-

tation module using a residual architecture, as shown in Fig-

ure 2(b), where the backbone recovers the residual between

the HSI Z̃ estimated by the fusion module and the ground

truth HSI Z. Let A denote the backbone, the output Ẑ of

the adaptation module can be given as

Ẑ = Z̃+A(Z̃). (8)

As shown in Figure 2(b), the backbone consists of three

components, including a mapping block, which is same as

that in fusion module, a self-guiding block and a convolu-

tional layer for output. The self-guiding block has a simi-

lar architecture to that of the mutual-guiding block in Sec-

tion 3.4.1, shown as Figure 4(b). The only difference is that

only the input feature itself is utilized to compute the guid-

ance. Let F denote the feature fed into this block, the output

can be obtained from Eq. (6) with the following guidance

A = Pa (F;πa) ; B = Pb (F;πb) . (9)

Pa and Pb again denote the guidance blocks. In unsu-

pervised learning, this block learns to adaptively adjust

the pixel-wise residual and refine image-specific details, as

shown in Figure 3.
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4. Experiments

4.1. Experimental settings

Datasets We adopt three benchmark HSI datasets and one

real HSI dataset for evaluation, including CAVE [28], Har-

vard [6], NTIRE [20] and HypSen [27]. In the CAVE

dataset, there are 32 HSIs each of which has 512×512 pix-

els and 31 spectral bands in a wavelength range of 400nm

to 700nm. Harvard dataset consists of 50 HSIs. Each image

contains 1392×1040 pixels and 31 spectral bands in a wave-

length range of 420nm to 720nm. In the NTIRE dataset,

there are 255 HSIs each of which is of size 1392 × 1300

in spatial domain and contains 31 bands in a wavelength

range of 400nm to 700nm. In contrast to these three dataset-

s, HypSen [27] is a real fusion-based HSI dataset. It consists

of an 30m-resolution HSI captured by Hyperion sensor on

the Earth Observing-1 satellite, and an 10m-resolution M-

SI produced by Sentinel-2A satellite. After removing noisy

and water absorption bands as [27], the LR HSI consists of

84 spectral bands, while the HR MSI contains 13 spectral

bands. In our experiment, we crop a subimage of size 250×
330 from the HSI and one of size 750×990 from the MSI,

and make sure both capture the same scene.

Comparison methods & Evaluation metrics For com-

parison, we select five state-of-the-art fusion based HSI SR

methods, including NSSR [8], CMS [30], MHF-net [25],

YONG [15] and DIP [21]. Except YONG [15], all oth-

er methods predefine a degeneration Ĥ as Eq. (5) using

a Gaussian kernel but no noise corruption. Among them,

NSSR [8] and CMS [30] exploit the sparse or manifold pri-

or of the latent HSI. MHF-net [25] train a deep network in a

supervised manner to recover the latent HSI, while DIP [21]

employs a deep image prior for SR in an unsupervised way.

YONG [15] cast HSI SR and degeneration estimation into a

joint learning framework but with a shallow image prior.

To quantitatively evaluate the SR performance, we adopt

four standard metrics: root-mean-square error (RMSE) 2,

peak signal-to-noise ratio (PSNR), spectral angle mapper

(SAM) and structural similarity index (SSIM).

Implementation details In our experiment, we consider

each HSI in the benchmark datasets as the ground truth of

the latent HSI Z. Given Z, we utilize the spectral response

function of a Nikon D700 camera in [8, 30] as P to produce

an HR MSI X as Eq. (1). To obtain the observed LR HSI

Y, we first down-sample Z with a kernel k and scale s as

Eq. (5), and then add Gaussian white noise into the down-

sampled result. To simulate various degenerations in prac-

tice, we separately employ four non-Gaussian kernels, as

shown in Figure 5, as well as three different levels of noise

corruption, e.g. 30db, 35db, 40db (the signal-to-noise ratio

of Y), to generate Y. Given X, Y and P, we employ all

methods to recover the latent Z. To show their performance

2Following [8, 30], we also compute the RMSE on the 8-bit image.

Figure 5. Four different kernels utilized to produce the degenera-

tion H in test. From left to right, they are K1, K2,K3 and K4.

under unknown degeneration, we define another degener-

ation Ĥ using a 8×8 sized Gaussian kernel with standard

deviation
√
3 as [8, 30], and incorporate it into baselines

without degeneration estimation as the pre-defined degen-

eration. Fair comparison, MHF-net [25] is trained on the

same training set as the proposed UAL.

In the proposed SR network, we set M=3 and equip each

convolution layer with 64 kernels of size 3×3. In the de-

generation network H, we fix the kernel size as 32×32. To

pre-train the fusion module, we respectively select 12 HSIs

from the CAVE, 20 from the Harvard and 20 from NTIRE as

training sets. While the remaining 20 HSIs in CAVE, 30 in

Harvard and the other 50 in NTIRE are utilized in test. Giv-

en a training HSI, we extract patches of size 128×128 with

stride 64 to generate training pairs as above but this time us-

ing synthetic kernels based degeneration, i.e., Gaussian ker-

nels with spatial size and standard deviation randomly sam-

pled in the ranges [5, 15] and [0.5, 2], respectively. Noted

that no kernel in test is utilized for training. In this study, we

implement UAL in Pytorch. To train the fusion module, we

adopt the Adam optimizer [11] with a ℓ1 norm based loss.

We initialize the learning rate as 1e-4 and decay it every 10

epochs by 0.7. The batch size is set as 6, and the training

procedure is terminated in 150 epochs. In the test phase, we

feed two observed images X and Y into the SR network

and then train the adaptation module and the degeneration

network with a ℓ1 norm based loss. For optimization, we

utilize the Adam optimizer with initial learning rates 9e-5,

1e-4 and weight decay 1e-3, 1e-5 to learn the adaptation

module and the degeneration network, respectively. We ter-

minate the learning process in 1500 epochs.

4.2. Ablation studies

In this section, we conduct ablation study on the CAVE

dataset. Without loss of generality, we produce the test de-

generation with the kernel k1 in Figure 5 and 40db Gaussian

white noise. The SR scale is fixed as 8.

Effect of components in UAL The proposed UAL has

three key components: 1) a two-stage SR network; 2) a

pre-trained fusion module whose weights are fixed in un-

supervised learning; 3) a degeneration estimation module.

To show the effect of the two-stage SR network, we utilize

two variants of UAL that remove the adaptation module and

the fusion module, respectively. They are termed ’UAL w/o

adaptation’ and ’UAL w/o fusion’. Their results are given

in Table 1. As can be seen, removing either module caus-

es obvious performance drop, and the performance drops

more when removing the fusion module, e.g. PSNR drops
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Table 3. Performance under degeneration produced by different levels of noise corruption and kernel k1 with SR scale s=8.
30db 35db 40db

Methods RMSE PSNR SAM SSIM RMSE PSNR SAM SSIM RMSE PSNR SAM SSIM

NSSR [8] 11.45 27.17 34.64 0.5661 9.31 29.17 25.76 0.7477 8.22 32.10 16.58 0.9229

CMS [30] 7.96 30.24 31.88 0.6596 5.47 33.58 23.48 0.8118 4.28 36.52 14.88 0.9517

DIP [21] 11.95 27.68 21.52 0.8298 11.54 27.96 14.93 0.8782 9.56 29.67 15.05 0.9117

MHF-net [25] 4.55 35.06 24.68 0.8146 3.24 38.17 17.88 0.9065 2.62 40.26 12.90 0.9528

YONG [15] 3.64 37.16 13.95 0.9351 3.32 38.07 11.48 0.9533 3.12 38.73 9.63 0.9646

UAL 2.80 39.43 13.46 0.9566 2.23 41.59 9.36 0.9777 1.85 43.23 6.72 0.9862

Table 4. Performance when SR scale s is 8 and the degeneration is produced by k1 and 40db noise.
CAVE Havard NTIRE

Methods RMSE PSNR SAM SSIM RMSE PSNR SAM SSIM RMSE PSNR SAM SSIM

NSSR [8] 8.22 32.10 16.58 0.9229 4.18 36.28 3.82 0.9632 3.28 38.56 2.18 0.9792

CMS [30] 4.28 36.52 14.88 0.9517 2.71 39.89 3.88 0.9683 2.01 42.63 1.68 0.9913

DIP [21] 9.56 29.67 15.05 0.9117 10.51 28.33 8.08 0.8788 8.17 31.15 5.05 0.9085

MHF-net (CAVE) [25] 2.62 40.26 12.90 0.9528 3.23 38.12 6.19 0.9460 2.59 39.92 2.77 0.9851

MHF-net (Harvard) [25] 7.79 30.93 25.30 0.8539 2.29 41.11 4.21 0.9714 8.55 30.59 11.56 0.9227

MHF-net (NTIRE) [25] 5.68 33.94 16.02 0.9262 3.38 38.03 5.03 0.9639 1.70 44.15 1.90 0.9934

YONG [15] 3.12 38.73 9.63 0.9646 2.57 40.43 4.08 0.9690 4.92 34.95 3.01 0.9685

UAL (CAVE) 1.85 43.23 6.72 0.9862 2.36 41.19 3.39 0.9725 1.21 46.09 1.31 0.9951

UAL (Harvard) 2.55 40.51 7.65 0.9790 2.08 42.38 2.67 0.9815 1.78 44.49 1.14 0.9953

UAL (NTIRE) 2.75 39.78 8.84 0.9707 2.41 41.07 3.13 0.9753 1.50 46.19 0.99 0.9963

Table 1. Effect of each component in the proposed UAL.
Methods RMSE PSNR SAM SSIM

UAL w/o adaptation 2.35 41.66 6.87 0.9833

UAL w/o fusion 4.18 36.17 10.63 0.9484

UAL w/o pre-train 3.50 37.51 6.50 0.9735

UAL (fine-tune) 2.54 40.27 5.71 0.9843

UAL (Ĥ) 4.81 38.58 8.43 0.9592

UAL (only concat) 3.73 37.42 8.35 0.9653

UAL w/o concat 2.05 42.46 6.74 0.9846

UAL w/o mutual-guiding 2.78 39.98 7.44 0.9782

UAL w/o residual 3.45 37.77 6.68 0.9736

UAL w/o self-guiding 1.95 42.94 6.74 0.9860

UAL 1.85 43.23 6.72 0.9862

Table 2. Performance under degeneration produced by different

kernels and 40db noise with SR scale s=8.
Methods RMSE PSNR SAM SSIM

k1

NSSR [8] 8.22 32.10 16.58 0.9229

CMS [30] 4.28 36.52 14.88 0.9517

DIP [21] 9.56 29.67 15.05 0.9117

MHF-net [25] 2.62 40.26 12.90 0.9528

YONG [15] 3.12 38.73 9.63 0.9646

UAL 1.85 43.23 6.72 0.9862

k2

NSSR [8] 8.92 29.77 18.88 0.8445

CMS [30] 4.92 34.75 17.15 0.8960

DIP [21] 11.41 28.03 10.79 0.8960

MHF-net [25] 2.84 39.53 13.43 0.9438

YONG [15] 3.25 38.42 9.89 0.9621

UAL 2.01 42.72 6.78 0.9859

k3

NSSR [8] 7.10 31.71 18.11 0.8661

CMS [30] 4.29 35.90 16.67 0.9040

DIP [21] 8.14 30.99 9.57 0.9245

MHF-net [25] 2.81 39.62 13.47 0.9437

YONG [15] 3.16 38.63 10.00 0.9613

UAL 1.86 43.22 6.70 0.9862

k4

NSSR [8] 7.93 30.77 18.41 0.8569

CMS [30] 4.66 35.22 16.88 0.8999

DIP [21] 9.64 29.47 9.99 0.9126

MHF-net [25] 2.84 39.53 13.43 0.9438

YONG [15] 3.22 38.53 9.86 0.9608

UAL 1.88 43.14 6.75 0.9860

6.06db. To show the effect of the pre-trained fusion mod-

ule, we learn the whole SR network during unsupervised

learning and show the result as ’UAL w/o pre-train’ in Ta-

ble 1. As can be seen, no pre-training results in obvious

over-fitting, e.g. PSNR drops 5.72db. In addition, to demon-

strate the necessity of fixing the pre-trained fusion module,

we fine-tune it during unsupervised learning and show the

result as ’UAL (fine-tune)’ in Table 1, which also incurs ob-

vious performance drop. Finally, we utilize the pre-defined

Ĥ instead of estimating H during unsupervised learning to

show the effect of degeneration estimation. Since incorrec-

t demonstrate Ĥ misleads learning adaptation module, the

performance also drops, shown as ’UAL (Ĥ)’ in Table 1.

Effect of components in fusion module The proposed

fusion module contains two key components: the multi-

branch structure and the mutual-guiding block. To illustrate

the effect of the multi-branch structure, we conduct two ex-

periments. The first removes the branch that takes the con-

catenation [X;Y] as input, while the second keeps the con-

catenation branch but removes the other two. Their results

are given as ’UAL (only concat)’ and ’UAL w/o concat’

in Table 1. Compared with the proposed UAL, their per-

formance declines obviously. To demonstrate the effect of

the mutual-guiding block, we remove them from the fusion

module. The results are given as ’UAL w/o mutual-guiding’

in Table 1. As can be seen, including the mutual-guiding

blocks can improve the performance by a clear margin.

Effect of components in adaptation module In the

adaptation module, both residual structure and self-guiding

block are crucial. To verify this, we compare UAL with

two variants, i.e.’UAL w/o residual’ and ’UAL w/o self-

guiding’ which remove the residual structure and the self-

guiding block, respectively, from the adaptation module.

Their results are given in Table 1. As can be seen, removing
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Table 5. Performance when SR scale s is 32 and the degeneration is produced by k1 and 40db noise.
CAVE Havard NTIRE

Methods RMSE PSNR SAM SSIM RMSE PSNR SAM SSIM RMSE PSNR SAM SSIM

NSSR [8] 9.05 30.00 16.47 0.9194 4.38 35.82 3.92 0.9620 3.34 38.45 2.28 0.9791

CMS [30] 4.57 35.50 11.06 0.9505 2.84 39.37 3.92 0.9680 2.03 42.57 1.79 0.9911

DIP [21] 9.90 28.83 17.34 0.9098 12.11 26.96 13.73 0.8502 13.18 26.11 12.30 0.8709

MHF-net [25] 3.72 37.65 13.46 0.9459 2.50 40.63 4.15 0.9763 1.98 43.26 1.90 0.9955

YONG [15] 4.98 34.83 12.84 0.9422 3.13 38.72 4.47 0.9678 7.57 32.83 4.22 0.9586

UAL (s=8) 2.89 39.67 9.24 0.9769 2.35 41.16 3.22 0.9788 1.71 43.76 1.68 0.9962

UAL (s=32) 2.78 40.06 7.78 0.9810 2.30 41.35 3.41 0.9785 1.57 44.38 1.58 0.9965

UAL (s=32 + init) 2.66 40.43 7.62 0.9831 2.14 41.82 3.30 0.9787 1.54 44.56 1.52 0.9967

(a) NSSR [8] (b) CMS [30] (c) DIP [21] (d) MHF-net [25] (e) YONG [15] (f) UAL (g) Ground truth

Figure 6. Visual SR results and reconstruction error maps on one image from the Harvard dataset with SR scale s=8.

either component causes a drop in performance.

4.3. Generalizability to unknown degenerations

We test the proposed UAL under various unknown de-

generations on the CAVE dataset with SR scale s =8.

Degeneration with different kernels We utilize four k-

ernels shown in Figure 5 and a fixed level (e.g., 40db) of

noise corruption to produce different degenerations H. For

each H, we generate corresponding observed images, e.g.

X and Y, and then feed them into all SR methods. The

numerical results are reported in Table 2. As can be seen, s-

ince the degeneration Ĥ predefined in NSSR [8], CMS [30],

DIP [21] and MHF-net [25] deviates from the real H, these

methods fail to produce pleasing SR results. Although Y-

ONG [15] also estimates the degeneration, the shallow im-

age prior limits its generalization performance. In contrast,

the proposed UAL simultaneously conducts degeneration

estimation and SR with deep image-specific image prior.

Thus, it surpasses all competitors by a clear margin. This

can be further supported by the visual results in Figure 1.

Degeneration with different noise levels We fix k1 as k-

ernel and introduce three different levels (e.g. 30db, 35db,

40db) of noise corruption to produce H. The numerical re-

sults of all methods are reported in Table 3. Since most ex-

isting methods assume a clean LR HSI, they are sensitive to

noise corruption. The proposed UAL can mitigate this prob-

lem by degeneration estimation, e.g. when the noise level is

35db, UAL improves the PSNR score by at least 3.42db.

4.4. Generalizability to various datasets

In this section, we first test the proposed UAL on differ-

ent datasets and SR scales, when the degeneration H is pro-

duced by kernel k1 under 40db of noise corruption. Then,

we test UAL on a real dataset.

Generalizability to different datasets To demonstrate

the generalizability of the proposed UAL to various dataset-

s, we obtain three versions of UAL, i.e., ’UAL(CAVE)’,

’UAL(Harvard)’ and ’UAL(NTITRE)’, in which the fusion

module is trained on the training set of the CAVE, Har-

vard and NTIRE datasets, respectively. For fair comparison,

we also obtain three versions of MHF-net [25] accordingly.

Their numerical results are shown in Table 4. As can be

seen, when generalizing to different datasets, the proposed

UAL outperforms other competitors in most cases, e.g., on

CAVE dataset, ’UAL(Harvard)’ improves the PSNR by at

least 1.78db. Moreover, when training and testing on the

same dataset, the performance of UAL is further improved.

Thus, we can conclude that the proposed UAL generalizes

better than other competitors to different datasets. This is

further demonstrate by the visual SR results in Figure 6 3.

Generalizability to different scales We further test al-

l methods on the three datasets with SR scale s=32.

To verify the generalizability of UAL to different scales,

we train the fusion module with three different settings,

termed ’UAL(s=8)’, ’UAL(s=32)’ and ’UAL(s=32+init)’.

’UAL(s=8)’ and ’UAL(s=32)’ train the fusion module with

3In the followings, without special illustration, UAL denotes the ver-

sion that trains the fusion module on CAVE dataset.
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(a) NSSR [8] (b) CMS [30] (c) DIP [21] (d) MHF-net [25] (e) YONG [15] (f) UAL (g) Ground truth

Figure 7. Visual SR results and reconstruction error maps on one image from the NTIRE dataset with SR scale s=32.

(a) LR HSI (b) NSSR [8] (c) CMS [30] (d) DIP [21] (e) MHF-net [25] (f) YONG [15] (g) UAL

Figure 8. Visual SR results of different methods for the real dataset HypSen.

training pairs generated at scale s=8 and s=32, respec-

tively. ’UAL(s=32+init)’ initializes the fusion module in

’UAL(s=32)’ with that from ’UAL(s=8)’. The numerical

results are reported in Table 5. As can be seen, despite not

being trained on the test scale, ’UAL(s=8)’ still outperform-

s other competitors in most cases. When training on the test

scale and being initialized, the performance of UAL can be

further improved. A visual evidence is given in Figure 7.

Performance on real dataset Finally, we also test UAL

on the real HypSen dataset [27]. With the spectral response

function from [27], all methods are performed for SR by

fusing the observed LR HSI and the HR MSI. Since there

is no ground truth for the latent HR Z, we follow the eval-

uation in [27]. In particular, we visualize the SR results of

all methods in Figure 8. In addition, we also adopt a non-

reference image quality evaluation metric [26] to evaluate

the SR results of all methods, as shown in Table 6. We find

that the proposed UAL recovers more details and obtain the

best image quality.

4.5. Runtime analysis

We compute the average runtime of all methods on each

image from the CAVE dataset when SR scale s is 8 and the

degeneration is produced by the kernel k1 under 40db of

noise corruption. All non-deep methods run on a worksta-

tion with 40 Intel Xeon CPU E5-2640 v4@2.40GHz, while

deep learning based methods run on a Tesla V100 GPU.

As shown in Table 7, the runtime of UAL is intermediate,

and it runs much faster than most unsupervised competitors.

Moreover, in practice, we can make a trade-off between per-

formance and efficiency for the proposed UAL by tuning the

optimization epochs of unsupervised learning.

Table 6. No-reference HSI quality measurement score [26] of each

method on the real HSI SR task. (The smaller the better)

Methods NSSR [8] CMS [30] DIP [21] MHF-net [25] YONG [15] UAL

Score 12.84 11.59 16.36 11.19 12.47 10.98

Table 7. Average runtime on CAVE dataset when SR scale s is 32

and the degeneration is produced by k1 with 40db noise.

Methods NSSR [8] CMS [30] DIP [21] MHF-net [25] YONG [15] UAL

Time (s) 104.69 301.71 428.21 1.31 8.36 44.21

5. Conclusion

In this study, we present an UAL framework for fusion-

based HSI SR, which shows good generalization perfor-

mance on different datasets and unknown degenerations.

The model benefits from implicitly learning a deep image-

specific prior as well as estimating the unknown degenera-

tion. To this end, we first develop a two-stage SR network

and pretrain the first stage in a supervised manner. Then, we

introduce a simple degeneration network to assist learning

the second stage for SR and the degeneration directly from

the specific pair of observed images in unsupervised learn-

ing. Extensive experiments demonstrate the effectiveness

of the proposed method. Moreover, it provides a promising

way to generalize deep models to unseen cases in practice,

which can be applied to other image restoration tasks, such

as image denoising, deblurring etc.
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