
Weakly-Supervised Salient Object Detection via Scribble Annotations

Jing Zhang1,3,4 Xin Yu1,3,5 Aixuan Li
2

Peipei Song1,4 Bowen Liu2 Yuchao Dai2∗

1 Australian National University, Australia 2 Northwestern Polytechnical University, China
3 ACRV, Australia 4 Data61, Australia 5 ReLER, University of Technology Sydney, Australia

Abstract

Compared with laborious pixel-wise dense labeling, it

is much easier to label data by scribbles, which only costs

1∼2 seconds to label one image. However, using scrib-

ble labels to learn salient object detection has not been

explored. In this paper, we propose a weakly-supervised

salient object detection model to learn saliency from such

annotations. In doing so, we first relabel an existing large-

scale salient object detection dataset with scribbles, namely

S-DUTS dataset. Since object structure and detail infor-

mation is not identified by scribbles, directly training with

scribble labels will lead to saliency maps of poor boundary

localization. To mitigate this problem, we propose an aux-

iliary edge detection task to localize object edges explicitly,

and a gated structure-aware loss to place constraints on

the scope of structure to be recovered. Moreover, we de-

sign a scribble boosting scheme to iteratively consolidate

our scribble annotations, which are then employed as su-

pervision to learn high-quality saliency maps. As exist-

ing saliency evaluation metrics neglect to measure struc-

ture alignment of the predictions, the saliency map rank-

ing metric may not comply with human perception. We

present a new metric, termed saliency structure measure, as

a complementary metric to evaluate sharpness of the pre-

diction. Extensive experiments on six benchmark datasets

demonstrate that our method not only outperforms existing

weakly-supervised/unsupervised methods, but also is on par

with several fully-supervised state-of-the-art models1.

1. Introduction

Visual salient object detection (SOD) aims at locating in-

teresting regions that attract human attention most in an im-

age. Conventional salient object detection methods [57, 14]

based on hand-crafted features or human experience may

fail to obtain high-quality saliency maps in complicated

scenarios. The deep learning based salient object detec-

tion models [42, 50] have been widely studied, and sig-

∗Corresponding author: Yuchao Dai (daiyuchao@gmail.com)
1Our code and data is publicly available at: https://github.

com/JingZhang617/Scribble_Saliency.

(a) GT(scribble) (b) GT(Bbx) (c) GT(per-pixel)

(d) Baseline (e) Bbx-CRF (f) BASNet

(g) WSS (h) Bbx-Pred (i) Ours

Figure 1. (a) Our scribble annotations. (b) Ground-truth bounding

box. (c) Ground-truth pixel-wise annotations. (d) Baseline model:

trained directly on scribbles. (e) Refined bounding box annotation

by DenseCRF [1]. (f) Result of a fully-supervised SOD method

[26]. (g) Result of model trained on image-level annotations [34]

(h) Model trained on the annotation (e). (i) Our result.

nificantly boost the saliency detection performance. How-

ever, these methods highly rely on a large amount of labeled

data, which require time-consuming and laborious pixel-

wise annotations. To achieve a trade-off between labeling

efficiency and model performance, several weakly super-

vised or unsupervised methods [16, 47, 24, 52] have been

proposed to learn saliency from sparse labeled data [16, 47]

or infer the latent saliency from noisy annotations [24, 52].

In this paper, we propose a new weakly-supervised

salient object detection framework by learning from low-

cost labeled data, (i.e., scribbles, as seen in Fig. 1(a)). Here,

we opt to scribble annotations because of their flexibility

(although bounding box annotation is an option, it’s not

suitable for labeling winding objects, thus leading to in-

ferior saliency maps, as seen in Fig. 1 (h)). Since scrib-

ble annotations are usually very sparse, object structure and

details cannot be easily inferred. Directly training a deep
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Figure 2. Percentage of labeled pixels in the S-DUTS dataset.

model with sparse scribbles by partial cross-entropy loss

[30] may lead to saliency maps of poor boundary localiza-

tion, as illustrated in Fig. 1 (d).

To achieve high-quality saliency maps, we present an

auxiliary edge detection network and a gated structure-

aware loss to enforce boundaries of our predicted saliency

map to align with image edges in the salient region. The

edge detection network forces the network to produce fea-

ture highlight object structure, and the gated structure-

aware loss allows our network to focus on the salient re-

gion while ignoring the structure of the background. We

further develop a scribble boosting manner to update our

scribble annotations by propagating the labels to larger re-

ceptive fields of high confidence. In this way, we can obtain

denser annotations as shown in Fig. 7 (g).

Due to the lack of scribble based saliency datasets, we re-

label an existing saliency training dataset DUTS [34] with

scribbles, namely S-DUTS dataset, to verify our method.

DUTS is a widely used salient object detection dataset,

which contains 10,553 training images. Annotators are

asked to scribble the DUTS dataset according to their first

impressions without showing them the ground-truth salient

objects. Fig. 2 indicates the percentage of labeled pixels

across the whole S-DUTS dataset. On average, around 3%

of the pixels are labeled (either foreground or background)

and the others are left as unknown pixels, demonstrating

that the scribble annotations are very sparse. Note that, we

only use scribble annotation as supervision signal during

training, and we take RGB image as input to produce dense

saliency map during testing.

Moreover, the rankings of saliency maps based on tradi-

tional mean absolute error (MAE) may not comply with hu-

man visual perception. For instance, in the 1st row of Fig. 3,

the last saliency map is visually better than the fourth one

and the third one is better than the second one. We propose

saliency structure measure (Bµ) as a complementary metric

of existing evaluation metrics that takes the structure align-

ment of the saliency map into account. The measurements

based on Bµ are more consistent with human perception, as

shown in the 2nd row of Fig. 3.

We summarize our main contributions as: (1) we present

a new weakly-supervised salient object detection method

by learning saliency from scribbles, and introduce a new

scribble based saliency dataset S-DUTS; (2) we propose a

gated structure-aware loss to constrain a predicted saliency

map to share similar structure with the input image in the

M = 0 M = .054 M = .061 M = .104 M = .144

Bµ = 0 Bµ = .356 Bµ = .705 Bµ = .787 Bµ = .890

Figure 3. Saliency map ranking based on Mean Absolute Error (1st

row) and our proposed Saliency Structure Measure (2nd row).

salient region; (3) we design a scribble boosting scheme

to expand our scribble annotations, thus facilitating high-

quality saliency map acquisition; (4) we present a new eval-

uation metric to measure the structure alignment of pre-

dicted saliency maps, which is more consistent with human

visual perception; (5) experimental results on six salient ob-

ject detection benchmarks demonstrate that our method out-

performs state-of-the-art weakly-supervised algorithms.

2. Related Work

Deep fully supervised saliency detection models [26, 55,

42, 50, 51, 36, 49] have been widely studied. As our method

is weakly supervised, we mainly discuss related weakly-

supervised dense prediction models and approaches to re-

cover detail information from weak annotations.

2.1. Learning Saliency from Weak Annotations

To avoid requiring accurate pixel-wise labels, some SOD

methods attempt to learn saliency from low-cost anno-

tations, such as bounding boxes [29], image-level labels

[34, 16], and noisy labels [52, 48, 24], etc. This moti-

vates SOD to be formulated as a weakly-supervised or un-

supervised task. Wang et al. [34] introduced a foreground

inference network to produce saliency maps with image-

level labels. With the same weak labels, Hsu et al. [10]

presented a category-driven map generator to learn saliency

from class activation map. Li et al. [16] adopted an iterative

learning strategy to update an initial saliency map gener-

ated from unsupervised saliency methods by learning with

image-level supervision. A fully connected CRF [1] was

utilized in [34, 16] as post-processing to refine the produced

saliency map. Zeng et al. [47] proposed to train saliency

models with diverse weak supervision sources, including

category labels, captions, and unlabeled data. Zhang et

al. [48] fused saliency maps from unsupervised methods

with heuristics within a deep learning framework. In a sim-

ilar setting, Zhang et al. [52] proposed to collaboratively

12547



update a saliency prediction module and a noise module to

learn a saliency map from multiple noisy labels.

2.2. WeaklySupervised Semantic Segmentation

Dai et al. [3] and Khoreva [13] proposed to learn se-

mantic segmentation from bounding boxes in a weakly-

supervised way. Hung et al. [12] randomly interleaved la-

beled and unlabeled data, and trained a network with an

adversarial loss on the unlabeled data for semi-supervised

semantic segmentation. Shi et al. [39] tackled the weakly-

supervised semantic segmentation problem by using multi-

ple dilated convolutional blocks of different dilation rates

to encode dense object localization. Li et al. [37] presented

an iterative bottom-up and top-down semantic segmentation

framework to alternatingly expand object regions and op-

timize segmentation network with image tag supervision.

Huang et al. [11] introduced a seeded region growing tech-

nique to learn semantic segmentation with image-level la-

bels. Vernaza et al. [32] designed a random walk based

label propagation method to learn semantic segmentation

from sparse annotations.

2.3. Recovering Structure from Weak Labels

As weak annotations do not contain complete seman-

tic region of the specific object, the predicted object struc-

ture is often incomplete. To preserve rich and fine-detailed

semantic information, additional regularizations are often

employed. Two main solutions are widely studied, includ-

ing graph model based methods (e.g. CRF [1]) and bound-

ary based losses [15]. Tang et al. [30] introduced a nor-

malized cut loss as a regularizer with partial cross-entropy

loss for weakly-supervised image segmentation. Tang et al.

[31] modeled standard regularizers into a loss function over

partial observation for semantic segmentation. Obukhov et

al. [25] proposed a gated CRF loss for weakly-supervised

semantic segmentation. Lampert et al. [15] introduced a

constrain-to-boundary principle to recover detail informa-

tion for weakly-supervised image segmentation.

2.4. Comparison with Existing Scribble Models

Although scribble annotations have been used in weakly-

supervised semantic segmentation [19, 33], our proposed

scribble based salient object detection method is different

from them in the following aspects: (1) semantic segmenta-

tion methods target at class-specific objects. In this manner,

class-specific similarity can be explored. On the contrary,

salient object detection does not focus on class-specific ob-

jects, thus object category related information is not avail-

able. For instance, a leaf can be a salient object while the

class category is not available in the widely used image-

level label dataset [4, 20]. Therefore, we propose edge-

guided gated structure-aware loss to obtain structure infor-

mation from image instead of depending on image cate-

gory. (2) although boundary information has been used in

[33] to propagate labels, Wang et al. [33] regressed bound-

aries by an ℓ2 loss. Thus, the structure of the segmenta-

tion may not be well aligned with the image edges. In con-

trast, our method minimizes the differences between first

order derivatives of saliency maps and images, and leads to

saliency map better aligned with image structure. (3) bene-

fiting from our developed boosting method and the intrinsic

property of salient objects, our method requires only scrib-

ble on any salient region as shown in Fig. 9, while scrib-

bles are required to traverse all those semantic categories

for scribble based semantic segmentation [19, 33].

3. Learning Saliency from Scribbles

Let’s define our training dataset as: D = {xi, yi}Ni=1,

where xi is an input image, yi is its corresponding an-

notation, N is the size of the training dataset. For fully-

supervised salient object detection, yi is a pixel-wise label

with 1 representing salient foreground and 0 denoting back-

ground. We define a new weakly-supervised saliency learn-

ing problem from scribble annotations, where yi in our case

is scribble annotation used during training, which includes

three categories of supervision signal: 1 as foreground, 2 as

background and 0 as unknown pixels. In Fig. 2, we show

the percentage of annotated pixels of the training dataset,

which indicates that around 3% of pixels are labeled as fore-

ground or background in our scribble annotation.

There are three main components in our network, as il-

lustrated in Fig. 4: (1) a saliency prediction network (SPN)

to generate a coarse saliency map sc, which is trained on

scribble annotations by a partial cross-entropy loss [30]; (2)

an edge detection network (EDN) is proposed to enhance

structure of sc, with a gated structure-aware loss employed

to force the boundaries of saliency maps to comply with im-

age edges; (3) an edge-enhanced saliency prediction mod-

ule (ESPM) is designed to further refine the saliency maps

generated from SPN.

3.1. WeaklySupervised Salient Object Detection

Saliency prediction network (SPN): We build our

front-end saliency prediction network based on VGG16-Net

[28] by removing layers after the fifth pooling layer. Simi-

lar to [43], we group the convolutional layers that generate

feature maps of the same resolution as a stage of the net-

work (as shown in Fig. 4). Thus, we denote the front-end

model as f1(x, θ) = {s1, ..., s5}, where sm(m = 1, ..., 5)
represents features from the last convolutional layer in the

m-th stage (“relu1 2, relu2 2, relu3 3, relu4 3, relu5 3” in

this paper), θ is the front-end network parameters.

As discussed in [39], enlarging receptive fields by dif-

ferent dilation rates can propagate the discriminative infor-

mation to non-discriminative object regions. We employ a

dense atrous spatial pyramid pooling (DenseASPP) module
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Figure 4. Illustration of our network. For simplicity, we do not show the scribble boosting mechanism here. “I” is the intensity image of

input “x”. “C”: concatenation operation; “conv1x1”: 1×1 convolutional layer.

Figure 5. Our “DenseASPP” module. “conv1x1 d=3” represents a

1×1 convolutional layer with a dilation rate 3.

[46] on top of the front-end model to generate feature maps

s′5 with larger receptive fields from feature s5. In particular,

we use varying dilation rates in the convolutional layers of

DenseASPP. Then, two extra 1× 1 convolutional layers are

used to map s′5 to a one channel coarse saliency map sc.

As we have unknown category pixels in the scribble an-

notations, partial cross-entropy loss [30] is adopted to train

our SPN:

Ls =
∑

(u,v)∈Jl

Lu,v, (1)

where Jl represents the labeled pixel set, (u, v) is the pixel

coordinates, and Lu,v is the cross-entropy loss at (u, v).
Edge detection network (EDN): Edge detection net-

work encourages SPN to produce saliency features with rich

structure information. We use features from the interme-

diate layers of SPN to produce one channel edge map e.

Specifically, we map each si(i = 1, ..., 5) to a feature map

of channel size M with a 1 × 1 convolutional layer. Then

we concatenate these five feature maps and feed them to

a 1 × 1 convolutional layer to produce an edge map e. A

cross-entropy loss Le is used to train EDN:

Le =
∑

u,v

(E log e+ (1− E) log(1− e)), (2)

where E is pre-computed by an existing edge detector [22].

Edge-enhanced saliency prediction module (ESPM):

We introduce an edge-enhanced saliency prediction module

to refine the coarse saliency map sc from SPN and obtain

an edge-preserving refined saliency map sr. Specifically,

we concatenate sc and e and then feed them to a 1× 1 con-

volutional layer to produce a saliency map sr. Note that, we

use the saliency map sr as the final output of our network.

Similar to training SPN, we employ a partial cross-entropy

loss with scribble annotations to supervise sr.

Gated structure-aware loss: Although ESPM encour-

ages the network to produce saliency map with rich struc-

ture, there exists no constraints on scope of structure to be

recovered. Following the “Constrain-to-boundary” princi-

ple [15], we propose a gated structure-aware loss, which

encourages the structure of a predicted saliency map to be

similar to the salient region of an image.

We expect the predicted saliency map having consistent

intensities inside the salient region and distinct boundaries

at the object edges. Inspired by the smoothness loss [9, 38],

we also impose such constraint inside the salient regions.

Recall that the smoothness loss is developed to enforce

smoothness while preserving image structure across the

whole image region. However, salient object detection

intends to suppress the structure information outside the

salient regions. Therefore, enforcing the smoothness loss

across the entire image regions will make the saliency pre-

diction ambiguous, as shown in Tabel 2 “M3”.

To mitigate this ambiguity, we employ a gate mechanism

to let our network focus on salient regions only to reduce

distraction caused by background structure. Specifically,

we define the gated structure-aware loss as:

Lb =
∑

u,v

∑

d∈−→x ,−→y

Ψ(|∂dsu,v|e−α|∂d(G·Iu,v)|), (3)

where Ψ is defined as Ψ(s) =
√
s2 + 1e−6 to avoid cal-
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(a) (b) (c) (d) (e)

Figure 6. Gated structure-aware constraint: (a) Initial predicted

saliency map. (b) Image edge map. (c) Dilated version of (a). (d)

Gated mask in Eq. 3. (e) Gated edge map.

culating the square root of zero, Iu,v is the image intensity

value at pixel (u, v), d indicates the partial derivatives on

the −→x and −→y directions, and G is the gate for the structure-

aware loss (see Fig .6 (d)). The gated structure-aware loss

applies L1 penalty on gradients of saliency map s to encour-

ages it to be locally smooth, with an edge-aware term ∂I as

weight to maintain saliency distinction along image edges.

Specifically, as shown in Fig. 6, with predicted saliency

map (a)) during training, we dilate it with a square kernel

of size k = 11 to obtain an enlarged foreground region

(c)). Then we define gate (d)) as binarized (c)) by adap-

tive thresholding. As seen in Fig. 6(e), our method is able

to focus on the saliency region and predict sharp boundaries

in a saliency map.

Objective Function: As shown in Fig. 4, we employ

both partial cross-entropy loss Ls and gated structure-aware

loss Lb to coarse saliency map sc and refined map sr, and

use cross-entropy loss Le for the edge detection network.

Our final loss function is then defined as:

L =Ls(s
c, y) + Ls(s

r, y)

+ β1 · Lb(s
c, x) + β2 · Lb(s

r, x) + β3 · Le,
(4)

where y indicates scribble annotations. The partial cross-

entropy loss Ls takes scribble annotation as supervision,

while gated structure-aware loss Lb leverages image bound-

ary information. These two losses do not contradict each

other since Ls focuses on propagating the annotated scrib-

ble pixels to the foreground regions (relying on SPN), while

Lb enforces sr to be well aligned to edges extracted by

EDN and prevents the foreground saliency pixels from be-

ing propagated to backgrounds.

3.2. Scribble Boosting

While we generate scribbles for a specific image, we

simply annotate a very small portion of the foreground and

background as shown in Fig. 1. Intra-class discontinuity,

such as complex shapes and appearances of objects, may

lead our model to be trapped in a local minima, with incom-

plete salient object segmented. Here, we attempt to propa-

gate the scribble annotations to a denser annotation based

on our initial estimation.

A straightforward solution to obtain denser annotations

is to expand scribble labels by using DenseCRF [1], as

shown in Fig. 7(c). However, as our scribble annotations

are very sparse, DenseCRF fails to generate denser annota-

tion from our scribbles (see Fig. 7(c)). As seen in Fig. 7(e),

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 7. Illustration of using different strategies to enrich scrib-

ble annotations. (a) Input RGB image and scribble annotations.

(b) Per-pixel wise ground-truth. (c) Result of applying DenseCRF

to scribbles. (d) Saliency detection, trained on scribbles of (a). (e)

Saliency detection, trained on scribbles of (c). (f) Applying Dense-

CRF to the result (d). (g) The confidence map between (d) and

(f) for scribble boosting. Orange indicates consistent foreground,

blue represents consistent background, and others are marked as

unknown. (h) Our final result trained on new scribble (g).

the predicted saliency map trained on (c) is still very similar

to the one supervised by original scribbles (see Fig. 7(d)).

Instead of expanding the scribble annotation directly, we

apply DenseCRF to our initial saliency prediction sinit, and

update sinit to scrf. Directly training a network with scrf

will introduce noise to the network as scrf is not the exact

ground-truth. We compute difference of sinit and scrf, and

define pixels with sinit = scrf = 1 as foreground pixels in

the new scribble annotation, sinit = scrf = 0 as background

pixels, and others as unknown pixels. In Fig. 7 (g) and

Fig. 7 (h), we illustrate the intermediate results of scribble

boosting. Note that, our method achieves better saliency

prediction results than the case of applying DenseCRF to

the initial prediction (see Fig. 7 (f)). This demonstrates

the effectiveness of our scribble boosting scheme. In our

experiments, after conducting one iteration of our scribble

boosting step, our performance is almost on par with fully-

supervised methods.

3.3. Saliency Structure Measure

Existing saliency evaluation metrics (Mean Abosolute

Error, Precision-recall curves, F-measure, E-measure [7]

and S-measure [6]) focus on measuring accuracy of the

prediction, while neglect whether a predicted saliency map

complies with human perception or not. In other words, the

estimated saliency map should be aligned with object struc-

ture of the input image. In [23], bIOU loss was proposed to

penalize on saliency boundary length. We adapt the bIOU

loss as an error metric Bµ to evaluate the structure align-

ment between saliency maps and their ground-truth.

Given a predicted saliency map s, and its pixel-wise

ground truth y, their binarized edge maps are defined as

gs and gy respectively. Then Bµ is expressed as: Bµ =

1 − 2·
∑

(gs·gy)∑
(g2

s+g2
y)

, where Bµ ∈ [0, 1]. Bµ = 0 represents per-
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Figure 8. The first two images show the original image edges. We

dilate the original edges (last two images) to avoid misalignments

due to the small scales of original edges.

fect prediction. As edges of prediction and ground-truth

saliency maps may not be aligned well due to the small

scales of edges, they will lead to unstable measurements

(see Fig. 8). We dilate both edge maps with square kernel

of size 3 before we compute the Bµ measure. As shown

in Fig. 3, Bµ reflects the sharpness of predictions which is

consistent with human perception.

3.4. Network Details

We use VGG16-Net [28] as our backbone network. In

the edge detection network, we encode sm to feature maps

of channel size 32 through 1×1 convolutional layers. In the

“DenseASPP” module (Fig. 5), the first three convolutional

layers produce saliency features of channel size 32, and the

last convolutional layer map the feature maps to s′5 of same

size as s5. Then we use two sequential convolutional lay-

ers to map s′5 to one channel coarse saliency map sc. The

hyper-parameters in Eq. 3 and Eq. (4) are set as: α = 10,

β1 = β2 = 0.3, β3 = 1.

We train our model for 50 epochs using Pytorch, with the

SPN initialized with parameters from VGG16-Net [28] pre-

trained on ImageNet [4]. The other newly added convolu-

tional layers are randomly initialized with N (0, 0.01). The

base learning rate is initialized as 1e-4. The whole training

takes 6 hours with a training batch size 15 on a PC with a

NVIDIA GeForce RTX 2080 GPU.

4. Experimental Results

4.1. Scribble Dataset

In order to train our weakly-supervised salient object de-

tection method, we relabel an existing saliency dataset with

scribble annotations by three annotators (S-DUTS dataset).

In Fig. 9, we show two examples of scribble annotations

by different labelers. Due to the sparsity of scribbles, the

annotated scribbles do not have large overlaps. Thus, ma-

jority voting is not conducted. As aforementioned, labeling

one image with scribbles is very fast, which only takes 1∼2

seconds on average.

4.2. Setup

Datasets: We train our network on our newly labeled

scribble saliency dataset: S-DUTS. Then, we evaluate our

method on six widely-used benchmarks: (1) DUTS testing

dataset [34]; (2) ECSSD [44]; (3) DUT [45]; (4) PASCAL-S

[18]; (5) HKU-IS [17] and (6) THUR [2].

Figure 9. Illustration of scribble annotations by different labelers.

From left to right: input RGB images, pixel-wise ground-truth la-

bels, scribble annotations by three different labelers.

Competing methods: We compare our method with

five state-of-the-art weakly-supervised/unsupervised meth-

ods and eleven fully-supervised saliency detection methods.

Evaluation Metrics: Four evaluation metrics are used, in-

cluding Mean Absolute Error (MAE M), Mean F-measure

(Fβ), mean E-measure (Eξ [7]) and our proposed saliency

structure measure (Bµ).

4.3. Comparison with the StateoftheArt

Quantitative Comparison: In Table 1 and Fig. 11, we

compare our results with other competing methods. As in-

dicated in Table 1, we achieves consistently the best per-

formance compared with other weakly-supervised or unsu-

pervised methods under these four saliency evaluation met-

rics. Since state-of-the-art weakly-supervised or unsuper-

vised models do not impose any constraints on the bound-

aries of predicted saliency maps, these methods cannot pre-

serve the structure in the prediction and produce high values

on Bµ measure. In contrast, our method explicitly enforces

a gated structure-aware loss to the edges of the prediction,

and achieves lower Bµ. Moreover, our performance is also

comparable or superior to some fully-supervised saliency

models, such as DGRL and PiCANet. Fig. 11 shows the E-

measure and F-measure curves of our method as well as the

other competing methods on HKU-IS and THUR datasets.

Due to limits of space, E-measure and F-measure curves

on the other four testing datasets are provided in the sup-

plementary material. As illustrated in Fig. 11, our method

significantly outperforms the other weakly-supervised and

unsupervised models with different thresholds, demonstrat-

ing the robustness of our method. Furthermore, the per-

formance of our method is also on par with some fully-

supervised methods as seen in Fig. 11.

Qualitative Comparison: We sample four images from

the ECSSD dataset [44] and the saliency maps predicted

by six competing methods and our method are illustrated in

Fig. 10. Our method, while achieving performance on par

with some fully-supervised methods, significantly outper-

forms other weakly-supervised and unsupervised models.

In Fig. 10, we further show that directly training with scrib-

bles produces saliency maps with poor localization (“M1”).

Benefiting from our EDN as well as gated structure-aware

loss, our network is able to produce sharper saliency maps
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Table 1. Evaluation results on six benchmark datasets. ↑ & ↓ denote larger and smaller is better, respectively.
Fully Sup. Models Weakly Sup./Unsup. Models

Metric DGRL UCF PiCANet R3Net NLDF MSNet CPD AFNet PFAN PAGRN BASNet SBF WSI WSS MNL MSW Ours

[35] [53] [21] [5] [23] [40] [41] [8] [56] [54] [26] [48] [16] [34] [52] [47]

ECSSD

Bµ ↓ .4997 .6990 .5917 .4718 .5942 .5421 .4338 .5100 .6601 .5742 .3642 .7587 .8007 .8079 .6806 .8510 .5500

Fβ ↑ .9027 .8446 .8715 .9144 .8709 .8856 .9076 .9008 .8592 .8718 .9128 .7823 .7621 .7672 .8098 .7606 .8650

Eξ ↑ .9371 .8870 .9085 .9396 .8952 .9218 .9321 .9294 .8636 .8869 .9378 .8354 .7921 .7963 .8357 .7876 .9077

M ↓ .0430 .0705 .0543 .0421 .0656 .0479 .0434 .0450 .0467 .0644 .0399 .0955 .0681 .1081 .0902 .0980 .0610

DUT

Bµ ↓ .6188 .8115 .6846 .6061 .7148 .6415 .5491 .6027 .6443 .6447 .4803 .8119 .8392 .8298 .7759 .8903 .6551

Fβ ↑ .7264 .6318 .7105 .7471 .6825 .7095 .7385 .7425 .7009 .6754 .7668 .6120 .6408 .5895 .5966 .5970 .7015

Eξ ↑ .8446 .7597 .8231 .8527 .7983 .8306 .8450 .8456 .7990 .7717 .8649 .7633 .7605 .7292 .7124 .7283 .8345

M ↓ .0632 .1204 .0722 .0625 .0796 .0636 .0567 .0574 .0615 .0709 .0565 .1076 .0999 .1102 .1028 .1087 .0684

PASCAL-S

Bµ ↓ .6479 .7832 .7037 .6623 .7313 .6708 .6162 .6586 .7097 .6915 .5819 .8146 .8550 .8309 .7762 .8703 .6648

Fβ ↑ .8289 .7873 .7985 .7974 .7933 .8129 .8220 .8241 .7544 .7656 .8212 .7351 .6532 .6975 .7476 .6850 .7884

Eξ ↑ .8353 .7953 .8045 .7806 .7828 .8219 .8197 .8269 .7464 .7545 .8214 .7459 .6474 .6904 .7408 .6932 .7975

M ↓ .1150 .1402 .1284 .1452 .1454 .1193 .1215 .1155 .1372 .1516 .1217 .1669 .2055 .1843 .1576 .1780 .1399

HKU-IS

Bµ ↓ .4962 .6788 .5608 .4765 .5525 .4979 .4211 .4828 .5302 .5329 .3593 .7336 .7824 .7517 .6265 .8295 .5369

Fβ ↑ .8844 .8189 .8543 .8923 .8711 .8780 .8948 .8877 .8717 .8638 .9025 .7825 .7625 .7734 .8196 .7337 .8576

Eξ ↑ .9388 .8860 .9097 .9393 .9139 .9304 .9402 .9344 .8982 .8979 .9432 .8549 .7995 .8185 .8579 .7862 .9232

M ↓ .0374 .0620 .0464 .0357 .0477 .0387 .0333 .0358 .0424 .0475 .0322 .0753 .0885 .0787 .0650 .0843 .0470

THUR

Bµ ↓ .5781 - .6589 - .6517 .6196 .5244 .5740 .7426 .6312 .4891 .7852 - .7880 .7173 - .5964

Fβ ↑ .7271 . .7098 - .7111 .7177 .7498 .7327 .6833 .7395 .7366 .6269 - .6526 .6911 - .7181

Eξ ↑ .8378 . .8211 - .8266 .8288 .8514 .8398 .8038 .8417 .8408 .7699 - .7747 .8073 - .8367

M ↓ .0774 . .0836 - .0805 .0794 .0935 .0724 .0939 .0704 .0734 .1071 - .0966 .0860 - .0772

DUTS

Bµ ↓ .5644 .7956 .6348 - .6494 .5823 .4618 .5395 .6173 .5870 .4000 .8082 .8785 .7802 .7117 .8293 .6026

Fβ ↑ .7898 .6631 .7565 - .7567 .7917 .8246 .8123 .7648 .7781 .8226 .6223 .5687 .6330 .7249 .6479 .7467

Eξ ↑ .8873 .7750 .8529 - .8511 .8829 .9021 .8928 .8301 .8422 .8955 .7629 .6900 .8061 .8525 .7419 .8649

M ↓ .0512 .1122 .0621 - .0652 .0490 .0428 .0457 .0609 .0555 .0476 .1069 .1156 .1000 .0749 .0912 .0622

Image GT PiCANet NLDF CPD BASNet SBF MSW M1 Ours

Figure 10. Comparisons of saliency maps. “M1” represents the results of a baseline model marked as “M1” in Section 4.4.

Figure 11. E-measure (1st two figures) and F-measure (last two figures) curves on two benchmark datasets. Best Viewed on screen.

than other weakly-supervised and unsupervised ones.

4.4. Ablation Study

We carry out nine experiments (as shown in Table

2) to analyze our method, including our loss functions

(“M1”, “M2” and “M3”), network structure (“M4”), Dense-

CRF post-processing (“M5”), scribble boosting strategy

(“M6”), scribble enlargement (“M7”) and robustness anal-

ysis (“M8”, “M9”). Our final result is denoted as “M0”.

Direct training with scribble annotations: We employ the

partial cross-entropy loss to train our SPN in Fig. 4 with

scribble labels. The performance is marked as “M1”. As

expected, “M1” is much worse than our result “M0” and the

high Bµ measure also indicates that object structure is not

well preserved if only using the partial cross-entropy loss.

Impact of gated structure-aware loss: We add our gated

structure-aware loss to “M1”, and the performance is de-

noted by “M2”. The gated structure-aware loss improves

the performance in comparison with “M1”. However, with-

out using our EDN, “M2” is still inferior to “M0”.
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Table 2. Ablation study on six benchmark datasets.
Metric M0 M1 M2 M3 M4 M5 M6 M7 M8 M9

E
C

S
S
D

Bµ ↓ .550 .896 .592 .616 .714 .582 .554 .771 .543 .592

Fβ ↑ .865 .699 .823 .804 .778 .845 .835 .696 .868 .839

Eξ ↑ .908 .814 .874 .859 .865 .898 .890 .730 .908 .907

M ↓ .061 .117 .083 .094 .091 .068 .074 .136 .059 . 070

D
U

T

Bµ ↓ .655 .925 .696 .711 .777 .685 .665 .786 .656 .708

Fβ ↑ .702 .518 .656 .626 .580 .679 .658 .556 .691 .671

Eξ ↑ .835 .699 .807 .774 .743 .823 .805 .711 .823 .816

M ↓ .068 .134 .083 .102 .116 .074 .081 .108 .069 .080

P
A

S
C

A
L

-S Bµ ↓ .665 .921 .732 .760 .787 .693 .676 .792 .664 .722

Fβ ↑ .788 .693 .748 .727 .741 .772 .768 .657 .792 .771

Eξ ↑ .798 .761 .757 .731 .795 .791 .782 .664 .800 .804

M ↓ .140 .171 .160 .173 .152 .145 .152 .204 .136 .143

H
K

U
-I

S Bµ ↓ .537 .892 .567 .609 .670 .574 .559 .747 .535 .564

Fβ ↑ .858 .651 .813 .789 .747 .835 .812 .646 .857 .821

Eξ ↑ .923 .799 .904 .878 .867 .911 .900 .761 .920 .907

M ↓ .047 .113 .060 .083 .080 .055 .062 .123 .047 .058

T
H

U
R

Bµ ↓ .596 .927 .637 .677 .751 .635 .606 .780 .592 .650

Fβ ↑ .718 .520 .660 .641 .596 .696 .683 .586 .718 .690

Eξ ↑ .837 .687 .803 .773 .750 .824 .814 .718 .834 .804

M ↓ .077 .150 .099 .118 .123 .085 .087 .125 .078 .086

D
U

T
S

Bµ ↓ .603 .923 .681 .708 .763 .639 .634 .745 .604 .687

Fβ ↑ .747 .517 .688 .652 .607 .728 .685 .578 .743 .728

Eξ ↑ .865 .699 .833 .805 .776 .857 .828 .719 .856 .855

M ↓ .062 .135 .079 .101 .106 .068 .080 .106 .061 .080

Impact of gate: We propose gated structure-aware loss to

let the network focus on salient regions of images instead of

the entire image as in the traditional smoothness loss [38].

To verify the importance of the gate, we compare our loss

with the smoothness loss, marked as “M3”. As indicated,

“M2” achieves better performance than “M3”, demonstrat-

ing the gate reduces the ambiguity of structure recovery.

Impact of the edge detection task: We add edge detection

task to “M1”, and use cross-entropy loss to train the EDN.

Performance is indicated by “M4”. We observe that the Bµ

measure is significantly decreased compared to “M1”. This

indicates that our auxiliary edge-detection network provides

rich structure guidance for saliency prediction. Note that,

our gated structure-aware loss is not used in “M4”.

Impact of scribble boosting: We employ all the branches

as well as our proposed losses to train our network and the

performance is denoted by “M5”. The predicted saliency

map is also called our initial estimated saliency map.

We observe decreased performance compared with “M0”,

where one iteration of scribble boosting is employed, which

indicates effectiveness of the proposed boosting scheme.

Employing DenseCRF as post-processing: After obtain-

ing our initial predicted saliency map, we can also use

post-processing techniques to enhance the boundaries of

the saliency maps. Therefore, we refine “M5” with Dense-

CRF, and results are shown in “M6”, which is inferior to

“M5”. The reason lies in two parts: 1) the hyperparameters

for DenseCRF is not the best; 2) DenseCRF recover struc-

ture information without considering saliency of the struc-

ture, causing extra false positive region. Using our scribble

boosting mechanism, we can always achieve boosted or at

least comparable performance as indicated by “M0”.

Using Grabcut to generate pseudo label: Given scribble

annotation, one can enlarge the annotation by using Grab-

cut [27]. We carried out experiment with pseudo label y′

obtained by applying Grabcut to our scribble annotations y,

and show performance in “M7”. During training, we em-

ploy the same loss function as in Eq. 4, except that we use

cross-entropy loss for Ls. Performance of “M7” is worse

than ours. The main reason is that pseudo label y′ contains

noise due to limited accuracy of Grabcut. Training directly

with y′ will overwhelm the network remembering the noisy

label instead of learning useful saliency information.

Robustness to different scribble annotations: We report

our performance “M0” by training the network with one

set of scribble dataset. We then train with another set of

the scribble dataset (“M8”) to test robustness of our model.

We observe staple performance compared with “M0”. This

implies that our method is robust to the scribble anno-

tations despite their sparsity and few overlaps annotated

by different labelers. We also conduct experiments with

merged scribbles of different labelers as supervision signal

and show performance of this experiment in the supplemen-

tary material.

Different edge detection methods: We obtain the edge

maps E in Eq. 2 from RCF edge detection network [22]

to train EDN. We also employ a hand-crafted edge map de-

tection method, “Sobel”, to train EDN, denoted by “M9”.

Since Sobel operator is more sensitive to image noise com-

pared to RCF, “M9” is a little inferior to “M0”. However,

“M9” still achieves better performance than the results with-

out using EDN, such as “M1”, “M2” and “M3”, which fur-

ther indicates effectiveness of the edge detection module.

5. Conclusions

In this paper, we proposed a weakly-supervised salient

object detection (SOD) network trained on our newly la-

beled scribble dataset (S-DUTS). Our method significantly

relaxes the requirement of labeled data for training a SOD

network. By introducing an auxiliary edge detection task

and a gated structure-aware loss, our method produces

saliency maps with rich structure, which is more consistent

with human perception measured by our proposed saliency

structure measure. Moreover, we develop a scribble boost-

ing mechanism to further enrich scribble labels. Exten-

sive experiments demonstrate that our method significantly

outperforms state-of-the-art weakly-supervised or unsuper-

vised methods and is on par with fully-supervised methods.
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