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Abstract

We present a convex optimization approach for general-

ized essential matrix (GEM) estimation. The six-point min-

imal solver for the GEM has poor numerical stability and

applies only for a minimal number of points. Existing non-

minimal solvers for GEM estimation rely on either local

optimization or relinearization techniques, which impedes

high accuracy in common scenarios. Our proposed non-

minimal solver minimizes the sum of squared residuals by

reformulating the problem as a quadratically constrained

quadratic program. The globally optimal solution is thus

obtained by a semidefinite relaxation. The algorithm re-

trieves certifiably globally optimal solutions to the original

non-convex problem in polynomial time. We also provide

the necessary and sufficient conditions to recover the opti-

mal GEM from the relaxed problems. The improved perfor-

mance is demonstrated over experiments on both synthetic

and real multi-camera systems.

1. Introduction

Relative pose estimation from images plays an important

role in many geometric vision tasks, such as structure-from-

motion (SfM) and simultaneous localization and mapping

(SLAM). While central cameras can be modeled by the pin-

hole or perspective camera model [11], more general non-

central cameras such as multi-camera arrays are modelled

by the generalized camera model [32]. This paper presents

a new method to estimate the generalized essential matrix

(GEM) or relative pose for non-central cameras.

The essential matrix encodes the relative pose for pin-

hole cameras and is well understood [11, 30, 4]. GEM es-

timation is more involved. A generalized camera is formed

by abstracting landmark observations into spatial rays that

are no longer required to originate from a common point

(i.e. the focal point). Figure 1 demonstrates the difference

between central and non-central cameras. As illustrated, the

generalized camera model allows us to describe the mea-

𝐶 𝐶′𝐑, 𝐭 =?

3D points

𝐶 𝐶′𝐑, 𝐭 =?

3D points

(a) central camera (b) non-central camera

Figure 1. Relative pose estimation. Red triangles represent per-

spective cameras. Solid arrows pointing from 3D points to cam-

eras depict the imaging process. In the non-central camera sce-

nario, three rigidly attached central cameras constitute a non-

central camera.

surements of a number of interesting camera systems, such

as a multi-camera rig of rigidly attached cameras.

From a more abstract and geometric point of view, a gen-

eralized camera consists of a Euclidean reference frame in

which measurements are represented by rays in space, de-

scribed by a suitable parameterization such as Plücker line

vectors. In contrast to the standard essential matrix for

which there exists an unobservability in the norm of the

translation, the translation extracted from a GEM is gen-

erally unique. The down-side of this scale observability is

that the minimal solution of the GEM requires at least 6 in-

stead of only 5 correspondences across the two views (i.e.

one correspondence per degree of freedom in the problem).

There are both linear [24] and non-linear solutions [34,

18, 5] to GEM estimation. The linear solver—also known

as the 17-point algorithm—takes 17 correspondences to

derive the relative pose of the generalized camera. This

method can be easily applied to an arbitrarily large num-

ber of points. However, its solution is not globally optimal,

as the linearization ignores side-constraints on the GEM

and the contained essential and rotation matrices. The most

closely related works to ours are the non-minimal solvers by

Kneip and Li [18] and Campos et al. [5], which use many

correspondences to calculate a potentially accurate relative

pose, but rely on local optimization methods and therefore
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may depend on a sufficiently accurate initial guess. They do

not guarantee global optimality.

By contrast, the present paper leverages convex opti-

mization to—for the first time—come up with a fast and cer-

tifiably globally optimal solution to the non-minimal gener-

alized relative pose problem, whose optimality may be cer-

tified a-posteriori. In summary, the contribution of this pa-

per is two-fold:

• Formulation. We propose a novel formulation for

GEM estimation of generalized cameras, and discuss

its relation to the previously proposed eigenvalue-

based formulation in [18].

• Optimization. We provide a certifiably globally op-

timal solution by semidefinite relaxation (SDR) of the

original formulation. We also provide a sufficient and

necessary condition to recover the optimal GEM from

the relaxed problem.

As demonstrated in Section 5, our method sets a new

state-of-the-art in terms of both accuracy and robustness

while at the same time remaining computationally efficient.

2. Related Work

Using a non-central camera rig has attracted much atten-

tion from both academic and industrial communities. The

most common case is that of a set of cameras—often with

non-overlapping views—attached to a headset, micro air

vehicle (MAV) or ground vehicle. Our work is particu-

larly relevant for real-time visual localization [7, 14] and

autonomous driving [22].

Relative Pose of a Generalized Camera: The minimal

solver is based on algebraic geometry, and uses 6 correspon-

dences in order to come up with 64 solutions [34]. How-

ever, its large elimination template leads to poor numerical

stability. Kim et al. later proposed alternative approaches

for relative displacement estimation with non-overlapping

multi-camera systems using second-order cone program-

ming (SOCP) [15] or branch-and-bound over the space of

all rotations [16]. [7] furthermore derived a 5+1 point algo-

rithm, and [25] proposed the antipodal epipolar constraint.

A minimal solution for the case of non-holonomic mo-

tion was proposed in [22]. Minimal solutions for motions

with a common direction were proposed in [23, 26]. An

eigenvalue-based formulation for GEM estimation together

with efficient local optimization was proposed in [18]. Very

recently, another local optimization method for GEM es-

timation was proposed using an alternating minimization

method [5].

Generalized Relative Pose and Scale: There is a further

generalization of GEM estimation, the generalized relative

pose and scale problem. It introduces a further unknown:

a relative scale factor between the ray origins in both gen-

eralized camera frames. It has an important application in

structure from motion with central cameras. While existing

work already introduces specialized solvers for this problem

[35, 21], the method proposed in this paper could easily be

extended to provide a more general solution as well.

Relative Pose of a Central Camera: Essential or fun-

damental matrix estimation by algebraic error minimiza-

tion has been extensively studied in previous literature

[29, 10, 19, 4]. For both the essential and the fundamental

matrix, pose estimation by algebraic error minimization can

be formulated as a polynomial optimization problem [28].

A polynomial optimization problem can be reformulated

as a quadratically constrained quadratic program (QCQP),

which has numerous off-the-shelf solvers. In multiple view

geometry, semidefinite relaxation (SDR) for polynomial op-

timization problems was first studied by Kahl and Henrion

in [13]. Recent work [4, 40] has successfully applied it to

globally optimal, non-minimal central relative pose compu-

tation, which serves as a further motivation of our work.

3. Non-Minimal Solver for GEM Estimation

Relative pose consists of a translation t — expressed in

the first frame and denoting the position of the second frame

w.r.t. the first one — and a rotation R — transforming vec-

tors from the second into the first frame1. The translation

t = [t1, t2, t3]
⊤ is thus identical with a point in R

3. The 3D

rotation R is a 3 × 3 orthogonal matrix with determinant 1

and belonging to the Special Orthogonal group SO(3), i.e.,

SO(3) , {R ∈ R
3×3|R⊤R = I3, det(R) = 1}, (1)

where I3 is the 3× 3 identity matrix.

The essential matrix E is defined as

E = [t]×R, (2)

where [·]× constructs the corresponding skew-symmetric

matrix of a 3-dimensional vector [11]. The elements of the

essential matrix E and the rotation matrix R are denoted by

eij and rij , respectively, where i represents the row index

and j the column index. We furthermore define the vectors

e , vec(E) = [e11 e21 . . . e33]
T , and (3)

r , vec(R) = [r11 r21 . . . r33]
T , (4)

where vec(·) stacks matrix entries by column-first order.

We define the essential matrix set as

ME , {E | E = [t]×R, ∃R ∈ SO(3)}. (5)

1Bold capital letters denote matrices (e.g., E and R); bold lower-case

letters denote column vectors (e.g., e, r, and t); non-bold lower-case letters

represent scalars (e.g., e and r). X[a:b,c:d] stands for the submatrix of X

constructed by rows a ∼ b and columns c ∼ d; x[a:b] stands for the

entries of vector x indexed from a to b.
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Figure 2. Geometry of the generalized relative pose problem for

multi-camera systems.

This essential matrix set is called the essential matrix man-

ifold [12]. It is worth mentioning that scale-ambiguity does

not exist in GEM estimation, which is why ME does not

contain any constraints on t. By contrast, there is a scale-

ambiguity for standard relative pose estimation, and the

translation t is typically restricted to length 1.

3.1. Generalized Essential Matrix

We now review the GEM describing the relative pose

geometry for generalized cameras [32, 24, 18]. As out-

lined in [32], the transformation rule and the intersection-

constraint of Plücker line-vectors easily leads to the epipo-

lar constraint

l⊤i

[

E R

R 0

]

l′i = 0, (6)

where (li, l
′
i) denotes a pair of corresponding Plücker line-

vectors pointing at the i-th 3D point from two different gen-

eralized cameras.

Figure 2 illustrates a multi-camera system, which is a

common special case of a generalized camera. A point on

each Plücker-line is easily given by the capturing camera’s

center ci, seen from the origin of the multi-camera system

b. If denoting this displacement by tbc,i, we obtain

li =

[

fi
tbc,i × fi

]

. (7)

Note that we assume that—without loss of generality—c

and b have identical orientation. The generalized epipolar

constraint thus becomes

f⊤i Ef ′i + f⊤i Rh′
i + h⊤

i Rf ′i = 0, (8)

where

hi , tbc,i × fi; h′
i , t′bc,i × f ′i .

3.2. Optimizing the GEM by Minimizing the Alge
braic Error

Due to the existence of measurement noise, the general-

ized epipolar constraint will not be strictly satisfied. Denot-

ing the residual for i-th correspondence as

εi = f⊤i Ef ′i + f⊤i Rh′
i + h⊤

i Rf ′i , (9)

the summation of squared residuals for N correspondences

{(li, l
′
i)}

N
i=1 becomes a quadratic function in e and r

ε ,

N
∑

i=1

ε2i = [e⊤, r⊤]C

[

e

r

]

. (10)

C can be expressed explicitly by

C =

[

C1 C4 +C5

C⊤
4 +C⊤

5 C2 +C3 +C6 +C⊤
6

]

, (11)

where






































C1 =
∑N

i=1 (f
′
i ⊗ fi) (f

′
i ⊗ fi)

⊤

C2 =
∑N

i=1 (h
′
i ⊗ fi) (h

′
i ⊗ fi)

⊤

C3 =
∑N

i=1 (f
′
i ⊗ hi) (f

′
i ⊗ hi)

⊤

C4 =
∑N

i=1 (f
′
i ⊗ fi) (h

′
i ⊗ fi)

⊤

C5 =
∑N

i=1 (f
′
i ⊗ fi) (f

′
i ⊗ hi)

⊤

C6 =
∑N

i=1 (h
′
i ⊗ fi) (f

′
i ⊗ hi)

⊤
.

Note that {Cj}
6
j=1 are Gram matrices, so they are positive

semidefinite (PSD) and symmetric (and so does C). In prac-

tice, C is positive definite for non-minimal GEM estimation

scenario.

3.3. A QCQP Formulation

The problem of minimizing the algebraic error on the

manifoldME can be formulated as

min
E,R,t

[e⊤, r⊤]C

[

e

r

]

(12)

s.t. E = [t]×R, R ∈ SO(3).

This problem is a QCQP: The objective is a sum of squares,

which are PSD quadratic polynomials; the largest set of in-

dependent quadratic constraints to define SO(3) is 20 [20,

3]; and, lastly, the constraint between E, R and t, meaning

E = [t]×R, is also quadratic. The problem has 21 variables

and 29 constraints.

There are some interesting examples in the literature

on how the introduction of linearly independent redundant

constraints into a QCQP formulation may significantly im-

prove the tightness of the subsequent semidefinite relax-

ation [1, 3, 4, 38]. For the 20 quadratic constraints consid-

ered for SO(3), more than half of them are also redundant

and added only for the sake of better tightness [3]. Inspired

by this idea, we introduce redundant constraints for prob-

lem (12). The below equalities are easily verified:










t⊤E = t⊤([t]×R) = 0

EE⊤ = ([t]×R)([t]×R)⊤ = [t]×[t]
⊤
×

ER⊤ = ([t]×R)R⊤ = [t]×

(13)

These 3 equalities introduce 3, 6 and 9 additional con-

straints, respectively.
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3.4. Relations between AlgebraicErrorBased and
EigenvalueBased Formulations

In [18], an eigenvalue-based formulation was pro-

posed. Here we demonstrate the close relation between

the algebraic-error-based and the eigenvalue-based formu-

lation. By substituting (2) into (8) and applying the permu-

tation rule for triple scalar products, we obtain

−(fi ×Rf ′i)
⊤t+

(

f⊤i Rh′
i + h⊤

i Rf ′i
)

= 0, (14)

which can obviously be rewritten as

g⊤
i t̃ = 0, with (15)

gi =

[

fi ×Rf ′i
f⊤i Rh′

i + h⊤
i Rf ′i

]

and t̃ =

[

−wt
w

]

.

gi here is called a generalized epipolar plane normal vec-

tor, and t̃ the homogeneous translation vector, which has

arbitrary scale [18]. We set w as 1 without loss of general-

ity. Denote

G = [g1, · · · ,gk], (16)

H = GG⊤ =

N
∑

i=1

gig
⊤
i . (17)

Then we can express the summation of residuals by this new

parameterization

ε =

N
∑

i=1

ε2i =

N
∑

i=1

(g⊤
i t̃)

2 =
∥

∥G⊤t̃
∥

∥

2

2
. (18)

Thus the algebraic-error-based formulation (12) is equiva-

lent to the following problem

min
R,t̃

∥

∥G⊤t̃
∥

∥

2

2
s.t. R ∈ SO(3), t̃[4] = 1. (19)

This problem can be further reformulated as

min
R

J(R) s.t. R ∈ SO(3), (20)

where

J(R) = min
t̃

∥

∥G⊤t̃
∥

∥ s.t. t̃[4] = 1. (21)

If we replace the constraint in problem (21) by ‖t̃‖ = 1,

J(R) can be viewed as finding the optimal t̃ to minimize

‖Gt̃‖ subject to the condition ‖t̃‖ = 1. The solution is the

unit eigenvector corresponding to the smallest eigenvalue

of the matrix H = G⊤G. Let σH,min denote the smallest

eigenvalue of H, thus the optimization problem becomes

min
R

σH,min s.t. R ∈ SO(3). (22)

which is exactly the eigenvalue-based formulation that was

proposed in [18].

From the previous analysis, it can be seen that the al-

gebraic error formulation and the eigenvalue-based formu-

lation differ only by the domain of the translation vector.

The algebraic error method implicitly assumes that the op-

timal translation is never infinite, as otherwise we can not

assume that the homogeneous coordinate of t̃ is 1. Fortu-

nately, infinite translations in relative pose estimation are

not a practical concern.

4. Semidefinite Relaxation and Optimization

We use semidefinite relaxation (SDR) to solve QCQP

problem (12). Let us rewrite it in more general form as

min
x∈Rn

x⊤C0x (23)

s.t. x⊤Aix = 0, i = 1, · · · ,m

x⊤Lx = 1,

where

x = [vec(E); vec(R); t; y], (24)

is a vector stacking all variables. Note that we add an

additional variable y that makes the objective and con-

straints purely quadratic (i.e., no linear or constant term

in the objective and no linear term in the equality con-

straints). This trick is called homogenization [27, 3], and

introduces the constraint x2
[n] = 1. By introducing a matrix

L = diag([0, · · · , 0, 1]), this constraint can be reformulated

as x⊤Lx = 1. Matrices C0, A1, · · · ,Am ∈ S
n are deter-

mined by the original problem (12), where S
n denotes the

set of all real symmetric n× n matrices.

In our problem, n = 22; C0 =

[

C 018×4

04×18 04×4

]

. A

crucial first step in deriving an SDR of problem (23) is to

observe that

x⊤C0x = trace(x⊤C0x) = trace(C0xx
⊤), (25)

x⊤Aix = trace(x⊤Aix) = trace(Aixx
⊤). (26)

In particular, both the objective function and constraints in

problem (23) are linear in the matrix xx⊤. Thus, by intro-

ducing a new variable X = xx⊤ and noting that X = xx⊤

is equivalent to X being a rank one symmetric PSD matrix,

we obtain the following equivalent form of problem (23):

min
X∈Sn

trace(C0X) (27)

s.t. trace(AiX) = 0, i = 1, · · · ,m,

trace(LX) = 1, X � 0, rank(X) = 1.

Here, X � 0 means that X is PSD. Solving rank con-

strained semidefinite programs is NP-hard [36]. SDR drops
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the rank constraint rank(X) = 1 to obtain the following

relaxed version of problem (27)

min
X∈Sn

trace(C0X) (28)

s.t. trace(AiX) = 0, i = 1, · · · ,m,

trace(LX) = 1, X � 0.

Problem (28) turns out to be an instance of a semidefinite

program (SDP) [36, 27], which may be solved using convex

optimization. Modern solvers for SDP are based on primal-

dual interior point methods. Its dual problem is

max
λ,ρ

ρ (29)

s.t. Q(λ, ρ) = C0 −

m
∑

i=1

λiAi − ρL � 0,

where λ = [λ1, · · · , λm]⊤ ∈ R
m. Problem (29) is called

the Lagrangian dual problem of problem (23), and Q(λ, ρ)
is the Hessian of the Lagrangian. In summary, the relations

between the main formulations are demonstrated in Fig. 3.

We now prove that there is no duality gap between (28)

and (29). Thus the problem can be readily solved using off-

the-shelf primal-dual interior point methods [39].

Theorem 4.1. For QCQP problem (12), there is no dual-

ity gap between the primal SDP problem (28) and its dual

problem (29).

Proof. Denote the optimal value for problem (28) and its

dual problem (29) as fprimal and fdual. The inequality

fprimal ≥ fdual follows from weak duality. Equality, and

the existence of X⋆ and λ
⋆ which attain the optimal val-

ues follow if we can show that the feasible regions of both

the primal and dual problems have nonempty interiors [36,

Theorem 3.1] (also known as Slater’s constraint qualifica-

tion [2].)

For the primal problem (28), let E0 be an arbitrary point

on the essential matrix manifoldME: E0 = [t0]×R0. De-

note x0 = [vec(E0); vec(R0); t0; 1]. It can be verified that

X0 = x0x
⊤
0 is an interior in the feasible domain of the pri-

mal problem. For the dual problem (29), we first list part of

the constraints as follows














































































h1 : e211 + e212 + e213 − (t22 + t23) = 0,

h2 : e221 + e222 + e223 − (t21 + t23) = 0,

h3 : e231 + e232 + e233 − (t21 + t22) = 0,

h4 : r211 + r212 + r213 − y2 = 0,

h5 : r221 + r222 + r223 − y2 = 0,

h6 : r231 + r232 + r233 − y2 = 0,

h7 : r211 + r221 + r231 − y2 = 0,

h8 : r212 + r222 + r232 − y2 = 0,

h9 : r213 + r223 + r233 − y2 = 0,

(30a)

(30b)

(30c)

(30d)

(30e)

(30f)

(30g)

(30h)

(30i)

QCQP 
Eqs.(12)(13) / Eq.(23)

Primal SDP problem 
Eq.(28)

Dual SDP problem 
Eq.(29)

SDP 

Duality

Lagrangian 

Duality
SDR

Figure 3. Relations between the main formulations in this work.

where h1 ∼ h3 follows from the constraint EE⊤ =
[t]×[t]

⊤
×, and h4 ∼ h9 originates from the constraints

RR⊤ = R⊤R = I3. Recall that C ≻ 0, thus its mini-

mal eigenvector σmin is positive. Let λ1 ∼ λ9 correspond to

the Lagrangian of h1 ∼ h9 respectively. Let the first 9 en-

tries in λ0 satisfy λ0[1:9] = −ǫ[1, 1, 1, 1, 1, 1, 1, 1, 1]
⊤, and

other entries in λ0 and ρ0 be zero. It can be verified that

Q(λ0, ρ0) =
[

C − ǫI18 0 0

0 2ǫI3 0

0 0 6ǫ

]

≻ 0, ∀ǫ ∈ (0, σmin). That

means {λ0, ρ0} is an interior point in the feasible domain

of the dual problem.

4.1. Further Redundant Constraints

To improve tightness of the SDR, we add further redun-

dant constraints on our SDP. The redundant constraint is

taken from the SO(3) orbitope.

Definition 4.1 (Orbitope [33]). An orbitope is the convex

hull of an orbit of a compact algebraic group that acts lin-

early on a real vector space. The orbit has the structure of

a real algebraic variety, and the orbitope is a convex semi-

algebraic set.

Theorem 4.2 (SO(3) Orbitope, Proposition 4.1 in [33]).

The tautological orbitope conv(SO(3)) is a spectrahedron

whose boundary is a quartic hypersurface. In fact, a 3 × 3
matrix R lies in conv(SO(3)) if and only if

L(R) + I4 � 0 (31)

where L(R) =







r11 + r22 + r33 r32 − r23 r13 − r31 r21 − r12
r32 − r23 r11 − r22 − r33 r21 + r12 r13 + r31
r13 − r31 r21 + r12 r22 − r11 − r33 r32 + r23
r21 − r12 r13 + r31 r32 + r23 r33 − r11 − r22






.

Inequality (31) provides an additional linear matrix in-

equality for our optimization problem. Note that {rij}
3
i,j=1

in R are also entries in X since X = xx⊤ and x =
[vec(E); vec(R); t; 1]. Therefore (31) can be reformulated

in terms of X.

4.2. Recovery of Essential Matrix and Relative Pose

Once the optimal X⋆ of the SDP primal problem (28)

has been calculated by an SDP solver, we are left with the
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task to recover the optimal essential matrix E⋆. Let us

denote X⋆
e = X⋆

[1:9,1:9], X
⋆
r = X⋆

[10:18,10:18] and X⋆
t =

X⋆
[19:21,19:21]. Empirically, we found that rank(X⋆

e) = 1.

Denoting the eigenvector that corresponds to the nonzero

eigenvalue of X⋆
e as e⋆, the optimal essential matrix is

E⋆ = mat(e⋆, [3, 3]), (32)

where mat(e, [r, c]) reshapes the vector e to an r×c matrix

by column-first order.

Once the essential matrix has been obtained, we can re-

cover rotation R⋆ and translation t⋆ by the standard text-

book method [11]. However, E⋆ and its derived translation

t⋆ do not have the proper scale. To recover the proper scale,

we denote the unknown scale factor as s and substitute sE⋆

and R⋆ into the generalized epipolar constraint (8). We then

calculate the scale s by solving the least squares problem

s = −

∑N

i=1(f
⊤
i Ef ′i) · (f

⊤
i Rh′

i + h⊤
i Rf ′i)

∑N

i=1(f
⊤
i Ef ′i)

2
. (33)

If the denominator in Eq. (33) is (near) zero, the problem

is in a (near) degenerate configuration in which the scale

is (nearly) unobservable. Known degenerate configurations

correspond to a generalized camera moving along a straight

line or—in some cases—a circular arc. In such a scenario,

the real scale can not be recovered, while rotation and trans-

lation direction can still be found.

We empirically verified that rank(X⋆
e) and rank(X⋆

t )
remain 1, while rank(X⋆

r) may be 2. Since X⋆
r does not

satisfy the rank-1 constraint, we can no longer recover the

rotation from it. Fortunately, we do not require X⋆
r , and

may recover the translation directly from X⋆
t . Similarly,

Section 4.3 introduces Theorem 4.3, a sufficient and neces-

sary condition for global optimality, which again does not

depend on rank(X⋆
r), which is why global optimality is not

influenced by an eventual unobservability of scale. The out-

line of our method is shown in Algorithm 1.

4.3. A Sufficient and Necessary Condition for
Global Optimality

Since SDR drops the rank-1 constraint, a sufficient con-

dition for global optimality is that the optimal X⋆ satisfies

the rank-1 constraint. However, the rank-1 constraint of X⋆

may not be necessary to guarantee global optimality. The

following theorem provides a sufficient and necessary con-

dition, which provides a theoretical foundation for the prac-

tical pose recovery method described in Section 4.2.

Theorem 4.3. For QCQP problem (12) with con-

straints (13), its SDR problem is tight if and only if: the

optimal solution X⋆ to its primal SDP problem (28) satis-

fies rank(X⋆
e) = rank(X⋆

t ) = 1.

Algorithm 1: Generalized Essential Matrix Estimation

by SDP Optimization

Input: observations {(li, l
′
i)}

N
i=1

Output: Essential matrix E⋆, rotation R⋆, and

translation t⋆

1 Construct C by Eq. (11); C0 =

[

C 018×4

04×18 04×4

]

;

2 Construct {Ai}
m
i=1 and L in problem (23) which are

independent of input;

3 Obtain X⋆ by solving SDP problem (28) or its

dual (29) with redundant constraints;

4 Assert that rank(X⋆
e) = rank(X⋆

t ) = 1;

5 E⋆ = mat(e⋆, [3, 3]), where e⋆ is the eigenvector

corresponding to the largest eigenvalue of X⋆
e;

6 Decompose E⋆ to obtain rotation R⋆ and normalized

translation t⋆;

7 if
∑N

i=1(f
⊤
i Ef ′i)

2 is larger than a threshold then

8 Calculate scale s by Eq. (33);

9 t⋆ ← st⋆

10 else

11 t⋆ can only be determined up to scale.

12 end

Proof. First, we prove the if part. Note that X⋆
e and X⋆

t

are real symmetric matrices because they are in the fea-

sible region of the primal SDP. Besides it is given that

rank(X⋆
e) = rank(X⋆

t ) = 1, thus there exist two vectors

e⋆ and t⋆ satisfying e⋆(e⋆)⊤ = X⋆
e and t⋆(t⋆)⊤ = X⋆

t .

According to Theorem 1 in [40], a real 3 × 3 matrix E

is an essential matrix if and only if there exists a vector t

satisfying EE⊤ = [t]×[t]×. Note that X⋆
e = e⋆(e⋆)⊤ and

X⋆
t = t⋆(t⋆)⊤ satisfy the constraints in problem (28) since

they are sub-matrices of a valid solution X⋆. By algebraic

derivation based on these constraints, it can be proven that

E⋆ = mat(e⋆, [3, 3]) and t⋆ satisfy E⋆E⋆⊤ = [t⋆]×[t
⋆]×.

Thus E⋆ is a valid essential matrix.

Next we prove the only if part. Since SDR is tight, it

means we can uniquely recover a valid relative pose from

matrix X⋆. According to Theorem 1 in [40], the minimal re-

quirement to define a valid relative pose is constraints about

E and t. To ensure valid E and t can be recovered from X⋆,

it should satisfy that rank(X⋆
e) ≤ 1 and rank(X⋆

t ) ≤ 1.

Since X⋆
e and X⋆

t cannot be zero matrices (otherwise X⋆ is

not in the feasible region), the equalities should hold.

Theorem 4.3 provides a sufficient and necessary global

optimality condition to recover the optimal solution for the

original QCQP. It also provides a method to verify global

optimality. Empirically, the optimal X⋆ obtained by the

SDP problem always satisfies this condition. Finding the

essential conditions to guarantee tightness however remains

an open problem [6].
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5. Experimental Results

We choose SDPA [37] as the interior point method (IPM)

solver, and use the default parameters in all experiments.

Our method is implemented in MATLAB, and all experi-

ments are performed on an Intel Core i7 CPU with 1.7 Hz.

To improve efficiency, we use the results of the 17-point

solver [24] for initialization when more than 17 inliers are

available. In this paper, only experiments for synthetic data

use this initialization. To improve accuracy, we follow the

suggest-and-improve framework for general QCQPs [31].

We furthermore use a local optimization method [5] to re-

fine the results provided by SDPA. The complete method

takes an average of only 15 ms.

We compared our method against several state-of-the-art

methods on both synthetic and real data. Specifically, we

compare our method against: (1) the minimal solver 6pt

[34]; (2) the linear solver 17pt [24]; (3) the generalized

eigenvalue solver ge [18]; and (4) an alternating minimiza-

tion method (AMM), denoted 17pt-amm [5]. Methods ge

and 17pt-amm are both initialized by 17pt. Our own

methods are referred to as sdp (without any refinement)

and sdp-amm (with AMM refinement).

Among these methods, the implementation of

17pt-amm was provided by the authors, and other

comparison methods were taken from OpenGV [17]. Note

furthermore that we always ensure a balanced number of

samples in each camera, independently of the experiment

and number of cameras.

5.1. Results on Synthetic Data

Noise Resilience: The setup of our experiments is sim-

ilar to the one proposed in [17]. We first test image noise

resilience. Each method is evaluated for various noise levels

reaching from 0 to 5 pixels and over 1000 random experi-

ments per noise level. The rotation errors of all method is

shown in Fig. 4(a). Translation errors follow a similar trend,

but are omitted here for the sake of space limitations.

Looking at Fig. 4(a), we make the following observa-

tions: (1) sdp-amm degrades the least, and has a relatively

obvious advantage over other methods in terms of both ac-

curacy and robustness. This is partially due to the fact that

our method does not depend on any initialization and can

always find the global optimum. By contrast, ge strongly

depends on a good initial value. (2) sdp-amm consistently

performs better than sdp, which underlines the effective-

ness of the suggest-and-improve framework for general QC-

QPs [31]. (3) sdp still has smaller error than previous state-

of-the-art methods.

Number of correspondences: In our next experiment,

we fix the image noise level to 0.5 pixel in standard de-

viation and vary the number N of point correspondences.

6pt can only take a subset of the point correspondences,

while other methods utilize all point correspondences. To
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Figure 4. Mean and median of rotation errors with respect to (a)

noise level variations and (b) the number of point correspondences.
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Figure 5. Scatter plot comparing the residuals between two meth-

ods. A point lying below the red line indicates that our method

outperforms in terms of a smaller residual.

make the comparison more fair, we randomly sample 20

minimal sets of point correspondences for 6pt, and take

the best result in each experiment. The best here is defined

as the result that leads to the smallest algebraic error over

all simulated correspondences. We again show the rotation

error in Fig. 4(b), and make the following observations: (1)

As expected, the errors of 17pt, 17pt-amm, sdp, and

sdp-amm all decrease as the number of point correspon-

dences is increased. (2) ge still depends on a good initiali-

sation. (3) sdp-amm still leads to the smallest error among

all methods.

Optimality Gap: We compare the residuals of our

method against those of 17pt and 17pt-amm, respec-

tively. The corresponding scatter plots are indicated in
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Figure 6. Mean and median number of identified inliers over out-

lier fraction.

Fig. 5. As can be observed sdp-amm has smaller residu-

als for most of the experiments. The residual of our method

typically remains below 1.5×10−3. By contrast, 17pt and

17pt-amm may have residuals as large as 5× 10−3.

Performance within RANSAC: The most relevant per-

formance measure consists of testing all algorithms as part

of a hypothesize-and-test framework. We use the classical

RANSAC framework [8], and the same model verification

for all methods. For 6pt, we use an additional 3 points per

hypothesis to disambiguate the solution multiplicity. This

has no effect on the cost of the disambiguation, and is safer

than disambiguation with only one point, especially regard-

ing the high number of solutions and the cost of hypothesis

generation. For 17pt, ge, and our methods, we sample 17,

12, and 12 points in each iteration, respectively.

The noise is kept at 0.5 pixel. The total number of

point correspondences is fixed to 100, and we vary the out-

lier fraction. For each outlier fraction, we generate 2000
synthetic scenes and report the mean and median number

of identified inliers. Figure 6 reports the number of in-

liers found by the different methods when integrated into

RANSAC. As can be observed, the median of the meth-

ods is nearly ideal for all methods except 17pt. However,

sdp-amm obtains the largest mean number of identified in-

liers. In fact, sdp-amm is the only method that consistently

finds all inliers in each experiment.

5.2. Results on Real Data

To conclude our evaluation, we perform experiments

on real data and demonstrate that the advantage of our

proposed method applies here as well. We evaluate two

datasets. The first one is captured by a custom-made, syn-

chronized 4-camera system mounted on a small-scale auto-

mated guided vehicle (AGV), and ground truth is provided

by an external motion tracking system. The cameras have a

1216×1936 resolution, are equipped with 48◦ field-of-view

lenses, and are pointing forward, left, right, and backward.
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(b) Results on forward-facing 2-cam dataset

Figure 7. Empirical cumulative errors distributions for (a) a 4-

camera dataset with roughly omni-directional measurement dis-

tributions (b) a 2-camera dataset with forward facing cameras.

The second dataset is taken from the KITTI [9] benchmark,

which only has a forward facing stereo camera. We ignore

the overlap in their fields of view, and treat it as a general

multi-camera array. Ground truth is provided by a Velodyne

LiDAR and a differential GPS. Figures 7(a) and 7(b) show

the cumulative distribution functions (CDFs) of respective

rotation errors, demonstrating how sdp-amm remains the

most accurate method. The difference to alternative meth-

ods is particularly important on the KITTI sequence. In this

sequence, the bearings of the landmark measurements do

not have an omni-directional distribution, which is known

to be a challenging case for relative pose estimation with

generalized cameras.

6. Conclusions

We introduced the first certifiably globally optimal solu-

tion to the non-minimal generalized relative pose estimation

problem. Extensive experiments on both synthetic and real

data demonstrate clearly improved accuracy and robustness

over the previous state-of-the-art, including the ability to

handle the difficult scenario of a limited combined field of

view of all cameras. Furthermore, by including the essen-

tial matrix in our parameterization, the dimensionality of

our formulation turns out to be even smaller than the one

of a previous SDR based method for central cameras. Even

without further polishing of our implementation, this tech-

nique already enables real-time processing.
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