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Abstract

We propose a generative probabilistic model for human

motion synthesis. Our model has a hierarchy of three layers.

At the bottom layer, we utilize Hidden semi-Markov Model

(HSMM), which explicitly models the spatial pose, tempo-

ral transition and speed variations in motion sequences. At

the middle layer, HSMM parameters are treated as random

variables which are allowed to vary across data instances

in order to capture large intra- and inter-class variations.

At the top layer, hyperparameters define the prior distri-

butions of parameters, preventing the model from overfit-

ting. By explicitly capturing the distribution of the data and

parameters, our model has a more compact parameteriza-

tion compared to GAN-based generative models. We for-

mulate the data synthesis as an adversarial Bayesian infer-

ence problem, in which the distributions of generator and

discriminator parameters are obtained for data synthesis.

We evaluate our method through a variety of metrics, where

we show advantage than other competing methods with bet-

ter fidelity and diversity. We further evaluate the synthesis

quality as a data augmentation method for recognition task.

Finally, we demonstrate the benefit of our fully probabilistic

approach in data restoration task.

1. Introduction

A model that can describe the dynamic process of pose

change is useful in motion analysis tasks such as simula-

tion, restoration and prediction. Recently, generative dy-

namic models [8, 9, 12, 26, 35, 38, 40, 41, 44, 48] have

attracted increasing attention for their capability in gener-

ating data that resemble real data distribution. Despite the

substantial progress made, the modeling of pose dynamics

remains challenging due to several reasons. First, there are

significant intra-class and inter-class variations in sequen-

tial data. While the inter-class variation is caused by distinct

dynamic pattern of different motions, the intra-class varia-

tion is mainly caused by different spatial extents and tempo-
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Figure 1. Overview of our framework. The generator is the pro-

posed probabilistic dynamic model. The discriminator consists of

K models that jointly determine the class probability of data.

ral paces of executing the motion. Second, the data may be

noisy and can have missing values. Obtaining accurate pose

requires expensive motion capture (mocap) system. The al-

ternative is to estimate pose from video data, which is still

an open research problem [30, 52]. Furthermore, neither ap-

proaches are error-free. Thus, a framework that can handle

all these issues in a principled manner is required.

In this work, we propose a generative hierarchical prob-

abilistic dynamic model that explicitly models the spatial

and temporal variations in human motion sequences. Com-

pared to conventional state-space model, our method lever-

ages Bayesian framework to improve the model capacity i.e.

the ability to model variations in data. The model parame-

ters are treated as random variables whose distributions are

further governed by prior distributions. The resulting hi-

erarchical dynamic model increases the model capacity for

capturing large intra- and inter-class variations. Compared

to deterministic models such as RNN/LSTM [8, 35, 50] or

extensions of GAN [32, 38, 40], the proposed model is fully

probabilistic with a compact parameterization. Therefore, it

requires less training compared to purely data-driven deep

models and is less susceptible to overfitting.

In the last few years, adversarial learning emerges to be

a major framework in synthesizing data of different modal-

ities including image, text, audio, and video [10, 12, 19, 21,

22, 25, 27, 28, 32, 39, 46]. One major issue with adver-

sarial learning is the mode-collapsing, where the generator

tends to generate the same data which can fool the discrim-

inator well. To address this issue, we propose to combine

Bayesian inference with adversarial learning. Instead of es-

timating a single set of parameters, Bayesian inference ob-
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tains multiple sets of parameters from the posterior distri-

bution so that the generator can better explore the parame-

ter space and alleviate mode-collapsing. The overall frame-

work is shown in Figure 1. In order to evaluate the model

performance, we also adapt several evaluation metrics that

can quantitatively measure the fidelity and diversity of the

generated data besides qualitative inspection.

Our specific contributions are 1) a generative hierarchi-

cal probabilistic dynamic model that explicitly models large

spatial and temporal variations in human motion sequences;

2) a unified adversarial Bayesian inference framework on

the proposed dynamic model for realistic motion sequence

synthesis; 3) a set of quantitative evaluations on the syn-

thetic motion sequence quality.

2. Related Work

Probabilistic graphical models (PGM) have been widely

used for modeling human motion sequences, including

autoregressive model (AR) [43], hidden Markov model

(HMM) [2], dynamic Bayesian networks (DBN) [15],

switching linear dynamic system (SLDS) [17], etc. In par-

ticular, semi-Markov models [6, 20, 51], which relax the

Markov dynamics assumption, have shown improved per-

formance on human activity recognition. However, the ca-

pacity of modeling dynamics in these models is often lim-

ited since the source of variations only comes from the con-

ditional probability distribution of random variables. Once

the model is learned, the parameters do not change. More

expressive probabilistic models have been proposed such

as the conditional restricted Boltzmann machine (CRBM)

[36, 37], which exploits a vectorized hidden states to en-

code the dynamics. However, the increased expressiveness

is gained at the cost of requiring condition on proper choice

of initial state. The exact learning also becomes intractable.

Nonparametric extensions of dynamic PGM have been pro-

posed in [7, 14, 29], which allow the hidden state size to

adapt according to data.

More recently, neural networks (NN) based models be-

come a popular alternative for dynamic data synthesis, in-

cluding RNN-based approaches [8, 18, 19, 26], CNN-based

approaches [16, 44, 45] and sigmoid network [9]. Following

the success in synthesizing realistic-looking images, vari-

ants of generative adversarial networks (GAN) have been

proposed to synthesize dynamic data including texts and

videos [32, 39, 40, 41, 46]. NN-based models require a

large amount of training data as the models do not explic-

itly consider the cause of variations in dynamic process and

rely on a purely data-driven manner. Simply reducing the

number of parameters will compromise the capabilities of

modeling dynamics.

To model human motion sequences, we develop a hier-

archical probabilistic dynamic model which explicitly mod-

els the major sources of variations including spatial pose,

temporal transition and execution speed. Leveraging on

Bayesian framework, the model capacity is enhanced by

allowing parameters to vary. We further enhance the ad-

versarial learning framework in two aspects. First, a novel

objective of adversarial learning is used to handle multi-

ple classes of data. Second, we formulate the synthesis as

a Bayesian inference problem, which allows us to gener-

ate data based on the distribution of parameters. Thus, we

can reduce overfitting and alleviate mode-collapsing. Fi-

nally, the proposed hierarchical model needs only a fraction

of the number of parameters compared to NN-based model

such as RNN, yet achieves a more competitive performance.

Combining adversarial learning with PGM is first proposed

in [49], followed by [4]. Our work has several differences

compared to [49]. First, we use HSMM rather than HMM

as our base generative model. More importantly, we incor-

porate Bayesian inference into adversarial learning frame-

work. We sample model parameters from the posterior dis-

tribution instead of prior distribution as in [49], which is less

desirable if the prior distribution is not properly specified or

estimated. Finally, we can synthesize multiple classes of

actions with one model while [49] needs to learn separate

models to synthesize different actions. We differ from Li

et al. [4] in using Bayesian inference instead of computing

point estimate for PGM parameters.
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Figure 2. Topology of BH-HSMM. The values of shaded circle

nodes are observed and the shaded diamond nodes are fixed.

3. Models

In this section, we describe the proposed Bayesian Hi-

erarchical HSMM (BH-HSMM) model, starting with a de-

scription of HSMM and followed by Bayesian extension.

HSMM is an extension to HMM by allowing more flex-

ible modeling of the duration within each state. Figure 2

shows the topology of HSMM. The circle nodes are ran-

dom variables. Specifically, X = {Xt ∈ R
O, t = 1, ..., T}

represents a sequence of continuous-valued observations,

Z = {Zt ∈ {1, ..., Q}, t = 1, ..., T} represents a sequence

of discrete hidden states associated with observations, and

D = {Dt ∈ {1, ..., L}, t = 1, ..., T} represents the corre-

sponding discrete duration of states. O is the dimension of

observations. Q is the cardinality of hidden states. L is the
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maximum duration of any state. T is the length of sequence.

The joint distribution of HSMM can be written as follows.

P (X,Z,D) =P (Z1, D1)P (X1|Z1)

T∏
t=2

[P (Xt|Zt) (1)

P (Dt|Dt−1, Zt)P (Zt|Zt−1, Dt−1)]

Eq. (1) includes four components for parameterizing

HSMM, namely initial state distribution, transition distribu-

tion, duration distribution, and emission distribution. Dif-

ferent variants of HSMM have been proposed in the litera-

tures. Readers are referred to [47] for a thorough review.

One major limitation of HSMM is the modeling capac-

ity. The number of states needed to encode the dynamics

is exponential to the cardinality of variations. To model the

dynamics in human motion, we propose a Bayesian hierar-

chical extension to HSMM, which has a much larger model-

ing capacity than its non-hierarchical counter-part. Specifi-

cally, the model consists of three layers of nodes. As shown

in Figure 2 from right to left, the first layer consists of con-

ventional random variables modeling physical or semantic

quantities, which are the X,Z,D. The second layer con-

sists of model parameters, which are θ = {π,A,C, ψ}.

Following Bayesian framework, the parameters are also

treated as random variables, which can vary across different

data samples. The third layer consists of hyperparameters

α = {η0, η, ξ, λ}, which specify the prior distribution of

parameters. We choose conjugate prior for each parameter

for the simplicity of computation. The hyperparameters are

chosen so that the prior is non-informative. The marginal

likelihood of BH-HSMM is as follows with specific param-

eterization provided in the supplementary materials.

P (X|α) =

∫
θ

∑
Z,D

P (X,Z,D|θ)P (θ|α)dθ (2)

Notice that θ is of order O(Q(Q + L + O2)) and α is of

order O(Q(Q + L) + O2). The parameterization increase

due to α is marginal in our experiment where O > Q,L.

4. Methods

4.1. Adversarial Learning

As an alternative of learning generative models, adver-

sarial learning [10] formalizes a mini-max game where two

models namely generator G and discriminator D compete

against each other. While G tries to generate data as real-

istic as possible, D tries to differentiate the synthetic data

from the real. In conventional adversarial learning the dis-

criminator only makes binary decision on whether the data

is real or not. We instead propose to use the following ob-

jective for adversarial learning to account for different ac-

tion types.

min
θ

max
φ

−EPdata(X)[H(X|φ)] + EP (X|θ)[H(X|φ)] (3)

where θ and φ are the parameters of generator and discrim-

inator, respectively. Pdata(X) is the real data distribution,

which is represented by the dataset and never explicitly de-

fined. H(X|φ) , −
∑

y P (y|X, φ) logP (y|X, φ) is the

Shannon entropy and y is a discrete label of a sequence X.

We assume the number of action categories is known. Since

the entropy is computed based on class probability, to min-

imize the entropy, the generator needs to generate data that

belongs to exactly one of the action class, yielding realistic

motion. A similar objective is also proposed in [34]. We

use different generator and discriminator in order to handle

sequential data.

Choice of generator and discriminator: We use the pro-

posed BH-HSMM as the generator. The discriminator con-

sists of a set of BH-HSMMs. Each BH-HSMM models

one type of action. The number of hidden states for each

model is the same and the value is chosen such that together,

they have about similar modeling capacity to the generator

and enough discriminative power. Denote the parameters

of kth BH-HSMM as φk, then we can compute the prob-

ability of X belonging to kth class as P (y = k|X, φ) =
P (X|φk)∑
K
j=1

P (X|φj)
. The probabilistic model based discriminator

allows better modeling of the randomness in dynamic data.

4.2. Bayesian Adversarial Inference

A common pitfall of adversarial learning is the mode-

collapsing [33], where generator only generates similar-

looking data that successfully fool the discriminator. We

propose to combine Bayesian inference with adversarial

learning in order to alleviate this issue. The key idea of

Bayesian inference is to treat parameters as random vari-

ables, whose prior distributions are specified by the hyper-

parameters. Instead of finding one single set of parame-

ters as in conventional adversarial learning, we obtain mul-

tiple sets of parameters drawn from their posterior distri-

butions. Combining Bayesian inference with adversarial

learning was first proposed in [31] for GAN. We extend

this framework to the proposed BH-HSMM. To the best of

our knowledge, this is the first work to integrate Bayesian

inference and adversarial learning for dynamic PGM. This

allows sequence synthesis. We also proposed a novel ob-

jective Eq. (3) in order to support multi-class data synthe-

sis using one generator. Specifically, we generate samples

of generator parameters θ and discriminator parameters φ

from the posterior distribution.

θ, φ ∼ P (θ, φ|D+, αg, αd) (4)

where D+ is the real data. αg and αd are the hyperparame-

ters of generator and discriminator parameters, respectively.
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Following the idea of Gibbs sampling, we generate samples

of θ, φ by sampling alternatively between the conditional

posteriors of θ and φ. Specifically, the conditional posterior

of θ is as follows.

θ ∼ P (θ|D+, αg, αd, φ) ∝ P (φ|θ)P (θ|αg) (5)

∝
∏
i

exp{−H(X−
i |φ)}P (θ|αg)

where X
−
i ∼ P (X|θ). The first line of Eq. (5) results from

the posterior being proportional to the product of likelihood

and prior. For likelihood we assume θ is marginally inde-

pendent with D+ and αd. This is consistent with Eq. (3),

in which θ is only involved in the second term. From the

first line to the second line, we assume the likelihood of the

generator satisfies P (φ|θ) ∝
∏

i exp{−H(X−
i |φ)}. Intu-

itively speaking, more realistic X−
i yields a smaller value of

H , thus a higher likelihood. Following a similar argument,

the conditional posterior of φ is as follows.

φ ∼ P (φ|D+, αg, αd, θ) ∝ P (D+, θ|φ)P (φ|αd) (6)

∝
∏
i

exp{−H(X+
i |φ)}

∏
j

exp{H(X−
j |φ)}P (φ|αd)

where X
+
i ∈ D+ and X

−
j ∼ P (X|θ). From the first

line to the second line of Eq. (6), we assume the likelihood

P (D+, θ|φ) ∝
∏

i exp{−H(X+
i |φ)}

∏
j exp{H(X−

j |φ)}.

Intuitively, a better φ yields a smaller value of H(X+
i |φ)

and a larger value of H(X−
j |φ), thus an overall higher like-

lihood. We depict the assumed conditional dependency us-

ing a graphical model as shown in Figure 3.

GeneratorDiscriminator

!" # !$ %

&,()* )+

Figure 3. PGM interpretation of Bayesian adversarial model.

The exact inference of posterior distribution is in-

tractable due to the intractable normalization constant. We

resort to SGHMC [3] to perform approximate inference.

For the generator, based on Eq. (5), we define the negative

potential energy function Lg(θ) , −
∑ng

j=1H(X−
j |φ) +

logP (θ|αg) such that P (θ|αg, φ) ∝ exp{Lg(θ)}. Notice

that ng is the number of synthetic data samples in each mini-

batch of stochastic gradient update. For the discriminator,

based on Eq. (6), we define the negative potential energy

function Ld(φ) , −
∑nd

i=1H(X+
i |φ)+

∑ng

j=1H(X−
j |φ)+

logP (φ|αd) such that P (φ|D+, αd, θ) ∝ exp{Ld(φ)}.

Here nd and ng are the number of real and synthetic data

samples in each mini-batch, respectively. The derivation of

gradient of Lg(θ) and Ld(φ) is provided in the supplemen-

tary materials. To perform each SGHMC update, we use the

momentum-based gradient update. We fix the values of hy-

perparameters αg, αd to yield a non-informative prior. The

overall algorithm is summarized in Algorithm 1 with the

choice of constants listed in the supplementary materials.

Algorithm 1 Bayesian adversarial inference of BH-HSMM

Input: {X}: real dataset. Qg: generator hidden state number.

Qd: discriminator hidden state number. M : number of sam-

ples per mini-batch. K: class number. a: momentum coeffi-

cient. Hyperparameters: αd, αg . τ : gap of iterations between

different samples. η: learning rate.

Output: Samples of BH-HSMM parameters

1: Initialization of θ, φ, Vg, Vd.

2: repeat

3: Draw M data samples from generator and real dataset.

4: for k = 1, ...,K do

5: V k
d ← (1− a)V k

d + η
∂Ld(φ)
∂φk

+ ǫ ∼ N(0, 2aηI)

6: φk ← φk + V k
d

7: end for

8: Draw M data samples from generator.

9: Vg ← (1− a)Vg + η
∂Lg(θ)

∂θ
+ ǫ ∼ N(0, 2aηI)

10: θ ← θ + Vg

11: Collect θ every τ iterations after burn-in

12: until collect enough samples

13: return {θ}

4.3. Data Synthesis

Generating a sequence from our model is a conceptu-

ally simple process as we have a directed dynamic model

and ancestral sampling can be used to generate a sample.

First, we obtain samples of model parameters θ from the

posterior as described in the previous section. Second, we

sample the hidden state chain {Z,D} given one θ. Third,

we sample the observation sequence X given {Z,D} and

the corresponding θ. Since θ is drawn from the poste-

rior, by repeating the three steps multiple times, we have

X ∼ P (X|D+, α). Notice that for the third step, X drawn

from P (X|Z) will be too noisy to look realistic in general.

We improve the synthesis quality by estimating the most

likely observation as follows.

X
∗ = argmax

X

logP (X̃|Z) (7)

= argmax
X

∑
t

logN(X̃t|µZt
,ΣZt

)

where X̃t = [Xt, Xt −Xt−1] is the augmented observation

vector by including the speed of each feature channel. N(·)
is Gaussian distribution used in our parameterization. We

adopt this formulation as suggested in [2] to improve the

smoothness. While the speed is included as part of observa-

tions, Eq. (7) remains as a quadratic system of X and thus

can be solved analytically.

6228



5. Experiments

We demonstrate the capability of BH-HSMM and the

benefit of Bayesian adversarial inference using four sets of

experiments. First, we perform an experiment on synthetic

data to show reduced mode-collapsing. Second, we per-

form data synthesis on real mocap data. Both quantitative

and qualitative results are analyzed. Third, we use synthe-

sized data as augmentation for action recognition. Finally,

we perform an experiment to restore missing joint angles in

mocap data.

5.1. Synthetic Data Experiment

We first demonstrate the benefit of adversarial Bayesian

inference using a synthetic dataset. The data is 2D and the

distribution is shown in Figure 4 (left), which resides along

the edges of a square. Figure 4 (middle) shows the synthe-

sis result obtained by a single set of parameters estimated by

adversarial learning, which produces samples that concen-

trate on the right edge. Figure 4 (right) shows the synthe-

sis result obtained by Bayesian adversarial inference, which

improves the coverage of sample distribution without ignor-

ing the minor edges. This result indicates that Bayesian in-

ference alleviates mode-collapsing. While the single model

only concentrates on the dominant mode.

Figure 4. 2D histogram of 1000 synthetic data points. Left: ac-

tual data distribution. Middle: synthesized data distribution from

adversarially learned model. Right: synthesized data distribution

from Bayesian adversarial inference model.

5.2. Mocap Data and Pre­processing

CMU Motion Capture [5]: The original dataset con-

tains 23 categories of motions performed by 144 actors with

various variations. We selected a subset of the dataset in-

cluding walking, running and boxing actions from 10 sub-

jects with a total number of 166 sequences. Berkeley

MHAD [23]: The dataset contains 11 locomotions, involv-

ing full or partial body motions. Each motion is performed

5 times by 12 subjects, resulting 660 sequences in total.

For both datasets, data are provided in the form of joint

angles. In CMU dataset, there are 31 joints with 59 an-

gles. In Berkeley dataset, there are 35 joints with 90 angles.

We use joint angles instead of joint positions as they pro-

vide a body-size and location invariant representation of the

motion. We divide each sequence into overlapping subse-

quences with fixed length. Finally, we normalize the value

of each angle by subtracting angle-wise mean and dividing

angle-wise standard deviation.

Table 1. Number of parameters and training time in synthesis ex-

periment for different methods on Berkeley: 1. CRBM; 2. TSBN;

3. RRNN; 4. C-RNN-GAN; 5. HHMM; 6. Ours (with burn-in).

Method 1 2 3 4 5 6

Parameters 207k 124k 3374k 2166k 44k 30k

Time (h) 11.9 9.7 19.2 20.7 5.1 3.5

5.3. Mocap Data Synthesis

We demonstrate the benefit of Bayesian adversarial in-

ference in generating motion capture sequences. We com-

pare with five state-of-the-art methods. CRBM [37] rep-

resents the conventional PGM-based approach. TSBN

[9] represents a combination of NN and PGM. Two

RNN/LSTM based approaches are considered. RRNN [18]

is trained by minimizing reconstruction loss and C-RNN-

GAN [19] is trained using adversarial loss. Finally, HHMM

[49] is the most similar method to ours. For baseline, we

compare with HSMM and MAP estimate of BH-HSMM,

where a single set of parameters is used for synthesis. We

compare the number of parameters and training time for dif-

ferent methods in Table 1, which shows the compactness

and efficiency of our model. In particular, C-RNN-GAN

has about 72 times of parameters and 6 times of training

time to ours. For our approach, training refers to posterior

inference of parameters. We burn-in the first 10 epochs and

each epoch contains 40 gradient updates. We found this

sufficient for a stable results. After burn-in, we collect pa-

rameter sample every 5 updates.

The evaluation of synthesized data quality remains a

challenging issue. One existing practice is through user

study [15, 40], which has a large variation in subjective

judgment and is time consuming. We propose to utilize a

collection of automated evaluation metrics to assess the se-

quential data quality based on three criteria. First, the fi-

delity in presenting a realistic-looking motion pattern. Sec-

ond, the diversity in assembling intra- and inter-class varia-

tions. Third, the similarity in overall distribution. For each

method of comparison we synthesize 1000 sequences, from

which the metrics are computed. We now introduce each

metric and the corresponding results, followed by some

qualitative results.

BLEU [24] is originally proposed to evaluate the quality

of machine translation. It measures the overall consistency

in semantics between a translated sentence and a set of ref-

erence sentences. It is defined as β exp(
∑N

n=1 wn log pn),
where β is the brevity penalty coefficient, pn is the modi-

fied n-gram precision, wn is the weight associated with n-

gram, andN is the maximum length of n-gram. The motion

pattern can be viewed as a sequential composition of poses.
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Figure 5. Average BLEU and examples of real mocap sequences under different levels and types of perturbation. (Best view in color)

Thus, the fidelity of synthetic mocap sequences can be eval-

uated by the similarity to pose sequences of real data. We

first quantize real and synthetic data using K-means. Then

we compute BLEU score of each synthetic sequence using

quantized real sequences as reference. We use NLTK [1]

with a maximum of 4-gram and uniform weight. The higher

the BLEU between 0 and 1, the better the fidelity.

We conduct several experiments in order to justify the

validity of using BLEU to measure the quality of mocap

data. We perform the experiment on Berkeley dataset and

use K = 20. First, we compute BLEU of real mocap

sequences, still motion sequences (by replicating one real

pose), and randomly generated pose sequences. The results

are 0.9922, 0.3602 and 0.1076, respectively. This indicates

that real sequences have almost perfect value and random

sequences has the worst value. Although the replicated pose

is realistic, it is semantically meaningless, resulting a low

BLEU. Second, we apply different perturbations to the real

data including random permutation, adding Gaussian noise,

and random occlusion. Figure 5 shows the results of per-

turbed data and corresponding BLEU. Detailed discussion

on perturbation is provided in the supplementary materials.

The results indicate that a high BLEU requires both realistic

pose and meaningful sequential order.
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Figure 6. Average BLEU score vs. quantization cardinality in

CMU (left) and Berkeley (right) dataset. Results of random se-

quences are smaller than 0.6 and thus omitted. (Best view in color)

Our empirical evaluation shows that BLEU is a reason-

able metric to evaluate the semantic consistency of synthe-

sized mocap sequences. Figure 6 shows the average BLEU

scores of all synthetic sequences with varied cardinality K.

For all methods, BLEU are decreasing as the cardinality in-

creases, this is expected since the fewer the pose cardinali-

ties, the easier to find n-gram matches. Our method gener-

ally achieves higher BLEU score. The average BLEU over

7 different cardinalities on CMU dataset is 0.8830 while the

second best is TSBN with a score of 0.8786. On Berke-

ley, we achieve 0.9491 and the second best is C-RNN-GAN

with 0.9443. On both datasets we outperform HHMM by

a large margin, which shows the benefit of using semi-

Markov dynamics in synthesis task. These results show our

model can generate sequences that preserve fidelity well.

Inception Score (IS) [33] is a popular metric that

evaluates both the diversity and realism of the syn-

thetic data. IS utilizes another pre-trained classifier to

classify the synthetic data. The score is defined as

exp{EX[KL(P (y|X)||P (y))]}, where y is the class label

associated with data X. P (y|X) is the condition label prob-

ability produced by the classifier. P (y) is the marginal

label probability over all synthetic data. KL is the KL-

divergence. In practice, both the expectation over X and

the integration in KL are approximated using a sample av-

erage. The inception score is a positive number. One score

is obtained for the entire set of synthetic sequences. A high

score indicates that the model can generate more diverse

and discernible data across different classes. In our exper-

iment we learn a set of HMMs by maximizing likelihood,

one for each action category, as a classifier for handling se-

quential data. We use the normalized likelihood computed

by HMMs as the label probability for a testing sequence.

By repeating the synthesis process 10 times, we report

both the mean and standard deviation of inception scores

in Table 2. We observe that in both datasets, the real data

achieve the highest scores. The Berkeley dataset has a

higher score because there are more actions. Our method

achieves the best score among all the methods. Besides,

using Bayesian inference (‘Ours-FB’) shows consistent im-

provement over MAP estimation (‘Ours-MAP’), which in-

dicates better diversity of the generated data.

It is helpful for analysis to combine the results of BLEU

and IS. Our method achieves the best performance in both

scores in both datasets, which indicates a good balance be-

tween fidelity and diversity. Although TSBN and C-RNN-
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Figure 7. Synthetic motion sequences. Each row in each cell represents a complete motion sequence. The first row contains real sequences.

The second to fourth rows contain realistic looking synthetic sequences. The last row contains synthetic sequence with either erroneous

pose or incoherent motion pattern. The action categories from left to right are Running, Walking, Boxing, Jumping, Jumping Jack, Sitting

& Standing. The first three actions are from CMU dataset and the rest are from Berkeley dataset. (Best view in color)

GAN achieve close BLEU to ours, they have much lower IS,

which indicate the generated data has high fidelity but low

diversity. RRNN achieves a higher IS but lower BLEU than

C-RNN-GAN, which indicates that the generatively learned

RNN model has an overall better diversity and lower fidelity

than adversarially learned model. CRBM achieves the sec-

ond best IS in Berkeley dataset. But BLEU is much worse

than ours, which indicates the fidelity is not good. We out-

perform HHMM consistently in both metrics, which shows

the benefit of using Bayesian inference.

Table 2. IS (higher is better) and MMD (lower is better) mean ±
standard deviation. Method ID: 1. HSMM; 2. CRBM; 3. TSBN;

4. RRNN; 5. C-RNN-GAN; 6. HHMM; 7. Ours-MAP; 8. Ours-

FB; 9. Real data (for IS) and Gaussian noise (for MMD).

ID
IS MMD

CMU Berkeley CMU Berkeley

1 1.86±0.07 4.99±0.27 5.46±0.62 432.25±0.78

2 2.65±0.09 5.24±0.39 7.43±0.97 55.39±0.75

3 2.58±0.04 2.57±0.14 12.74±0.10 110.55±0.64

4 2.05±0.08 5.01±0.28 30.65±0.85 101.81±0.36

5 1.95±0.03 4.56±0.37 10.58±0.35 83.25±0.96

6 1.94±0.02 4.93±0.18 12.31±0.72 388.76±0.82

7 2.77±0.08 6.19±0.38 3.98±0.23 67.26±0.21

8 2.86±0.10 6.49±0.23 2.41±0.35 48.70±0.11

9 2.96 8.79 176.27±0.05 1089.91±0.10

Finally, we adopt Maximum Mean Discrepancy

(MMD) [11] to measure the distribution similarity between

synthesized and real data, which has been adopted in [41]

to evaluate the synthetic video quality. MMD is defined as

supf∈F{EX∼p[f(X)]− EY∼q[f(Y )]}, where F is a class

of functions. MMD determines whether distribution p and

q are identical based on samples from the two distributions.

We use the implementation by [11] to estimate MMD. We

treat each sequence as a sample. One scalar is obtained

for the entire synthetic dataset. The smaller the value, the

more similar the two distributions. We repeat experiment

10 times and the mean and standard deviation of MMD are

shown in Table 2. As a validation, the MMD of Gaussian

noise is also reported. We observe that the proposed method

achieves the lowest MMD in both datasets, which indicates

that the distribution of the synthesized data by our method

is closer to real data than other methods.

Qualitative results: As shown in Figure 7, we color-code

different actions, which are classified by HMMs used for

computing inception score. Each sequence is uniformly

down-sampled to five frames for visualization purpose. We

plot samples of real data, realistic-looking and erroneous

synthesized data. From the results, we see our model can

generate realistic motion sequences whose motion patterns

are clearly discernible. Furthermore, there exist variations

in different sequences of the same action, which shows ca-

pability of generating diverse motions. More images and

videos are shown in the supplementary materials.

5.4. Data Augmentation for Recognition

We further demonstrate the synthesis quality as a way of

data augmentation for action recognition task. Specifically,

we use the synthesized data as additional training data to

train classifier, which we use HMM. We use discriminator

output to determine a pseudo-label of the synthesized data.

The synthesized and real data are then combined as aug-

mented training data. We perform a four-fold cross-subject

classification and the results are shown in Table 4. We

observe a consistent improvement as the synthesized por-

tion increases until the performance becomes stable, which

shows evidence of the good quality of synthesized data.

5.5. Data Restoration

One of the benefits of probabilistic generative model

is handling data with missing values. We perform a data

restoration experiment to further demonstrate the benefit of

the proposed model as well as Bayesian inference. We train

the model using completely observed data. For testing, we

omit a subset of joint angles following the same way as [37].

To restore the missing values, we first decode the most prob-
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Table 3. Motion restoration results of different methods on different datasets (mean ± standard deviation).
Dataset CMU (PCC) Berkeley (PCC) CMU (MSE) Berkeley (MSE)

Joint set A B A B A B A B

HSMM 0.26±0.51 0.24±0.50 0.29±0.52 0.34±0.56 0.50±0.48 0.54±0.69 0.40±1.81 0.88±1.51

CRBM 0.42±0.38 0.24±0.49 0.19±0.41 0.34±0.48 0.69±0.62 0.71±1.41 1.28±3.45 1.34±2.74

GPDM 0.65±0.24 0.67±0.24 0.59±0.36 0.61±0.36 0.36±0.35 0.22±0.38 0.41±1.15 0.38±1.87

TSBN 0.84±0.15 0.63±0.32 0.52±0.44 0.64±0.44 0.12±0.10 0.07±0.09 0.29±1.42 0.66±1.25

HHMM 0.82±0.15 0.76±0.19 0.61±0.33 0.64±0.26 0.15±0.15 0.06±0.15 0.28±0.87 0.26±0.64

Ours-MAP 0.86±0.12 0.78±0.22 0.53±0.42 0.67±0.36 0.28±0.15 0.24±0.79 0.13±0.38 0.21±0.31

Ours-FB 0.92±0.06 0.85±0.15 0.68±0.25 0.73±0.16 0.11±0.05 0.14±0.03 0.12±0.29 0.23±0.37

Table 4. Classification accuracy with different augmentation por-

tions. 0% means only real data are used and 100% means the same

amount of synthesized data as the real data is used for training.

Portion Method 0% 20% 40% 60% 80% 100%

CMU
HHMM

83.0
83.8 84.5 85.7 85.2 87.4

Ours 85.7 86.0 86.4 87.7 88.9

Berkeley
HHMM

73.2
76.0 76.8 77.3 76.9 77.0

Ours 76.1 77.6 78.9 78.1 78.3

able hidden state chain by solving

Z
∗
i ,D

∗
i = argmax

Z,D
logP (X̄,Z,D|θi) (8)

where X̄ is the partially observed sequence excluding miss-

ing channels and θi is the ith sample of parameters obtained

through Bayesian inference. Eq. (8) can be solved by ex-

tending Viterbi algorithm to semi-Markov chain [13] except

that the likelihood of each frame is computed by partially

observed data. Given decoded state chain, we compute the

most likely observations for the missing values by solving

Eq. (7), resulting X
∗
i . The final restoration is obtained as

X
∗ = 1

M

∑M

i=1 X
∗
i , where M is the total number of pa-

rameter samples. To evaluate the performance, we utilize

two metrics commonly used in regression task. We compute

Pearson correlation coefficient (PCC) and mean square er-

ror (MSE) between restored value X
∗ and actual values X.

PCC and MSE are complementary to each other. PCC is

the higher the better and MSE is the lower the better. We

use HSMM as baseline. We compare with four state-of-the-

art methods that can handle missing inputs: CRBM [37],

GPDM [42], TSBN [9] and HHMM [49]. Deterministic

models such as RNN cannot handle missing inputs and thus

do not apply to this task.

We tried omitting two sets of joint angles. Set A omits

8 angles along the left leg and Set B omits 7 angles along

right arms. Both PCC and MSE are computed for each in-

dividual angle. We perform a four-fold cross-subject test

for all methods. The mean and standard deviation are re-

ported in Table 3. Overall, we achieve the best performance

in PCC on both CMU and Berkeley datasets with the av-

erage improvement of 9.5% and 8% respectively compared

to the second best HHMM. For MSE, the performance on

CMU dataset is comparable to both HHMM and TSBN.

Figure 8. Examples of motion sequence from CMU dataset. Left

column misses joint angles in left leg and right column misses joint

angles in right arm. Top row is the original data and bottom row is

the restored data by BH-HSMM. The missing and restored joints

are in cyan and black color respectively. (Best view in color)

On Berkeley dataset, we improve MSE by 0.1 compared

to the second best HHMM. In both datasets, we outper-

form HSMM by a large margin. The high variance reflects

the significant variation among different joint angles. Our

method achieves both smaller mean and variance, indicating

a better and more stable performance. These results show

the proposed BH-HSMM captures the variations across mo-

tion sequences well. Compared to the MAP estimation re-

sult, our Bayesian inference shows improvement in 7 out of

8 experiments in Table 3, which demonstrates that the use

of Bayesian inference improves generalization.

6. Conclusion

To summarize, we developed a Bayesian hierarchical dy-

namic generative model which explicitly models the spatio-

temporal dynamics in human motion. We developed an ad-

versarial Bayesian inference framework for the model and

demonstrated its benefit in sequential data synthesis and

restoration tasks. The use of fully probabilistic framework

can better handle the variation in data with a much more

compact parameterization cost than deep models. The inte-

gration of adversarial learning with Bayesian inference not

only retains the benefit of adversarial learning in synthesiz-

ing realistic-looking data, but also alleviates the overfitting

issue such as mode-collapsing.
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José MF Moura. Adversarial geometry-aware human motion

prediction. In ECCV, 2018. 1

[13] Nicholas P Hughes, Lionel Tarassenko, and Stephen J

Roberts. Markov models for automated ecg interval anal-

ysis. In NIPS, 2004. 8

[14] Matthew J Johnson and Alan S Willsky. Bayesian nonpara-

metric hidden semi-markov models. JMLR, 2013. 2

[15] Manfred Lau, Ziv Bar-Joseph, and James Kuffner. Modeling

spatial and temporal variation in motion data. In TOG, 2009.

2, 5

[16] Chen Li, Zhen Zhang, Wee Sun Lee, and Gim Hee Lee. Con-

volutional sequence to sequence model for human dynamics.

In CVPR, 2018. 2

[17] Yan Li, Tianshu Wang, and Heung-Yeung Shum. Motion

texture: a two-level statistical model for character motion

synthesis. In ToG, 2002. 2

[18] Julieta Martinez, Michael J Black, and Javier Romero. On

human motion prediction using recurrent neural networks. In

CVPR, 2017. 2, 5

[19] Olof Mogren. C-rnn-gan: Continuous recurrent neural net-

works with adversarial training. arXiv, 2016. 1, 2, 5

[20] Pradeep Natarajan and Ramakant Nevatia. Coupled hidden

semi markov models for activity recognition. In WMVC,

2007. 2

[21] Anh Nguyen, Jeff Clune, Yoshua Bengio, Alexey Dosovit-

skiy, and Jason Yosinski. Plug & play generative networks:

Conditional iterative generation of images in latent space. In

CVPR, 2017. 1

[22] Sebastian Nowozin, Botond Cseke, and Ryota Tomioka. f-

gan: Training generative neural samplers using variational

divergence minimization. In NIPS, 2016. 1

[23] Ferda Ofli, Rizwan Chaudhry, Gregorij Kurillo, René Vidal,
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