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Abstract

The state-of-the-art 6D object pose detection methods
use convolutional neural networks to estimate objects’ 6D
poses from RGB images. However, they require huge num-
bers of images with explicit 3D annotations such as 6D
poses, 3D bounding boxes and 3D keypoints, either ob-
tained by manual labeling or inferred from synthetic im-
ages generated by 3D CAD models. Manual labeling for a
large number of images is a laborious task, and we usually
do not have the corresponding 3D CAD models of objects
in real environment. In this paper, we develop a keypoint-
based 6D object pose detection method (and its deep net-
work) called Object Keypoint based POSe Estimation (OK-
POSE). OK-POSE employs relative transformation between
viewpoints for training. Specifically, we use pairs of images
with object annotation and relative transformation infor-
mation between their viewpoints to automatically discover
objects’ 3D keypoints which are geometrically and visually
consistent. Then, the 6D object pose can be estimated using
a keypoint-based geometric reasoning method with a ref-
erence viewpoint. The relative transformation information
can be easily obtained from any cheap binocular cameras
or most smartphone devices, thus greatly lowering the la-
beling cost. Experiments have demonstrated that OK-POSE
achieves acceptable performance compared to methods re-
lying on the object’s 3D CAD model or a great deal of 3D
labeling. These results show that our method can be used
as a suitable alternative when there are no 3D CAD models
or a large number of 3D annotations.

1. Introduction

6D object pose detection aims to recognize the 3D loca-
tion and orientation of an object. It serves as a crucial com-
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ponent in some promising computer vision applications like
augmented reality, robotic manipulation and autonomous
driving. Traditional methods relying on depth images ac-
quired from RGB-D cameras are quite robust [3, 15]. How-
ever, such cameras have limitations with respect to frame
rate, field of view, resolution, and depth range, making them
difficult to detect small, transparent, or fast moving objects.

Alternatively, methods based on RGB images do not
have those limitations, but it is more challenging for them
to achieve high accuracy. Earlier methods in this direc-
tion calculate the 6D object pose through the matching of
local features and 2D-3D correspondences [2, 24]. How-
ever, the matching of local features is time consuming and
error-prone. Besides, they fail for objects with poor geom-
etry or texture because they require there exists sufficient
texture on the object to extract robust local features. Re-
cently, deep Convolutional Neural Network (CNN) tech-
niques have been proved to achieve better performance on
processing object detection in RGB images and have been
used to improve 6D object pose detection [14, 33]. The
main idea of most CNN-based methods is learning the map-
ping function between an image and its 6D object pose from
images with explicit 3D annotations such as 6D poses, 3D
bounding boxes and 3D keypoints, either obtained by man-
ual labeling or inferred from synthetic images generated by
3D CAD models. These methods are effective but require
great labeling work or existence of 3D CAD models for the
target objects. Manual labeling for a large number of im-
ages is a laborious task, and we usually do not have the cor-
responding 3D CAD models of objects in real environment.

Compared with the above explicit 3D annotations, image
pairs with relative transformation information indicating
the position and rotation transformation between the view-
points in 3D space are much easier to obtain. For exam-
ple, image pairs with different viewpoints can be captured
from a binocular camera, and the relative transformation in-
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formation can be acquired from camera transformation. In
addition, it can also be automatically measured from con-
tinuously captured photos using inertial navigation system
(INS) installed in most smart phones. If this kind of in-
formation can be exploited for 6D pose detection, we can
significantly lower the training cost and make related appli-
cations more practical. Previously, relative transformation
is often used in manual-feature-based methods [39, 10] that
covert 2D keypoints (e.g. SIFT keypoints) on images to 3D
keypoints (2D coordinates plus depth) by epipolar geome-
try [38]. Such 3D keypoints could be used for geometric
reasoning and 6D object pose detection. However, these
methods suffer the limitations of manual local features. The
relative transformation information has also been used as
supervision in the CNN-based method [32] for 3D keypoint
detection. Nevertheless, this method still requires 3D CAD
models for generating synthetic training images. Its perfor-
mance may degrade for real images.

In this paper, we develop a keypoint-based 6D object
pose detection method (and its deep network) called Object
Keypoint based POSe Estimation (OK-POSE!). OK-POSE
learns to automatically detect 3D keypoints of objects
which have invariance, distinctiveness and locality proper-
ties to estimate 6D object poses in real RGB images. Differ-
ent from previous 6D pose detection methods, our method
learns 3D keypoints from relative transformation between
image pairs rather than explicit 3D labeling information or
3D CAD models. Considering real images often contain
multiple objects, OK-POSE performs two tasks, namely,
keypoint detection and object detection. For the keypoint
detection task, its branch (called keypoint branch) is trained
by a series of carefully designed keypoint loss functions
including a distinctiveness loss, a depth regression loss, a
cross-view consistency loss, a separation loss and a trans-
formation recovery loss. The general goal of these loss
functions is to seek optimal 3D keypoints that consistently
locate on the same parts of the object across different view-
points without keypoint annotation, even if they are invis-
ible. For the object detection task, we devise its model
branch (called object branch) and loss function similar to
Faster R-cnn [27]. The object branch provides category in-
dications for detected keypoints. In the inference phase, our
network takes an RGB image as input and detects the cate-
gories, 2D locations and 3D keypoints of the target objects
in the input image, by which the 6D object pose can be ge-
ometrically inferred from the corresponding keypoints in a
reference image for each distinct object. The reference im-
age is labeled with the pose information of the object as the
datum, which sets the reference coordinate system for the
input image. Since our network could predict all 3D key-
points including invisible ones in an image, only one refer-
ence image is enough in the inference phase. Experimental

'We refer to both the method and its deep network as OK-POSE

results over multiple benchmark datasets have demonstrated
that OK-POSE achieves relatively accurate pose detection.
It achieves acceptable performance compared to methods
relying on the object’s 3D CAD model or a great deal of 3D
labeling. These results show that our method can be used as
a suitable alternative when there are no 3D CAD models or
a large number of 3D annotations.

2. Related Work

Previous works could be generally divided into manual-
feature-based methods and CNN-based methods.

Manual-feature-based methods. Manual-feature-based
methods [28, 2, 24] usually consist of two stages. In the first
stage, several local features (e.g. SIFT) are extracted from
an image and matched with the features of known 3D loca-
tions. In the second stage, the 2D-3D correspondence will
be used by the geometric reasoning framework (e.g. PnP
algorithm [18]) to recover the 6D object poses. Brachmann
et al. [4] proposed using regression forests to predict dense
coordinates and the shape of an object, and then recover its
pose. Manual-feature-based methods are often robust to oc-
clusion and cluttered scenes due to the invariance, distinc-
tiveness and locality properties of local features. However,
the process of feature matching in these methods is error
prone and time consuming. Besides, they rely on textured
objects in high-resolution images.

CNN-based methods. In recent years, CNN-based meth-
ods have shown great potential in vision recognition tasks
like image classification [17, 30] and object detection [27,
20]. There are also some methods proposed to solve 6D
object pose detection using CNNs [26, 16]. Methods in
[36, 16] treat 6D object pose detection as a pose regression
problem, using CNNss to directly predict the 6D pose. How-
ever, direct pose regression suffers from difficulties, e.g., it
is difficult to satisfy orthonormality constraints for object
rotation if the rotation is parametrized as a matrix. To avoid
this problem, [14, 5] covert 6D object pose detection into a
pose classification problem by discretizing the pose space.
These methods use CNNs to output a probability distribu-
tion in the pose space, and associate it with explicit 3D in-
formation to regress the 6D pose. Other methods [33, 25]
are 6D object pose detection pipelines containing a CNN
architecture for object detection. These methods use some
existing CNNs [20, 7] to locate objects in images and ex-
tract 2D keypoints [34] on the objects, and then compute the
6D object pose using a PnP algorithm. These methods are
effective by leveraging supervision in the form of explicit
3D information annotations. However, the work of label-
ing images with explicit 3D information is magnitudes high
and requires expert knowledge and a complex setup [12]. In
order to generate more labeled training data, some methods
[31, 32] render synthetic images using 3D CAD models. In
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real environment, we usually do not have 3D CAD models
of real objects. A more relevant method to ours is keypoint-
net [32] which directly discovers geometrically consistent
keypoints from the relative transformation of image pairs.
However, keypointnet still needs 3D CAD models to ren-
der training images with transparent backgrounds. Training
on synthetic images may reduce detection performance on
real images. Besides, because it cannot detect objects in
complex backgrounds, it needs additional object detection
pipeline for multi-object pose detection task. Our method
integrates object and keypoint detection into an end-to-end
network. It explores richer information (e.g., visual rela-
tionship and epipolar geometry) in paired real images to
learn more reliable and robust keypoints without 3D CAD
models or explicit 3D annotated images.

3. The Approach

Our objective is to infer the 6D object poses in real
RGB images based on 3D keypoints learned from relative
transformation between viewpoints. The OK-POSE net-
work contains three components which are backbone, ob-
ject branch and keypoint branch. The backbone is used
to extract features over the whole image and is shared be-
tween the object branch and the keypoint branch. The two
branches correspond to object detection and 3D keypoint
detection tasks, respectively. Given two images of the same
object with known relative transformation, we train the net-
work to predict two lists of 3D keypoints in two images
that are visually consistent w.r.t the target objects and en-
able recovery of the transformation. During inference, our
network detects the 3D keypoints of an input image. Then
we use a reference image with 3D keypoints detected by
OK-POSE to infer its transformation relationship with the
input image and estimate 6D object pose in the input image
accordingly. The reference image contains the real pose as
the datum. Figure 1 shows an overview of our approach. We
detail each panel of Figure 1 in the following subsections.

3.1. Network

For the backbone, we use ResNetl101 [9] together with
a Feature Pyramid Network (FPN) [19] to extract features
over the whole image. FPN uses a top-down architecture
with lateral connections to build an in-network feature pyra-
mid from a single-scale input. We extract Region of Interest
(ROIs) identified as potential objects by Region Proposal
Network (RPN) [27] and feed them to the two branches.
The combination of ResNet, FPN and RPN as a backbone
is widely used in object detection tasks [7, 27] and pose de-
tection tasks [5, 14] for feature extraction. It gives excellent
gains in both accuracy and speed for object and keypoint
detection in our network.

The keypoint branch takes a ROI as input and outputs a
probability distribution map P; (@, ©) for each keypoint that

represents how likely the i-th keypoint is to occur at each

location (4, ©) in the map. The expected location of the i-th

keypoint ;, y; can be computed by the following equation
Bi=Y - Py, 0)), i = > _[0- P, 6)] (1)

u,v u,v

where | -] is the floor operator. To generate 3D keypoints,

we also predict a depth value at every location. The depth

of the i-th keypoint is the depth value at (&, g;).

The keypoint branch contains four consecutive convolu-
tional layers, each with 64 output channels and 3 x 3 ker-
nels after ROI feature maps. Each convolution layer is fol-
lowed by a relu function [22]. To expand the size of the
feature maps obtained from the last convolutional layer, we
use a deconvolutional layer (3 x 3 kernels with stride 2) to
upsample the feature map as the output layer. The output
layer has N + 1 channels, with the first N channels being
un-normalized distribution maps for the N keypoints and
the last one containing depth predictions. The first /N chan-
nels are passed through spatial softmax to produce P;. The
output of this branch is class-agnostic, i.e., this branch out-
puts category-irrelevant keypoints. We empirically found
that this design reduces the model complexity and the pre-
diction time, while it is nearly effective as the class-specific
design (i.e., with a C'(IN + 1)-dimensional output channels
in which C' is the number of classes). This observation is
consistent with those in some CNN-based image segmenta-
tion and pose regression methods [7, 5]. The training pro-
cedure will be detailed in the next subsection.

For the object branch, we follow Faster R-cnn [27]. Each
predicted object bundled with keypoints detected from the
ROI will be output, and the pixel coordinates [x;, y;] of the
i-th keypoint are obtained by mapping [Z;, §;] back to image
space using the bounding box of the predicted object [8].

3.2. Learning keypoints by relative transformation

We are given an image pair (I, I’) of an object with a
known relative transformation T between their viewpoints

R3x3 3x1
T{ 0 1 } 2)

where R and t represent a 3D rotation and translation re-
spectively. We aim to predict two optimal lists of 3D key-
points in the two images that have geometrical and vi-
sual consistency. Geometrical consistency means that 3D
keypoints should preserve rotation invariance, position in-
variance and scale invariance w.r.t the object. Visual con-
sistency means the locations of matched keypoints should
share a similar visual appearance. To this end, we consider
the following criterions to learn proper 3D keypoints.

- A cross-view consistency loss that measures the dis-
crepancy between the two lists of keypoints under the
relative transformation.
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Figure 1. The overview of our proposed approach. Panel (a) shows the architecture of the network. Panel (b) illustrates the training
stage, where a multi-task loss and the relative transformation Tg¢ are used to train the network. Panel (c) represents an example of pose
inference, where the pose is recovered by multiplying the relative transformation T'¢,qrs On the reference pose. Ttrqans is calculated by
Kabsch algorithm [13] from the detected keypoints on the input image and the reference.

- A depth regression loss that minimizes the distance be-
tween the predicted keypoint depth and depth calcu-
lated according to the relative transformation by epipo-

lar geometry.
- A distinctiveness loss that encourages keypoints to oc-

cur on visually distinctive areas.
- A separation loss to avoid keypoints locating on the

same 3D location.
- A transformation recovery loss, which penalizes the

difference between the transformation R/, t’ recovered
from two lists of keypoints and the real R, t.

In follows, we will describe each loss functions in detail.

Cross-view Consistency Loss This loss is to ensure that
via relative transformation, each keypoint (z, y, z) detected
in I is projected to the same pixel location as its correspond-
ing keypoint (2/,y’, 2’) in I’, and vice versa. Such projec-
tions can be established by the following relationship:

K 'z,y, 21" =TK 'z, ¢, 2, 1] (3)
where K € R*** denotes the intrinsic camera parameters.
This formula means the corresponding keypoints should
be projected to the same location in the camera 3D space.
From this relationship, we can establish the aforementioned
projections:

[xayvza 1]T = KTK_l[‘T/’y/aZ/’ 1]T £ [i‘,:}%é) 1]T (4)

[y, 2/ 1T = KT 'K z,y,2,1]" & [&,7,2,1]"
(5)

Consequently, the cross-view consistency loss is defined by

a Smooth L1 loss (Sr,1) [6] as follows:
N
_12: 1o NT s o~ o AT
Lcon == N £ SLI([xiayivmivyi] _[xivyiaxiuyi] ) (6)

With the help of this loss function and training pairs with
extensive transformation, the learned 3D keypoints will fall
stably on the consistent locations of the object, even if the
location is invisible in the image. This enables robust infer-
ence with only one reference image per object.

Depth Regression Loss In order to predict 3D key-
points, we also need to learn the depth information. In our
approach, the depth of keypoints can be estimated by im-
age pair (I,I') with relative transformation T. Epipolar
geometry [38] describes the relation between 3D keypoints
and their 2D projections given the relative transformation
T. Based on the relation, given the 2D projections of two
corresponding keypoints: e = [z,y,1]T, ¢ = [2/,y/,1]T,
we can calculate the depth d, d’ of the two keypoints:

de"Re’ + et =0 (7)
de =d'Re’ +t (8)

where e’ is the skew symmetric matrix of e. We solve
Eq. (7) to obtain d’ using least square method, and then the
depth d can be obtained by Eq. (8). We take d and d’ as
fixed depth to optimize the predicted depth z and 2’ of two
corresponding keypoints in I and I’. The depth regression
loss is defined as:

L
Lgep = ~ Z [(z — di)* + (2} — d})?] )
i=1

14137



Distinctiveness Loss To improve robustness of the de-
tected keypoints, the distinctiveness loss is imposed to en-
courage keypoints to appear in visually salient regions and
to have the properties of conspicuousness, ease of detection
and diversity. We aim to find blob-like points [1] having
these properties. Compared to surrounding regions in the
images, blob-like points differ in properties such as bright-
ness or color. Given an image I, we produce a distribution
map [(u,v) € (0,1) where I(u,v) = 1 represents that pixel
(u,v) is a keypoint candidate. To produce the map I(u, v),
we first set up a Hessian matrix for each pixel. The Hessian
matrix reflects the variations between a pixel and its sur-
rounding pixels. The Hessian matrix H((u, v), A) for (u, v)
with Gaussian scale A is defined as:

Ly ((u,v), ) Ly ((u,v), N)

B0 = {1 (0, 0),3) Loul(v,0), )
where Ly, ((u,v), \), Ly, ((u,v), A) and Ly, ((u,v), \) are
the second order derivatives of the convolution of image I
at pixel (u, v) with scale A. Then we calculate the determi-
nant of Hessian matrix of each pixel. By applying a non-
maximum suppression (nms) [23], if det(H((u,v),\)) is
the maximum among its 3 X 3 neighborhood, it is consid-
ered to be a blob-like point.

(10)

1, (u,v)= argmax det(H((u,v"),\))
l(u,v) = (u' 0 )ENED
0, else
1D
where /\f(ixj) is the 3 x 3 neighborhood of (u,v). The
I(u,v) = 1 means that pixel (u,v) is a blob-like point,

and can be considered as a keypoint candidate. Considering
that the predicted 3D keypoints may appear in the occluded
parts of an object, to avoid conflicting with cross-view con-
sistency loss, we assume that at least half of the keypoints
are visible and only constrain these keypoints to be conspic-
uous. The loss function is defined as:

Lis = 3 S (1= las ) Piaigi) (12
i€M
where M is the set of indices of top N/2 keypoints ranked
in ascending order of (1 — I(x;,y;)P;(Z4,¥;)). This means
we tend to constrain keypoints with high values of [ and P;
coinciding at the same position. Visible keypoints are much
more likely to have this property during training.

Separation Loss The separation loss is to encourage the
distance between keypoints in one image is larger than a
parameter . In other words, we penalize keypoints if they
are closer than § in 3D space:

2
1 H[xiayiazi]—r* [xjvyjazj]THQ
Lsep = ﬁ 2]: exp(— 952 )
13)
This loss encourages the points to be sufficiently far from
each other to prevent multiple keypoints from occupying

very similar locations.

Transformation Recovery Loss Accurately estimating
the relative transformation between an image and a refer-
ence is crucial for 6D pose detection. Therefore, we also set
up a transformation recovery loss which measures the accu-
racy of transformation recovery using predicted keypoints.
We use a geodesic distance [21] as the lose function:

log(R'RT)|

Lirgns = ——mm—— + t—t||> 14
: 7 I Iz a4

This function measures the angular distance between the
estimated relative rotation R’ and ground truth R and the
Euclidean distance between the estimated translation t’ and
ground truth t. The R’ and t’ can be calculated from the
two lists of predicted keypoints by Kabsch algorithm [13].

3.3. Training and 6D pose inference

Training: In order to train our network, a multi-task loss
is defined to jointly train the object and keypoint branches.
Formally, given a set of positive and negative ROIs gener-
ated by RPN [27], the total loss function is defined as:

L(POS7 Neg) = Z Lclass+Z(Lclass+ﬂLbox+’7Lkeypoints)

Neg Pos

(15)
The classification loss L.;4ss and the bounding box regres-
sion loss Ly, are defined as in Faster r-cnn [27]. Lycypoints
contains five parts Lg;s, Laep, Leon> Lsep and Lyyqns. The
scales and aspect ratios in the RPN are set to the same val-
ues as in Faster r-cnn [27]. (3, v and loss function weights
in Lyeypoints are all empirically set to 1. A in Eq. (11) is
normally set to 1.2 [1]. The parameters ¢ in Eq. (13) is set
to 0.08 according to cross validation on training data. By
comparing the results of different numbers of keypoints, we
choose N = 10 considering the trade-off between speed
and accuracy. We train the network using the Adam op-
timizer with a learning rate of 1073, a batchsize of 8 and

80000 iterations on a NVIDIA GTX 1080Ti.
6D pose inference: The 6D object pose contains a 3D
rotation matrix Rgp and a 3D translation vector tgp, which
determine the location and the orientation of an object in the
camera 3D space. In the test phase, given an input image,
the 3D keypoints of objects are extracted by our network.
Then, the 6D object pose can be calculated by Kabsch al-
gorithm from a reference. Specifically, given two sets of
keypoints detected from the input image and the reference,
the relative rotation Ry, and translation t;,,,s can be
reasoned by Kabsch algorithm. Let R,.; and t,.s be the
rotation and translation of the reference image in the cam-
era 3D space. The rotation Rgp of the input image can be
calculated by equation Rgp = Rrans - Ryey, and its trans-
lation vector tgp = tirans + trep. In practice, the t,.y
and R,.; of the reference image can be labeled by some
existing methods [12, 35]. Since our network predicts all
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Table 1. Results with ablation loss function and various reference number on ape sequence.

Loss (ref. num) ~ w/o Lg;s(1)  w/0 Lgep(1)

w/0 Leopn (1)

W/0 Lgep(1)  W/0O Lpgns(1) all (1) all (3) all (9)

Accuracy(ADD) 15.8 6.7 8.5

24.9 233 35.8 38.0 39.84

3D keypoints including invisible ones in images, one la-
beled reference image could be enough for relative trans-
formation recovery and lead to acceptable performance, as
demonstrated by the experiments.

4. Experiment

In this section, we evaluate our method on two widely
used datasets, i.e., the single object pose dataset LINEMOD
[11] and the multi-object pose dataset OCCLUSION [3].
We also compare our method with state-of-the-art baselines
which require explicit 3D annotations or 3D CAD models.

4.1. Datasets

LINEMOD [11]: It is a dataset for the 6D object pose de-
tection of objects in cluttered scenes. The central object in
each RGB image is annotated with a 6D ground-truth pose
and the category. The 3D CAD models of the objects are
also provided. There are 15783 images in LINEMOD for
13 objects. Each object contains nearly 1200 images. Fol-
lowing [26] and [4], we use 15% of the images which cover
different views of the object from each object sequence to
train a separate model. The remaining images are saved as
the test set. Image pairs are randomly generated from the
training images for training OK-POSE.

OCCLUSION [3]: It is a multi-object pose detection
dataset including 6 objects of LINEMOD, and all the ob-
jects are annotated, and some objects are partially occluded
by others. We use the same training/test splits and picking
rule as in LINEMOD.

It should be emphasized that OK-POSE does not require
the 6D ground-truth pose information for training. How-
ever, the two datasets do not offer the relative transforma-
tion information, so we have to obtain the relative transfor-
mation of image pairs based on their 6D poses. In practice,
the relative transformation can be directly obtained by any
cheap binocular cameras or most smartphone devices, with-
out explicit 3D labeling. For symmetric objects, like SSD-
6D [14], we solely sample views within the range [0;a],
where « is the angle of symmetry.

4.2. Evaluation Metrics

In order to evaluate the accuracy of the estimated pose,
we use the standard metrics used in [26, 4]. For the pose er-
ror in 2D, we use the 2D-pose metric where the correspond-
ing 3D object model is projected on the image using the
ground truth pose and the estimated pose respectively. The
estimated pose is accepted if the Intersection over Union
(IoU) between the two projected boxes is more than 0.5. For

the pose error in 3D, we use ADD metric [11] which calcu-
lates the average 3D distance between the 3D coordinates
in the camera 3D space of each object model vertex recov-
ered by the estimated/ground truth pose, and deems the es-
timated pose to be correct if the average distance is smaller
than 10% of the object’s diameter. For re-projection error
of 3D to 2D, we use the 2D re-projection metric which con-
siders a pose to be correct when the mean distance between
the 2D projections of the object’s 3D mesh vertices using
the estimated/ground truth pose is less than pixel threshold
A (A € {10,20,30,40,50}).

4.3. Ablation Studies

To analyze the contribution of the keypoint-related loss
functions, we omit one loss at a time and report the perfor-
mance. Table 1 shows the results. It can be seen that when
using all the loss functions, the result is the best. The ef-
fect of Lgep and L,y is important for our model. These
two loss functions build the relationship from 2D to 3D and
ensure consistency of the detected keypoints, which are ob-
viously crucial for pose detection based on 3D keypoint cor-
respondence. Lg4;s also shows an important contribution to
the performance, since it encourages the network to detect
robust 3D keypoints steadily against variation in scale, ro-
tation and illumination. Ly,qns also promotes the perfor-
mance because it encourages the network to find keypoints
suitable for transformation recovery.

During the pose inference, the reference image provides
a unified real coordinate system for the input image. On
the other hand, the effect of our method can be improved
by using more references. More references could reduce
keypoint consistency errors caused by excessive deviation
of viewpoints. Therefore, we evaluate the accuracy of de-
tection using different numbers of references (ref. num) on
ape sequence. Specifically, we pick 1, 3, 9 images (trying
to cover the whole view space) for each object as references
respectively. The final pose estimate is the average of the
poses calculated from different references. Table 1 shows
that, with more references the accuracy will also increase
gradually. However, the more references, the higher the an-
notation cost will be involved. For the following experi-
ments, we only use a single reference.

4.4. Single Object Pose Detection

We conduct single object pose detection using the
LINEMOD dataset. We compare OK-POSE with several
state-of-the-art 6D pose detection methods that use syn-
thetic images generated by 3D CAD models (keypointnet
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Table 2. The pose detection accuracy (ADD) on the LINEMOD dataset for single object category.

Training data | RGB with Relative Transformation RGB with 3D CAD Models RGB with 3D Annotation

OK-POSE keypointnet+bbox [32] | keypointnet+mask [32] SSD6D [14] AAE [31] DPOD [37] | Brachmann[4] BBS8 [26]
Ape 35.8 8.4 18.3 0.00 3.96 37.22 - 27.9
Benchvise 26.1 19.2 3.8 0.18 20.92 66.76 - 62.0
Cam 34.7 6.2 17.5 0.41 30.47 24.22 - 40.1
Can 22.6 5.5 16.1 1.35 35.87 52.57 - 48.1
Cat 322 6.2 15.6 0.51 17.90 32.36 - 45.2
Driller 28.5 4.2 17.9 2.58 23.99 66.60 - 58.6
Duck 28.5 4.5 20.1 0.00 4.86 26.12 - 32.8
Eggbox 41.3 6.2 16.7 8.90 81.01 73.35 - 40.0
Glue 322 8.5 15.2 0.00 45.49 74.96 - 27.0
Holepuncher 15.0 19.4 2.9 0.30 17.60 24.50 - 42.4
Iron 38.9 6.2 18.6 8.86 32.03 85.02 - 67.0
Lamp 35.1 5.6 20.8 8.2 60.47 57.26 - 39.9
Phone 21.2 9.1 14.4 0.18 33.79 29.08 - 352
Mean 30.16 8.4 17.6 2.42 28.65 50 323 43.6

4 TP \ SS=—7" 0%
Figure 3. Keypoint detection under different lighting conditions
and on a textureless object. The first and third columns are the
visualization of blob-like points extracted in distinctiveness loss.
The second and fourth columns show the detected keypoints.

[32], SSD-6D [14], AAE [31] and DPOD [37]) and use 3D
annotated real images for training (Brachmann [4] and BB8
[26]). It should be noted that the keypointnet cannot detect
target objects. For fair comparison, we provide it with the
detected bbox by OK-POSE or the mask generated by the
3D CAD model (provided by LINEMOD). These two ver-
sions of keypointnet are named as keypointnet+bbox and
keypointnet+mask. Based on the detected keypoints by the
keypointnet, the pose of the object is estimated by the same

inference method and reference as ours. SSD-6D and BB8
can use depth information for further refinement. However,
depth information cannot be easily obtained in practice. For
fair comparison, we only compare with their methods with-
out depth information. Table 2 shows the results on dif-
ferent objects. We can see OK-POSE beats keypointnet,
even if it is given more fine-grained object masks. This is
because, compared with keypointnet, our method explores
richer information (e.g., visual relationship and epipolar ge-
ometry) for robustly detecting keypoints in real images. Al-
though our approach on average is not as good as DPOD
and the methods requiring 3D annotated real images and ,
it achieves relatively acceptable performance and provides
a feasible solution when there is no 3D annotation or 3D
CAD models in real environment. It is worth noting that
our method still achieves close or even better results in some
object sequences.

Figure 3 shows the blob-like points and keypoints de-
tected in the input images. As can be seen from the first line
of Figure 3, although the lighting condition changes, our
method can still find consistent keypoints. The object in
second line of Figure 3 is textureless. The extracted blob-
like points are different in different views. However, the
detected keypoints are still consistent. The reason could be
that, 3D cross-view consistency loss and transformation re-
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covery loss will still try to find potential keypoints that are
stable and consistent in the blob-like points. Note that our
method can predict invisible keypoints. For example, the
red, blue and white keypoints in the first row always track
the eyes and nose of the cat. The reason should be that our
network tries to learn geometrically consistent keypoints in
different views even if they are invisible. Figure 2 shows the
detected keypoints and the estimated 3D bounding boxes by
our method. These results show that our network is able to
precisely detect geometrically and visually consistent 3D
keypoints in real images with cluttered scenes. Such key-
points are a good representation for 3D objects and can be
used to estimate pose by reference.

4.5. Multiple Object Pose Detection
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Figure 4. Percentages of 2D re-projection metric using different
distance thresholds A on the Occlusion dataset.

Table 3. The MAP on the OCCLUSION dataset.
Methods Train data MAP

OK-POSE RGB w/ Realtive Transformation ~ 0.47
keypointnet+bbox [32] RGB w/ Realtive Transformation ~ 0.13

keypointnet+mask [32] RGB w/ 3D CAD Models 0.27
SSD6D [14] RGB w/ 3D CAD Models 0.38
AAE [31] RGB w/ 3D CAD Models 0.39
DPOD [37] RGB w/ 3D CAD Models 0.48
Brachmann [4] RGB w/ 3D Annotation 0.51
BB8 [26] RGB w/ 3D Annotation 0.62

We run multiple object pose detection on OCCLUSION
dataset. In the inference stage, each object in an image
will be inferred independently in our method. Following
[26], we also report 2D re-projection accuracy against dif-
ferent pixel thresholds in Figure 4. It demonstrates that even
without 3D CAD models and a large number of explicit 3D
annotated images, our method yields acceptable accuracy
(e.g., average 66.7% at the threshold of 40) in the case of
severe occlusions. Table 3 reports Mean Average Precision
(MAP) of the 2D-pose metric. Our method still achieve
acceptable results compared to methods relying on the ob-

ject’s 3D CAD model or a great deal of 3D labeling. A
reasonable explanation is that our method could capture oc-
cluded (invisible) keypoints via the carefully designed key-
point losses, and the 6D pose could be inferred robustly.

Table 4. Comparison of the overall computational runtime.

Methods (ref. num) Overall Speed

Brachmann [4] 2.5 FPS
BB8 [26] 3 FPS
OK-POSE 18 FPS
4.6. Timing

In this section, we evaluate the speed of our method on
LINEMODE dataset, on an Intel Core 17-5820K 3.30 GHz
with a NVIDIA GTX 1080Ti. As Table 4 shows, OK-POSE
using 50 references is 7.2 times faster than Brachmann and
6 times faster than BBS. It is because BB8 predicts the 6D
object pose by three different deep networks, and Brach-
mann needs lots of iterations to filter outliers by pre-emptive
RANSAC [29]. However, our method only has one detec-
tion network and 6D object pose can be directly calculated
by Kabsch algorithm.

5. Conclusion

In this paper, we develop a keypoint-based 6D object
pose detection method which employs relative transforma-
tion between viewpoints for training. Such relative trans-
formation is easier and cheaper to obtain in the real envi-
ronment. Therefore, our proposed method is a suitable op-
tion when there is a lack of 3D annotations and 3D CAD
models. Compared with the state-of-the-art RGB-based 6D
object pose detection methods requiring 3D CAD models or
a great deal of 3D labeling, our method achieves acceptable
performance. Furthermore, our method can infer the pose
faster than methods requiring many 3D annotations. An in-
teresting future work is to improve the network for detecting
dense points on objects to handle more challenging tasks.
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