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Abstract

While deep learning in 3D domain has achieved revolu-

tionary performance in many tasks, the robustness of these

models has not been sufficiently studied or explored. Re-

garding the 3D adversarial samples, most existing works

focus on manipulation of local points, which may fail to

invoke the global geometry properties, like robustness un-

der linear projection that preserves the Euclidean distance,

i.e., isometry. In this work, we show that existing state-of-

the-art deep 3D models are extremely vulnerable to isome-

try transformations. Armed with the Thompson Sampling,

we develop a black-box attack with success rate over 95%

on ModelNet40 data set. Incorporating with the Restricted

Isometry Property, we propose a novel framework of white-

box attack on top of spectral norm based perturbation. In

contrast to previous works, our adversarial samples are ex-

perimentally shown to be strongly transferable. Evaluated

on a sequence of prevailing 3D models, our white-box at-

tack achieves success rates from 98.88% to 100%. It main-

tains a successful attack rate over 95% even within an im-

perceptible rotation range [±2.81◦].

1. Introduction

Recently deep learning in 3D data sets has increasingly

raised attentions due to its huge potential in real-world

applications such as self-driving cars [12, 9], augmented

reality [28] and medical image analysis [23]. Although

techniques in 2D deep learning like multi-view approaches

[35, 31] can be adopted for tackling 3D problems, it is hard

to extend these approaches to some 3D tasks, for example

point classification. To alleviate this difficulty, the authors

of [30] proposed a novel deep neural network PointNet that

directly consumes 3D point cloud data. With the proved in-

variance to order change, it performs well on point cloud

classification and segmentation tasks. After this pioneering
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Figure 1. Demonstration of Thompson Sampling Isometry attack

on PointNet model [30] trained by ModelNet40 data [44]. Such

classification error may cause safety hazard for autonomous vehi-

cles, since a rotated traffic cone is commonly seen in real world

scenarios.

work, there is a surge of researches [32, 19, 20, 42, 21] on

3D neural networks that process directly on point clouds

and achieve promising results.

While deep 3D models have gained remarkable success,

the invariance or robustness to isometry transformation, a

fundamental concern in computer vision [11], has not raised

enough attention. It is also important to note that isometry

represents a large class of geometry transformations includ-

ing translation, rotation, and reflection as the most common

examples. A misclassification case of a highway cone un-

der our black-box attack is illustrated in Figure 1. To ad-

dress this issue, in this paper we design a novel block-box

attack framework based on Thompson Sampling (TS) [33]

and evaluate the robustness of the existing state-of-art deep

3D models (PointNet [30], PointNet++ [32], DG-CNN [42]

and RS-CNN [21]) for classification problems under linear

isometry. Specifically, in the black box TS is used to gener-

ate rotation matrix parameterized by its rotation angle, and

the resulted rotation transformation can be applied to nature

samples. The adoption of TS is motivated by the basic be-

lief that the attack success rate varies in different rotation
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ranges. In order to generate successful attacks, a natural

idea is to sample with probability to rotation angles. Com-

pared to random sampling, TS is more efficient and explain-

able due to its ability to adaptively learn the prior probabil-

ity of parameters. With the TS techniques, our block box

attack can achieve success rates more than 95.66% on Mod-

elNet40 data over all evaluated models by at most 10 times

of iterative sampling. Heat map of attack success rates in

different regions suggests certain rotation ranges are more

likely to fool models, which confirms our insights. We also

show links between our attacks and efficient 3D data aug-

mentation subsequently.

Beyond isometry, we hope a deep 3D model can be ro-

bust under slightly perturbed isometry, since human beings

have the capability to easily recognize a stretched 3D ob-

ject from the natural one. This idea naturally leads to the

Restricted Isometry Property (RIP) matrix [6], where RIP

is a nice relaxation of isometry property extensively inves-

tigated in the compressed sensing field. In fact, a RIP ma-

trix is coordinated with a small positive number called Re-

stricted Isometric Constant (RIC), as a measurement of its

distance from an isometry. In the white-box attack, we start

from an initial isometry and further add perturbation on it to

transform point cloud. The motivation is to preserve isom-

etry as much as possible while misleading the model. Al-

though finding RIC of a given matrix A is computational

hard [39] in general, it is equivalent to compute the spectral

norm of ATA− I in our case. Besides, spectral norm offers

a fair and universal standard of perturbation level among

different point cloud data sets, which is similar to the Lp

norm standard in image domain. On an array of models

trained by ModelNet40 data [44], we achieve attack suc-

cess rates more than 98.11% while the spectral norms are

less than 0.068.

The contributions of this paper are fourfold:

• We utilize Thompson Sampling to design an efficient

black-box attack with zero loss in the sense of isome-

try. It achieves success rates over 95% on ModelNet40

data set, which is the first work to fully reveal the vul-

nerability of deep 3D point cloud models under isom-

etry transformations in black-box settings. To the best

of our knowledge, this is the first black-box attack in

3D point cloud adversarial settings.

• Inspired by the theoretical results of Restricted Isome-

try Property, we introduce a novel framework of white-

box attack on point cloud with success rates more

than 98.11% over several state-of-the-art models. Even

for imperceptible rotation angles in [−π/64, π/64]
(±2.81◦), it achieves a success rate over 95%.

• In contrast to previous works, 3D adversarial samples

generated by our algorithms have significantly strong

transferability. This property further shows the vulner-

ability of current models under isometry projections.

It also suggests huge potential of our approach in de-

veloping further black-box attacks.

• Our adversarial samples are pervasive in practice.

For example, calibration in self-driving car system is

sometimes inaccurate [38], thus the input signals are

often subjected to small perturbations, which can be

viewed as our adversarial samples. Hence, our ap-

proach might offer insights for improving robustness

of real-world applications.

The rest of the paper is organized as follows: We start with

related works in deep 3D point cloud models, adversarial

attacks in 3D settings and data augmentation. Then we offer

technique details of isometry characterization, TS and RIP

in preliminaries. After preliminaries, our attack methods

are proposed with the pseudo-code of the algorithms. In the

end, we evaluate attack performance for on state-of-the-art

models trained by two benchmark data sets1. Furthermore,

we give an analysis of the trade-off between accuracy and

robustness of models from a data augmentation perspective.

2. Related Work

Deep 3D Point Cloud Models. 3D data sets are of intrinsic

difference from images, thus current neural network

designed for 2D domain might not be directly applied

in certain 3D tasks. To address this issue, [30] proposed

PointNet, a neural network which directly processes on

point clouds. Due to its efficiency and invariance to

order changes of points, it has been widely accepted and

developed [32, 42, 21]. A concept called the critical set, is

introduced in [30]. It plays an important role in enhancing

model robustness, whereas [43] showed in practice it might

instead be a weakness exploited by attacks. PointNet also

used a mini-network called T-net and regularization term

to make the feature transformation matrix near orthogonal

matrix, so that it could be robust against rigid transforma-

tions (isometry). However, [21] noticed that accuracy of

PointNet reduced to around 40% under rotations about Y

axis by 90◦ or 180◦. We observe that the issue of isometry

invariance has not been well explored in previous works. It

will be our main focus in this work.

Adversarial Samples in 3D. In image domain, adversarial

attacks [14, 27, 17, 7], along with the defense approaches

[22, 2, 48], have been extensively studied. However, 3D

point cloud data is essentially coordinates, which are com-

pletely different from pixel values, thereby it is necessary

to design new approaches for adversarial attacks in 3D. By

utilizing critical points, [50] assigned each point a score

1https://github.com/skywalker6174/3d-isometry-robust
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measuring its contribution to model training loss, then built

saliency maps for attack. With an optimization approach,

[45] generated adversarial point clouds by perturbation

under Lp norm and adding points in local area. They also

made use of critical points as the initial points for solving

optimization problems in attack. [43] developed a point-

wise occlusion attack by iteratively excluding points from

point clouds. [46] proposed a pointwise gradient-based

perturbation attack and a point attachment/detachment

attack, as well as statistical tools to distinguish between

adversarial samples and noisy data for defense. All the

above papers in 3D adversarial learning develop attacks

based on local information of individual points, whereas

in this work we analyse the robustness invoking the global

geometry structure of point clouds.

On Data Augmentation. For image problems, data aug-

mentations are well-studied to improve the performance of

deep learning models. Common strategies can be roughly

divided into traditional methods (cropping, reflecting,

rotating, scaling, and translation) and learning-based

methods [10, 24, 13], see [34] for a recent survey. Data

augmentation is not so well-addressed on point clouds. To

our knowledge, simple strategies, such as random scaling,

translation, and rotation, are most commonly used in recent

studies [30, 32, 20, 51]. In this paper we show that these

strategies are far from satisfactory. Consequently, the study

of data augmentation, along with the adversarial attack,

may have great potential to improve both accuracy and

robustness of deep 3D models.

3D Isometry Robustness. The isometry robustness consid-

ered in the past are mainly involved with 3D object retrieval

[16, 37] and matching problems [4] in computer vision. Al-

though they are different from the classification problem

in this paper, we believe many strategies can be adopted

and applied in deep learning settings. There are two possi-

ble ways of incorporation: 1) normalization (pose estima-

tion), for example, the most prominent one based on PCA

[41] can transform data to certain orientation, which could

neutralize the effect of rotations, 2) isometry invariant de-

scriptors based on computer vision theory, such as [16, 25],

which can be embedded into the network architectures and

enhance isometry robustness. Recently there are a few con-

current works [29, 49, 36] utilizing those ideas. However,

in general they could suffer from more complex structures,

more computational time or less accuracy. Our work fills

the research gap between those attempts and prevailing deep

3D models by illustrating the vulnerability of the latter and

justifying the importance of the former. Furthermore, we

hope our methods can be served as an effective tool to eval-

uate isometry robustness and offer insights for future works.

3. Preliminaries

3.1. Linear isometry and Orthogonal matrix

Linear Isometry. An isometry of R
n is a function f :

R
n → R

n that preserves the Euclidean distance

‖f(x)− f(y)‖ = ‖x− y‖ ∀x, y ∈ R
n (1)

Trivial examples of isometry include the identity trans-

formation f(x) = x and translation f(x) = x + b. An

isometry that fixes the origin is indeed a linear transfor-

mation on R
n [40]. Because the effect of translations can

always be easily eliminated by normalization, in this paper

we only consider the case of linear isometry, i.e., f is a

linear transformation that preserve the Euclidean distance.

In the rest of this paper, we mean linear isometry when

referring to isometry.

Orthogonal matrix. An n × n matrix A is said to be or-

thogonal if

A ∈ O(n) := {A ∈ GLn(R) : A
TA = I} (2)

where GLn(R) denotes the set of n× n invertible matrices

of real numbers. It is easy to prove that det(A) = ±1, ∀A ∈
O(n) . Let Iso(n) denote the set of isometries of Rn, [40]

(Lemma1.7, Proposition 1.8) shows

Iso(n) = O(n) (3)

Rotation matrices are defined as a subset of O(n)

SO(n) := {A ∈ O(n) : det(A) = 1} (4)

A reflection matrix over a hyper-plane passing origin is de-

fined by the householder matrix [15]

P = I − 2vvT (5)

where v is the unit normal vector of the hyper-plane

{x ∈ R
n : vTx = 0}.

Parameterization of linear isometry. By CartanDieudonn

theorem any matrix in O(3) can be described as at most

three reflections, and a two reflections case in R
3 is equal

to a rotation. To further represent a rotation, the Euler’s ro-

tation theorem claims that in R
3 we can always represent a

rotation matrix by three rotation matrices about x, y, z axes

R = RθxRθyRθz (6)

where Rθi is the rotation matrix about axis-i by angle θi ∈
[−π, π]. Hence any rotation is captured by three parameters.

A unit normal vector can be characterized by two angles

thus by (5) any reflection over a hyper-plane passing origin

can be represented by two parameters.

The parameterization of linear isometry is the foundation

of our statistical-based black-box attack, indeed the param-

eter space constitutes the sampling space. Further details of

this subsection are discussed in supplementary materials.
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3.2. Thompson Sampling

Thompson sampling (TS), also known as posterior sam-

pling and probability matching, is a powerful sampling

method that consecutively learns the prior probability of

the parameters for sample distribution during the proce-

dure. In this work, we adopt a Beta-Bernoulli finite bandit

arm model [33] because of its efficiency in computation and

conjugacy property.

Suppose there is an agent with K actions, each action

k ∈ {1, · · · ,K} on the environment results in a reward

one with probability θk ∈ [0, 1] and zero with probability

1 − θk. (θ1, · · · , θK) are unknown to the agent but fixed

over time. Suppose the agent has an independent prior be-

lief for choosing θk. Let the priors over θk to be the beta

distribution with parameter αk, βk. Then the prior proba-

bility density function for θk is

p(θk) =
Γ(αk + βk)

Γ(α) + Γ(β)
θαk−1
k (1− θk)

βk−1 (7)

where Γ is the gamma function. Then after each observa-

tion from the environment the distribution of θk is updated

according to Bayes’ rule. By conjugacy property of beta

distribution we can derive an update rule with simple form:

(αk, βk)←

{

(αk, βk) , kt 6= k

(αk, βk) + (rt, 1− rt) , kt = k
(8)

where t ∈ {1, · · · , T} denotes the time horizon, kt, rt are

the action and reward in time t.
Later in our black-box attack settings, the action k will

be to sample a parameterized isometry in a local region cor-

responding to k. The reward is one if attack succeeds and

zero otherwise. We assume the reward of attack follows

Bernoulli distribution with success probability θk, which is

learnt by TS during the sampling.

3.3. Restricted Isometry Property and Spectral
Norm Penalty

The Restricted Isometry Property (RIP) was introduced

by [6] to develop theorems in the field of compressed sens-

ing. RIP can describe the almost orthonormal system,

which makes it a perfect mathematical tool to quantify the

variation of an isometry to a restricted isometry.

For all s-sparse vectors x ∈ R
n, i.e., x has at most s

nonzero coordinates, matrix A is said to satisfy s-restricted

isometry with constant δ if

(1− δ)‖x‖2 ≤ ‖Ax‖2 ≤ (1 + δ)‖x‖2 (9)

The smallest quantity of such δ is called the s-Restricted

Isometry Constant (RIC) of A. We just consider the case

s = n since 1) there is no sparse constraint on vectors, 2)

this allow us to impose orthogonality to A from an RIP per-

spective [3]. The RIP condition in (9) is then

|
‖Ax‖2

‖x‖2
− 1| ≤ δ, ∀x ∈ R

n (10)

Let σ(A) be the spectral norm of A, which is the largest

singular value of A. It can be easily shown

σ(ATA− I) = sup
x∈Rn,x 6=0

|
‖Ax‖2

‖x‖2
− 1| (11)

Hence, finding the n-RIC of A is equivalent to computing

σ(ATA−I). We call σ(ATA−I) the spectral norm penalty

of A. It will be the core ingredient to help us develop the

white-box attack in the next section.

4. Attack Methods

In this paper, we only consider adversarial attacks on

classification models. Our approaches can be easily ex-

tended to other cases like segmentation models.

4.1. Point Cloud and Model Notations

Point Cloud. Point cloud is a cluster of points in R
3

that represents an object or a scene. Each point p in

a point cloud is described by its Cartesian coordinates

p = (xp, yp, zp)
T ∈ R

3. Using a matrix notation,

a point cloud P with m points is then described by

P = [p1, p2, . . . , pm]T ∈ R
m×3.

Deep 3D Point Cloud Model. A deep 3D point cloud

model is a function Fθ(·) : R
m×3 → T

c, where T
c =

{(a1, . . . , ac) ∈ R
c
+ :

∑c

j=1 aj = 1} and c is the total

number of classes. We will omit θ later since in our anal-

ysis the model is fixed. Suppose F is the full neural net-

work with the softmax function and let Z(P ) = z ∈ R
c be

the output (called logit) except the softmax function, then

F (P ) = softmax(Z(P )).

4.2. Thompson Sampling Isometry (TSI) Attack

The intuition of our isometry attack is to find an isometry

on point cloud that misleads the model. For a given point

cloud P , let C(P ) = argmaxjF (P )j be the classification

result and C∗(P ) be the true label of P , then the isometry

attack is

find A

s.t. A ∈ Iso(3)

argmaxjF (PAT )j 6= C∗(P )

(12)

For better interpretation and conciseness, we will use the

attack based on rotations as examples in this subsection.

Following the results in subsection 3.1, we can use three
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rotation angles (θx, θy, θz) ∈ [a, b]3 to construct an arbi-

trary rotation matrix of R3. It is not efficient to choose pa-

rameters from the uniform distribution U([a, b]3), let alone

capturing any useful information during the sampling pro-

cedure. To address this issue, we utilize TS to design this

attack. First we divide [a, b]3 in to d3 intervals of the form

Xi × Yj × Zh (13)

for (i, j, h) ∈ [d]3 := {1, . . . , d}3, where

Xi = [a+
(i− 1)(b− a)

d
, a+

i(b− a)

d
]

Yj = [a+
(j − 1)(b− a)

d
, a+

j(b− a)

d
]

Zh = [a+
(h− 1)(b− a)

d
, a+

h(b− a)

d
]

(14)

Applying an action k = (i, j, h) means to sample θx ∼
U(Xi), θy ∼ U(Yj), θz ∼ U(Zh) and use them to cre-

ate a rotation matrix by (6). Then we generate adversarial

samples by this matrix and update parameters of TS. Our

algorithm is as followed

Algorithm 1 TSI(F, {P1, . . . , PN}, a, b, d, S)

Input: model F , point clouds {P1, . . . , PN}, parameters range [a, b],
number of intervals d, maximum sampling times S.

Output: adversarial isometries A∗

1, . . . , A
∗

N

1: Initiate αk ← 1, βk ← 1, ∀k ∈ [d]3, where k is corresponding to

partition in (14)

2: for n = 1 to N do

3: for s = 1 to S do

4: Sample p̂k ∼ beta(αk, βk), ∀k ∈ [d]3

5: ks ← argmaxkp̂k
6: Apply action ks and get an isometry matrix A(s)

7: if argmaxhF (Pn(A(s))T )h = C∗(Pn) then

8: rs ← 0
9: else

10: rs ← 1
11: end if

12: (αks
, βks

)← (αks
+ rs, βks

+ 1− rs)
13: end for

14: A∗

n ← argmin
A(s)F (Pn(A(s))T )C∗(Pn)

15: end for

We assume the prior distribution of ps follows beta dis-

tribution Beta(αs, βs) with mean αs

αs+βs
, which represents

the attack success rate in area correspoding to s. In TSI, we

can adopt an early stop if the attack succeeds before reach-

ing maximal sampling times.

To show the power of TS, in Figure 2 we present heat

maps2 of αs

αs+βs
, s ∈ [d]3 projected to three planes. The

heat map strongly testifies our insight that when the rotation

angle gets closer to 0, it is less likely to achieve a successful

attack.

2In this attack evaluation, d = 6, [a, b] = [−π/16, π/16], N = 2000
and F is PointNet model trained by ModelNet40 data.

Figure 2. Heat map of success rate in each region learnt by TS.

The number of each area represents probability of successful at-

tack if sampling angles from this region. We project the numbers

along each axis by taking means, thus they can be seen as marginal

probability of a successful attack.

4.3. Combined Targeted Restricted Isometry
(CTRI) Attack

To further evaluate the robustness, we propose the re-

stricted isometry attack and formulate it as an optimization

problem

min
A∈GL3(R)

σ(ATA− I)

s.t. argminjF (PAT )j 6= C∗(P )
(15)

Based on the results from subsection 3.3, the objective func-

tion is indeed the 3-RIC of A. To impose a targeted attack,

i.e., an attack that manipulates the classification result to be

a targeted class t, we use the CW loss function introduced

by [7]

gt(P ) = max{−κ,max
j 6=t

Z(P )j − Z(P )t} (16)

where κ ≥ 0 is a chosen threshold. Then the Targeted Re-

stricted Isometry (TRI) attack is formulated as

min
A∈GL3(R)

σ(ATA− I) + λgt(PAT ) (17)

where λ is a positive real number.

In practice we usually use Stochastic Gradient Descent

(SGD) to iteratively solve optimization problems. To solve

the problem in (17), a good initial point is of vital im-

portance. Fortunately, since for any matrix A ∈ Iso(3),
σ(ATA−I) = 0, TSI actually provides a fine enough start-

ing point for TRI attack. We now propose the Combined

Targeted Restricted Isometry (CTRI) attack in Algorithm 2.
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Algorithm 2 CTRI Attack

Input: model F , point clouds {P1, . . . , PN}, parameters range [a, b],
number of intervals d, maximum iteration times K, maximum sample

times S, learning step η, penalty coefficient λ, target class t and κ.

Output: adversarial samples P1(A∗

1)
T , . . . , PN (A∗

N
)T

for n = 1 to N do

2: Set A
(0)
n ← TSI(F, {Pn}, a, b, d, S), only initiate (α, β) in TS

at the first time

k ← 0
4: while k < K and F (Pn(A

(k)
n )T ) = C∗(Pt) do

A
(k+1)
n ← A

(k)
n − η∇

A
(k)
n

[σ((A
(k)
n )TA

(k)
n − I) +

λgt(Pn(A
(k)
n )T )]

6: k ← k + 1
end while

8: A∗

n ← A
(k)
n

end for

CTRI attack, enjoying both the merit of TS and the theo-

retical interpretation of RIP matrices, is a novel framework

of white-box attack in 3D settings. By isometry parameteri-

zation, TS is capable to sample any isometry and explore the

weakness of 3D model under different isometry transforma-

tions. Adjusting interval division parameters of TS gives us

different scopes of examination, for example we can explore

to what rotation range current 3D models are robust, which

may provide insights on how to efficiently conduct data aug-

mentation. As we will show in the experiment section, re-

laxation of isometry to RIP matrix produce a variety of ad-

versarial samples that preserves the global geometry shape.

Moreover, the spectral norm penalty, as a unified standard

directly measured on transformation, makes the perturba-

tion levels of different adversarial samples fairly compara-

ble regardless the difference of data sets or models.

5. Experiment Results and Analysis

In this section, we evaluate the performance of our at-

tacks on the following models: PointNet, PointNet++, DG-

CNN and RS-CNN. We conduct our experiments on two

data sets: ModelNet40 [44] and part of ShapeNet [47]. For

conciseness and better interpretation, we will only use rota-

tion matrices in this section. Experiments of other isome-

tries such as reflections will be presented in supplementary

materials, indeed attacks based on reflections performs even

better under certain settings.

5.1. Victim Models Setting

We retrain the above models with normalized (to a unit

sphere) and augmented data as the victim models. The aug-

mentation includes random rotation about y axis, random

scale, random translation and jitter [30]. For ModelNet40,

we use the official split of 9843 point clouds for training

and 2468 for testing and attack, the sampling method is the

same as those in [30]. For ShapeNet we use a 16 classes

part with an official split to 12128 objects for training and

ModelNet40 ShapeNetPart

S=1 S=2 S=10 S=1 S=2 S=10

PointNet 92.69 96.92 98.28 83.10 92.61 98.11

PointNet++ 83.74 91.31 95.66 79.32 89.57 92.96

DG-CNN 79.57 89.81 97.33 73.69 87.17 96.82

RS-CNN 85.68 94.19 96.81 76.46 90.01 97.41

Table 1. Attack success rates (%) of TSI with different maximum

sampling times S.

2874 for testing and attack. 2048 points are used for a single

cloud in both data sets. The test accuracy of each retrained

model is within 3% of the best reported accuracy.

In the following experiments, attacks will be exerted on

these retrained models. Without extra statement, in one at-

tack evaluation, we use 1) N = 2000 point clouds; 2) pa-

rameter range [a, b] = [−π, π] and division d = 4 for TS.

A point cloud that victim model fails to correctly classify is

not counted in statistics of attack performance.

5.2. TSI Attack

We first evaluate TSI attack alone as an approach of

black-box attack. Table 1 shows the results of S = 1, 2, 10.

As shown in the table, with maximum sampling times in-

creasing to 10, TS achieves an attack success rate over 95%

on ModelNet40, revealing the vulnerability of current 3D

models under isometry.

Current black-box attacks in 2D are mainly through ad-

versarial transferability [26], heuristic methods [1] and es-

timation of gradients [8]. These methods may not work in

3D settings due to different structure of data, for example,

[45] finds that transferability is not obvious in 3D adversar-

ial attacks. In comparison, TSI performs exceptionally well

as a black-box attack.

The reason why we adopt TS is that we believe for dif-

ferent rotation angles the impact on victim model is differ-

ent. For example, if the rotation angle is very close to 0,

attack might not work, but if it is close to π/4, attack might

easily succeed. This insight is strongly confirmed by heat

maps in Figure 2. By understanding isometry properties

of data set and model, TSI approach also shades light on

how to conduct more effective and efficient data augmenta-

tion. We further guess a more delicate designed Thompson

Sampling model such as an infinite-arm model might work

better. Moreover, it might also perform well to generate

different parameterized transformation other than isometry.

We leave them for future work.

5.3. CTRI Attack

We then evaluate CTRI, where the target is chosen to be

the label with second largest logit predicted by victim mod-

els, and κ = 0 is adopted. In order to find a good enough

initial point, we use S = 50 in TSI. The attack success rate

is presented in Table 2 for maximum gradient iteration times
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ModelNet40 ShapeNetPart

K=7 K=50 K=1000 K=7 K=50 K=1000

PointNet 99.44 99.66 100.00 99.38 99.69 100.00

PointNet++ 97.93 98.11 98.88 96.19 96.71 99.34

DG-CNN 97.99 98.28 99.45 98.26 99.08 99.95

RS-CNN 98.21 98.38 99.33 98.23 98.84 99.95

Table 2. Attack success rates (%) of CTRI with different K , same

λ = 0.001 and learning step η = 0.0005. Here we use S = 50 in

TSI.

Max Mean Var Mean* Var*

PointNet 0.064 8E-5 4E-6 0.033 3E-4

PointNet++ 0.055 1E-4 3E-6 0.006 9E-5

DG-CNN 0.066 9E-5 4E-6 0.020 5E-4

RS-CNN 0.068 6E-5 3E-6 0.025 5E-4

Table 3. Statistics of σ(ATA−I) for the second column of table 2

(ModelNet40, K = 50). Since we adopt early stop, σ(ATA− I)
will be zero if TSI succeeds. ’Mean*’ and ’Var*’ are the mean and

variance over nonzero ones. They better reflect difference caused

by TRI alone.

Max Mean Var Mean* Var*

PointNet 1.11 0.002 0.001 0.331 0.107

PointNet++ 1.00 0.004 0.003 0.114 0.063

DG-CNN 0.99 0.004 0.003 0.276 0.091

RS-CNN 0.84 0.003 0.002 0.318 0.073

Table 4. Statistics of σ(ATA − I) for the third column of table 2

(ModelNet40, K = 1000).

K = 7, 50, 1000. We adopt an early stop here, i.e., when

TSI or CTRI succeeds before reaching maximum iteration

times, we move to the next sample. We also show the statis-

tics of σ(ATA − I) in Table 3, 4 for restricted isometry A
that successfully fools the victim models.

Visualization of TSI and CTRI adversarial examples are

shown in Figure 1 and 3. Figure 1 shows misclassification

of a rotated highway cone, which may cause safety issues

for self-driving cars. Figure 3 consists of natural and ad-

versarial samples of a stair, where the global shape is well

preserved in the adversarial sample. More examples are

demonstrated in the supplementary materials.

5.4. Transferability

Transferability is a commonly-seen property in 2D ad-

versarial samples [26]. It refers to the case that an adver-

sarial sample generate from one model can mislead another

different model. However, in deep 3D models the adversar-

ial samples proposed by previous works do not have strong

transferability [45, 46].

On the contrary, we find that adversarial samples gener-

ated by CTRI attacks have strong transferability, as shown

in Table 5. In fact, a transfer attack should perform at least

not worse than a random generated isometry, i.e., TSI attack

when S = 1. Such high rates indicate again that these mod-

NaturalNatural

AdversarialAdversarial

99.91% 'stairs' 72.66% 'person' penalty=0.2023

Figure 3. Illustration of CTRI on PointNet trained by Model-

Net40 data. The object in blue is classified as ’stairs’ with con-

fidence 99.91%, while the grey object generated by CTRI is pre-

dicted as ’person’ with confidence 72.66%. Spectral norm penalty

σ(ATA− I) = 0.2033.

PointNet PointNet++ DG-CNN RS-CNN

PointNet / 86.61 80.62 85.40

PointNet++ 95.76 / 85.68 92.71

DG-CNN 95.53 93.34 / 93.11

RS-CNN 95.04 92.58 84.59 /

Table 5. Transfer attack success rate (%) of CTRI with S =
50,K = 1000. The adversarial sample is generated from the

model corresponding to the row and tested in model corresponding

to the column.

els are vulnerable to isometry transformations. Another rea-

son why our approach has stronger transferability than that

of others is that, CTRI tries to explore the global geometry

structure, while others depend much more on the property

of specific model such as critical points.

5.5. Attack of Small Rotation Angles

Instead of random sampling rotation angles from

[−π, π], in this subsection we examine TSI and CTRI at-

tack with a smaller range, say [−ǫ, ǫ]. The result is shown

in Table 6. TSI attack maintains a success rate of 69.529%
when the range shrinks to [−π/16, π/16]. It only fails when

the range reduces to an imperceptible level (π/64 = 2.81◦),

indicating the model is just robust to relatively small range

of rotations. Meanwhile CTRI attack succeeds easily with

rates over 95% and means of penalties less than 0.3.

This experiment also provides useful information for ef-

ficient data augmentation, which we will discuss in the fol-

lowing subsection.

5.6. On Defense: the Price of Robustness

Data augmentation usually slightly lowers down the ac-

curacy but helps improve the robustness [20]. However, our

experiments show current data augmentation methods in 3D

(random rotation about y, random scale and translation, jit-

ter) are not enough for defense against our attacks.

To better understand the relation between robustness and

accuracy from a data augmentation approach, we design an

71207



CTRI (%) TSI (%) Max Mean Var Mean* Var*

[−π/2 , π/2 ] 100.000 99.335 1.012 0.001 8E-4 0.201 0.076

[−π/4 , π/4 ] 99.944 99.386 0.443 0.001 4E-4 0.197 0.024

[−π/8 , π/8 ] 99.944 98.153 1.460 0.003 0.003 0.214 0.101

[−π/16, π/16] 99.776 69.529 1.406 0.037 0.010 0.139 0.021

[−π/32, π/32] 98.222 18.000 1.833 0.178 0.047 0.246 0.047

[−π/64, π/64] 95.536 5.469 2.605 0.287 0.083 0.356 0.080

Table 6. Attack evaluation of small rotation angles on ModelNet40 data and PointNet model. The first two columns are the attack success

rate of iterative CTRI and TSI with K = 1000, S = 100, the rest are statistics for σ(ATA − I). Other parameters are the same as those

in Table 2.

Figure 4. When p goes up, the right figure shows the attack success

rates decrease, while the left figure suggests model accuracy also

goes down and the variance increases. Thus, there is a trade-off

between model accuracy and robustness when data augmentation

approach is considered.

experiment: 1) First, we propose an augmentation method

called random p-rotation. It is to randomly rotate the data

by (6) with probability p. 2) Then we train PointNet model

with random p-rotation ModelNet40 data 15 times for dif-

ferent p ∈ {0, 0.1, . . . , 0.9, 1.0}. 3) Finally, we randomly

choose a victim model for each p, and launch both rotation

and reflection based TSI and CTRI attacks (same parame-

ters as those in Table 2, K = 1000) on these models. The

result is demonstrated in Figure 4.

Clearly, accuracy varies a lot with different p. The mean

accuracy goes down to 69.47% when p = 1. TSI attack suc-

cess rates decrease as p increases, but CTRI success rates

still remain in a high level. Thus, the point is how to find

an efficient way of data augmentation without jeopardiz-

ing the accuracy too much. As shown in Figure 4, roughly

when p ∈ [0.1, 0.3], the model accuracy remains around

90% while TSI attack success rates reduce to around 80%.

Hence, random rotation with a low probability is a relatively

efficient way to defense against TSI attack.

Another efficient data augmentation method could be

to randomly rotate the data by several fixed angles, say

ǫ, 2ǫ, . . . , kǫ, where ǫ is chosen from subsection 5.5. The

intuition is that since current models are robust to small ro-

tation angles, we can take ǫ as the minimum step length to

rotate the data. This approach is left for future work.

We note that 3D augmentation should draw more atten-

tion, since many data sets in 3D are often not so adequate

for training large models. In particular, simple augmenta-

tions are not sufficient under adversarial attacks. For one

thing, data augmentation often brings large variance, which

decreases the performance of models [18]. For another,

augmentations without understanding of attacks are less ef-

ficient, and can lead to computational difficulties [5]. An

efficient data augmentation may be able to defense against

TSI without too much cost, but against CTRI attack a lot

more computational power might be required, for example,

by adversarial training [22].

6. Conclusion

We propose a black-box attack and a white-box attack

in 3D adversarial settings, which is the first work to show

the extreme vulnerability of current 3D deep learning model

under isometry transformations. On the one hand, there

are intriguing properties of our adversarial samples, such

as strong transferability. On the other hand, our approaches

point out promising directions for future researches in 3D

adversarial learning: 1) TS shows great potential in devel-

oping black-box attack, which can also be further exploited

in data augmentation. 2) CTRI achieves satisfying perfor-

mance even under small rotation angles, while the geometry

property of adversarial samples is well preserved. There-

fore, further researches on defense against TSI and CTRI

may hugely improve isometry robustness of 3D deep learn-

ing models.
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