
UCTGAN: Diverse Image Inpainting based on Unsupervised Cross-Space

Translation

Lei Zhao∗, Qihang Mo, Sihuan Lin, Zhizhong Wang,

Zhiwen Zuo, Haibo Chen, Wei Xing, Dongming Lu

College of Computer Science and Technology, Zhejiang University

{cszhl, moqihang, linsh, endywon, zzwcs, feng123, wxing, ldm}@zju.edu.cn

Figure 1: Exemplar inpainting results of our method on images of face (from CelebA-HQ [9]), building ( from Paris [4]) and

natural scene (from Places2 [30]). Missing regions are shown in gray. From left to right, we show the masked input image,

the diverse and reasonable outputs of our model without any post-processing (zoom in to see the details).

Abstract

Although existing image inpainting approaches have

been able to produce visually realistic and semantically cor-

rect results, they produce only one result for each masked

input. In order to produce multiple and diverse reasonable

solutions, we present Unsupervised Cross-space Transla-

tion Generative Adversarial Network (called UCTGAN)

which mainly consists of three network modules: condi-

tional encoder module, manifold projection module and

generation module. The manifold projection module and

the generation module are combined to learn one-to-one

image mapping between two spaces in an unsupervised way

by projecting instance image space and conditional comple-

tion image space into common low-dimensional manifold

space, which can greatly improve the diversity of the re-
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paired samples. For understanding of global information,

we also introduce a new cross semantic attention layer that

exploits the long-range dependencies between the known

parts and the completed parts, which can improve realism

and appearance consistency of repaired samples. Exten-

sive experiments on various datasets such as CelebA-HQ,

Places2, Paris Street View and ImageNet clearly demon-

strate that our method not only generates diverse inpainting

solutions from the same image to be repaired, but also has

high image quality.

1. Introduction

Image inpainting (also known as image completion or

image hole-filling) refers to using the known information of

the images and a specific method to repair a partially dam-

aged or missing image in an undetectable way. It fills the
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missing part of an image to make it look natural (i.e., vi-

sually realistic and semantically correct) according to some

rules [1, 21, 2, 15, 20, 25, 13]. This task is a basic problem

in the field of image processing and has drawn great atten-

tion for decades, because image inpainting can be used in

various applications such as object removal, image editing

and old photo restoration, to name a few. Its key problem is

how to generate missing contents to maintain the integrity

and consistency of the restored images, and avoid incom-

plete fusion between the filled contents and the known visi-

ble contents.

Image inpainting is an underdetermined inverse problem,

where a large number of plausible solutions can satisfy the

constraints of image restoration. In this paper, our main

object is to produce multiple and diverse reasonable results

when given a masked image, so we refer to this task as di-

verse image inpainting.

Early image inpainting approaches progressively fill in

missing regions by searching and pasting the most similar

image patches in the background regions under the hypoth-

esis that the contents to be filled in come from the back-

ground areas [1, 21, 2]. This hypothesis is not always con-

formed with the real cases. Though these approaches work

well for some cases, they can not generate semantically

meaningful contents. More recently, some deep-learning

based image inpainting approaches have been proposed to

learn the essential distribution of training data, which is

used to repair the masked images. However, these ap-

proaches can only generate one optimal result, and do not

have the capacity to produce various semantically meaning-

ful solutions.

Nowadays, typical GAN-based image generation ap-

proaches, such as [6, 19, 9, 3], have been able to generate

novel and diverse image samples by mapping the noise of

normal distribution to the image. However, they can not

be directly applied to diverse image inpainting for the fol-

lowing reasons: 1) In diverse image inpainting scenario, the

condition label is the masked image itself, and there is only

one instance (i.e., the ground truth image corresponding to

the masked image) in the training set for each condition la-

bel. That is to say, there are no conditional training datasets

which explicitly express conditional distribution. 2) The di-

verse image inpainting scenario has strong constraints (the

repaired images should keep integrity and consistency in

color and texture with the masked image), so it is more

vulnerable to suffer from mode collapse than typical image

generation.

As we know, the set of all possible repaired results for

a given masked image expresses conditional probability

distribution, the set of masked images expresses marginal

probability distribution and the training dataset expresses

joint probability distribution. So, the diverse image restora-

tion can be regarded as the problem of finding conditional

probability with known marginal probability and joint prob-

ability, which means that we can borrow some information

from training data when traversing the conditional com-

pletion image space. Inspired by the above analyses, we

present a conditional image-to-image translation network

for instance-guided diverse image inpainting, conditioned

on the masked image.

The main contributions of our work are:

• An instance-guided conditional image-to-image trans-

lation framework for diverse image inpainting that is

able to learn conditional completion distribution when

given a masked image.

• A new network structure with two branches, which

learns one-to-one image mapping between instance

image space and conditional completion image space

in an unsupervised way. Our method has much higher

sampling diversity as compared to existing methods.

• A novel cross semantic attention layer that exploits

long-range global information to ensure appearance

and structure consistency in the image domain.

• We demonstrate that our approach is able to generate

multiple reasonable solutions that have significant di-

versity for a masked image input, such as those shown

in Fig. 1.

2. Related Work

Non-deep-learning based inpainting

Non-deep-learning based inpainting approaches mainly

utilize non-learning prior knowledge (i.e., hand-crafted fea-

tures), such as statistics of patch offsets and low rank to

recover the image. Among them, patch-based methods

[5] and diffusion-based methods [11] are the most typical.

Patch-based methods were first introduced for texture syn-

thesis [5]. They were then applied in image inpainting to

fill missing parts at pixel level [21]. They usually search

and borrow similar patches from image datasets or undam-

aged image background to generate missing parts based on

distance metrics between patches [14]. Non-deep-learning

methods for image inpainting are able to generate sharp

results similar to context. However, it is difficult to pro-

duce semantically plausible solutions by patch-based ap-

proaches, due to the lack of high level semantic understand-

ing of images.

Deep-learning based inpainting

Deep-learning based inpainting methods often use deep

neural networks and GANs to adversarially generate pix-

els of missing parts [6, 15, 20, 25, 13]. The existing

deep learning based inpainting methods are mainly divided

into two categories: single-solution inpainting methods and

multiple-solution inpainting methods.
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Single-solution inpainting methods produce only one re-

sult for each masked input, although there may be many

reasonable possibilities. These approaches, such as [28, 8,

15, 20, 24], often generate distorted structures and blurry

textures inconsistent with the visible regions. In order to

overcome these problems, researchers have done a lot of

work, such as [27, 23, 26, 22, 13, 16, 12, 25].

Multiple-solution inpainting methods can produce mul-

tiple plausible results for each masked input. Zheng et al.

[29] proposed a probabilistically principled framework with

two parallel paths, which utilized prior-conditional lower

bound coupling to generate multiple diverse results with

reasonable content for a single masked input. Our method is

similar to that of [29] in goal, both are to generate multiple

diverse and reasonable results for a masked image input, but

our approach uses a different route to improve the diversity

and realism of the restored image.

Diverse image generation

Image generation methods produce novel diverse sam-

ples according to high-dimension data distributions learned

from the image dataset. Currently, the most typical ap-

proaches are Variational Autoencoders (VAE) [19] and

Generative Adversarial Networks (GAN) [6]. Cross domain

image translation can also generate diverse images, such

as BicycleGAN (BG) [31], MUNIT [7], DR [10], etc. Bi-

cycleGAN (BG) [31] explicitly encourages the connection

between output and the latent code to be invertible, which

helps prevent a many-to-one mapping from the latent code

to the output during training, and produces more diverse re-

sults. MUNIT [7] and DR [10] use the content (or style) of

one image as a guide, and combine with the style (or con-

tent) of another image to achieve diverse image-to-image

translation. Inspired by them, we also adopt instance im-

ages of training dataset as a guide to perform diverse image

inpainting. However, our approach is fundamentally differ-

ent from MUNIT [7] and DR [10]. Our method does not de-

couple images into content code and style code. The disen-

tangled representations of content and style are the bases of

diverse image-to-image translation performed by MUNIT

[7]. The cross adversarial training of two different domains

is necessary in order to decouple the content and style of

the image in MUNIT [7]. However, in the scenario of di-

verse image inpainting, the images to be repaired, instance

images used as guides and corresponding completion im-

ages all belong to the same domain, so MUNIT [7] can not

be used for diverse image inpainting since it can not real-

ize the disentangled learning of content and style in a single

domain.

3. Our Approach

Suppose we have an image from a training dataset, orig-

inally Ig , but degraded by a mask M to become Im (the

masked image) comprising the observed/visible pixels. Our

goal is to produce multiple and diverse semantically rea-

sonable and visually realistic completion images Ic for a

masked image Im. The set of all these completion images

Ic is called conditional completion image space Scc of a

given masked image Im. The instance image Ii for guid-

ance comes from the training dataset, and the set of all in-

stance images Ii is called instance image space Si. The net-

work model is prone to suffer from mode collapse in the di-

verse image inpainting scenario, which results in poor diver-

sity of completion images. In order to improve the variance

of the repaired images, our network learns a one-to-one

mapping between instance image space Si and conditional

completion image space Scc by an unsupervised way (unsu-

pervised cross-space translation), which is implemented by

projecting instance image space Si and conditional comple-

tion image space Scc into common low-dimensional mani-

fold space Sm. The deep neural network of a specific struc-

ture is designed to learn a mapping MAP : Si → Scc such

thatE1(Ii) =E1(Ic), whereE1(·) is a multivariate function

which projects Ii or Ic into low-dimension manifold space,

and Ic = U(Ii, Im), U(·) is the function expressed by our

UCTGAN networks.

3.1. Probabilistic Analysis

Our network framework will maximize the conditional

log-likelihood of the training instances, which involves vari-

ational lower bound:

logp(Ic|Im) ≥ −KL(fϕ(Zc|Ii, Im)‖fψ(Zc|Im))

+EZc∼fϕ(Zc|Ii,Im)[loggθ(Ic|Zc, Im)]
(1)

where Ii, Ic and Im are the instance image, the repaired

image and the masked image, respectively. Zc is the la-

tent vector of Ii in space Sm. fϕ, fψ and gθ are the poste-

rior sampling function, the conditional prior and the likeli-

hood, with ϕ, ψ and θ being the deep network parameters

of their corresponding functions. The conditional prior is

set as fψ(Zc|Im) = N (0, I). The first term mainly projects

instance image Ii into low-dimensional manifold vector Zc
which is shared by the completion image corresponding to

the instance image.

3.2. Network Structure

Our network is trained in an end-to-end fashion, which

consists of two branches, shown in Fig. 2, which mainly

consists of three network modules: manifold projection

module E1, conditional encoder module E2 and generation

module G. The primary branch consists of a manifold pro-

jection module E1 and a generation module G, which is re-

sponsible for learning one-to-one image mapping between

two spaces in an unsupervised way by projecting instance

image space Si and conditional completion image space Scc
into one common latent manifold space Sm. The second
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Figure 2: Overview of our architecture with two branches. The primary branch consists of a manifold projection module and

a generation module, which is responsible for mapping the instance image space to the conditional completion image space.

The secondary branch consists of a conditional encoder module, which acts as the conditional label.

Figure 3: Our cross semantic attention layer. The attention

map is computed on masked image features and instance

image features on bottleneck layer .

branch consists of a conditional encoder module E2, which

acts as conditional constraint similar to the conditional la-

bel. For a masked image Im, there is only one original im-

age Ig that can be used as training data to maximize the like-

lihood in equation (1). That is to say, the mapping between

instance images and completion images can only be ob-

tained in an unsupervised way, which often results in mode

collapse. In order to associate two spaces (instance image

space and conditional completion image space) by one-to-

one mapping, instance images Ii and their corresponding

mapped restored images Ic should have the same represen-

tation in the low-dimension manifold space Sm.

3.3. Training Loss

Condition Constraint Loss. The multiple and diverse

results generated by our network need to be consistent with

the masked image, which requires that the appearance and

perceptual features of the repaired images be as same as

possible to those of the corresponding masked images in

the known pixel regions. We define conditional constraint

loss in terms of appearance and perceptual features.

Lccl = L
a
ccl + L

f
ccl

= EIi∼pdata
‖(M ⊙ U(Ii, Im))− Im‖1

+ EIi∼pdata
‖ϕ(M ⊙ U(Ii, Im))− ϕ(Im)‖1

(2)

where M is the mask, U(·) is the function expressed by

our network, pdata is the distribution of training dataset,

ϕ is the pretrained feature extractor such as VGG16, Laccl
and Lfccl are appearance constraint loss and perceptual con-

straint loss, respectively.

KL Divergence Loss. The KL divergence loss LKL is

defined as:

LKL =LiKL + LmKL
=KL(E1(Zc|Ii)‖N (0, I))

+KL(E2(Zm|Im)‖N (0, I))

(3)

whereLiKL andLmKL are responsible for projecting instance

images and masked images into multivariate normal distri-

bution space, E1 and E2 are functions represented by mani-

fold projection module and conditional encoder module, re-

spectively. Zc and Zm are the latent vector of Ii and Im in

multivariate normal distribution space, respectively.

Reconstruction Loss. Our network translates instance

images into completion images in an unsupervised way.

However, the instance image is different from the corre-

sponding completion image in pixel level. It is desired that

the instance image is the same as the corresponding com-

pletion image in low-dimensional manifold space. So the

low-dimensional manifold loss is defined as

Llrec = EIi∼Pdata
‖E1(Ii)− E1(G(E1(Ii), E2(Im)))‖1

(4)

where Im is the masked image, Ii is the instance image

randomly sampled from training dataset, Pdata is the dis-
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Figure 4: Comparisons on Paris [4] test set for center region completion. For each group, from left to right the images are

masked image, CE [15], CA [26], CSA [13], SF [16], SN [23], PN [29] in blue box and our method in red box, respectively.

tribution of training dataset, E1 is the manifold projection

module,E2 is the conditional encoder module,G is the gen-

eration module.

For each masked image Im, there is only one ground

truth image Ig corresponding to it. When its correspond-

ing ground truth image Ig is used as the guided instance

image, the output of the generation module is Ig . There-

fore, an identical reconstruction constraint is needed, which

is defined as follows:

Lgrec = ‖Ig −G(E1(Ig), E2(Im))‖1 (5)

where Im is the masked image, Ig is the ground truth image

of Im, E1 is the manifold projection module, E2 is the con-

ditional encoder module, and G is the generation module.

The total reconstruction loss Lrec = L
l
rec + L

g
rec.

Adversarial Loss. Our adversarial loss is defined as

Ladv =min
U

max
D

(EIi∼pdata
logD(Ii)

+ EIi∼pdata
log(1−D(U(Ii, Im))))

(6)

where pdata is the distribution of training dataset, D is the

discriminator, and U(·) is our network (UCTGAN).

Full Objective. The total loss function Ltotal of our

network (UCTGAN) consists of four groups of component

losses:

Ltotal =λrec(L
g
rec + L

l
rec) + λccl(L

a
ccl + L

f
ccl)

+ λadvLadv + λKL(L
i
KL + LmKL)

(7)

where the LKL group measures the matching degree of two

probability distributions in terms of KL divergences, the

condition constraint losses Laccl and Lfccl encourage consis-

tency and integrity between completion contents and known

contents, reconstruction losses Lgrec and Llrec encourage

one-to-one mapping between the instance image and the

repaired image and avoid falling into mode collapse, and

adversarial loss Ladv makes repaired images fit in with the

distribution of training dataset. The hyper-parameters λrec,

λccl, λadv and λKL control the relative importance of each

group of component loss.

3.4. Cross Semantic Attention

Our proposed cross semantic attention module is shown

in Fig. 3. It is added after the max pooling layer of bottle-

neck layer. Feature maps Fm of the masked image Im and
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Figure 5: Comparisons on CelebA-HQ [9] test set for center region completion. For each group, from left to right the

images are masked image, CE [15], CA [26], CSA [13], SF [16], SN [23], PN [29] in blue box and our method in red box,

respectively.

Figure 6: Comparisons on Places2 [30] test set. For each group, from left to right the images are masked image, PN [29] in

blue box and our method in red box, respectively.

Fi of the instance image Ii are transformed by 1x1 con-

volution filter into two feature spaces to evaluate the cross

semantic attention Fnim between Fm and Fi.

Fnim =
1

M(F )

∑

∀j

exp((Fnm)T (F ji )d(F
j
i )) (8)

where Fm = WfFm, Fi = Wk(Fi), d(Fi) =
Wd(Fi). The equation is normalized by a factor M(F ) =
∑

∀j exp((F
n
m)T (F ji )). Here j is the index that enumerates

all possible positions and n is the output position index,Wf ,

Wk, Wd are the learned weight matrices. Then the output
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Algorithm 1 Training procedure of our framework

1: while G, E1, E2 have not converged do

2: Sample batch images x from training data

3: Sample instance images y for x from training data

4: Replace the first 3 images of y with the ground truth

image Ig of x ⊲ batchsize is 8
5: Generate random masks M for x

6: Construct inputs x← x⊙M
7: Generate outputs x← G(E1(y), E2(x))
8: Compute all the losses

9: Update G, E1, E2 with Lgrec, L
m
KL, LiKL, Ladv

10: Update G with Llrec, L
a
ccl, L

f
ccl keeping E1,E2

fixed

11: Update D with Ladv
12: end while

FOi is:

FOi = ΓdFim + Fi (9)

where Γd is a scale parameter for balancing the weights be-

tween Fim and Fi.

4. Experimental Results

We now prove the advantages of the proposed method

by showing the results of diverse image inpainting on four

datasets including Paris [4], CelebA-HQ [9], Places2 [30],

and ImageNet [17].

Baselines. We compare with the following baselines:

context encoders (CE) [15], contextual attention (CA) [26],

coheret semantic attention (CSA) [13], structureflow (SF)

[16], shift-net (SN) [23], CVAE [19], BicycleGAN (BG)

[31], and PICNet (PN) [29].

Implementation details. Our model is learned using the

training set and tested on the test set, following the experi-

mental settings used by baselines for fair comparisons. We

use images of resolution 256 × 256 with regular holes or

irregular holes in random positions. We train our networks

using Adam optimizer with β1 = 0.5 and β2 = 0.99, and all

networks are initialized with Orthogonal Initialization. The

learning rate is initialized at 0.0001 and it multiplies by 0.97

per 1K iterations. We train the network for 500K iterations.

The batch size is 8. We choose low-dimensional manifold

vector |Z| = 512 across all the datasets. An overview of the

training procedure can be seen in Algorithm 1.

4.1. Qualitative Comparison

We compare our method with existing methods on Paris

[4], CelebA-HQ [9], Places2 [30], and ImageNet [17], re-

spectively. As shown in Fig. 4, 5 and 6, our model produces

various plausible results by sampling from the latent space

of instance data. Our model can also be trained for arbitrary

region completion.

4.2. Quantitative comparisons

We quantitatively compare our model with existing

single-solution inpainting methods and multiple-solution

inpainting methods, respectively.

Comparisons with Single-solution Inpainting Meth-

ods. Given a masked image input, our model can generate

multiple and diverse reasonable solutions, while the single-

solution inpainting methods can only generate one result.

For fair comparison, we select top 5 samples (ranked by the

discriminator) generated by our model to evaluate the aver-

age metric value.

In order to better measure the quality of the restored im-

age, we introduce a Modified Inception Score (MIS), which

is modified on the basis of Inception Score (IS) [18]. As we

known from [18], IS is defined as

IS = exp(H(p(y))− ExH(p(y|x))) (10)

where H(·) is an entropy function, p(y) denotes the

marginal probability function of image category distribu-

tion, p(y|x) denotes the probability function of category

distribution of the given image x. H(p(y)) is used to mea-

sure the diversity of generated image categories. However,

in the scenario of image inpainting, there is only one kind

of image. In addition, p(y) often needs a lot of images to

make sense. So we remove the item H(p(y)). The MIS is

defined as

MIS = exp(Ex∼pg
∑

i

(p(yi|x) log p(yi|x))) (11)

where pg is the model distribution of image x. y is the label

predicted by pre-trained classification models. The larger

the value of MIS is, the better the image quality is. The

maximum value of MIS is 1. Compared with IS [18], MIS is

more suitable for evaluating image quality in the scenario of

image inpainting. The comparison is conducted on CelebA-

HQ 1000 test images, with quantitative measures of mean l1
loss, peak signal-to-noise ratio (PSNR), structural similarity

(SSIM), IS and MIS as shown in the Table 1. We used a 128

× 128 mask in the center.

Comparisons with Multiple-solution Inpainting

Methods. We evaluate diversity scores using the LPIPS

metric reported in [31]. The average score is calculated

between 5K pairs generated from a sampling of 1K

center-masked images. Iout and Iout(m) are the full

output and mask-region output, respectively. Our method

obtains relatively higher diversity scores than other existing

methods as shown in Table 2.

User Study. To better evaluate and compare with other

methods, we randomly select 600 images from the CelebA-

HQ [9] test set and randomly distribute these images to 20
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Table 1: Quantitative comparison with the state-of-the-art approaches on CelebA-HQ dataset. Our model was trained on

regular holes. † Lower is better. ⊎ Higher is better.

Method PSNR⊎ SSIM⊎ IS⊎ MIS⊎ l1 loss (%) †

SF [16] 25.9794 0.8835 2.8850 0.0156 1.69

CA [26] 24.2377 0.8671 2.8674 0.0151 2.35

CE [15] 26.1634 0.8910 2.8851 0.0149 25.20

CSA [13] 26.1920 0.9021 2.7997 0.0163 1.68

SN [23] 26.0732 0.8671 2.9981 0.0170 1.81

PN [29] 24.4229 0.8692 3.0097 0.0170 2.17

UCTGAN with noise 25.9700 0.8752 2.9012 0.0174 1.61

UCTGAN without attention 26.0223 0.8732 3.0011 0.0174 1.65

UCTGAN with attention 26.3833 0.8862 3.0127 0.0178 1.51

Table 2: Quantitative comparison of diversity with the state-

of-the-art methods.

Method LPIPS(Iout) LPIPS(Iout(m))

CVAE [19] 0.004 0.014

BG [31] 0.027 0.060

PN [29] 0.029 0.088

UCTGAN without Llrec 0.017 0.032

UCTGAN with noise 0.029 0.062

UCTGAN 0.030 0.092

users. Each user is given 30 images with holes together with

the inpainting results of PICNet (PN) [29] and ours. Each

of them is asked to rank the results in non-increasing order

(meaning they can say two results have similar quality). The

statistics show that our model is ranked better most of time

(71.15%) over PICNet (PN) [29].

4.3. Ablation Study

With and without cross semantic attention module. We

train a complete UCTGAN on the CelebA-HQ dataset with

cross semantic attention layer (called UCTGAN with atten-

tion) and one model that does not involve cross semantic

attention layer (called UCTGAN without attention). Table

1 lists the evaluation results. From the results in Table 1, we

can see that the cross semantic attention layer (UCTGAN

with attention) improves image quality in several metrics

such as MIS, IS and PSNR.

With and without guided instance. In order to test the

effect of the manifold projection module, we replace the

output of manifold projection module with the noise sam-

pled from standard normal distribution. We train this model

(called UCTGAN with noise) on the CelebA-HQ dataset.

The evaluation results are shown in Table 1 and 2, we can

see that the instance guided method (UCTGAN with atten-

tion) improves image quality and diversity.

With and without low dimension loss Llrec. The low di-

mension loss Llrec is used to ensure that the instance image

and the corresponding repaired image are projected onto

the same low-dimensional manifold, which realizes one-to-

one mapping between instance image space and conditional

completion image space. In order to measure the effect

of loss Llrec on the diversity of the generated repaired im-

ages, we train the model without Llrec (UCTGAN without

Llrec) on the CelebA-HQ dataset. The evaluation results are

shown in Table 2, and we can see that the low dimension

loss Llrec greatly improves image diversity.

5. Conclusion

In this paper, we propose a conditional image-to-image

translation network (UCTGAN) to generate multiple and di-

verse semantically reasonable and visually realistic results

for image inpainting. Our method learns the conditional dis-

tribution by unsupervised cross-space translation. Specif-

ically, the proposed network realizes one-to-one mapping

between instance image space and conditional completion

image space, which can significantly reduce the possibil-

ity of mode collapse and improve the diversity of restored

images. We also introduce a new cross semantic attention

layer that exploits the long-range dependencies between the

known parts and the completed parts, which improves re-

alism and appearance consistency. As for future work, we

plan to extend our method to other tasks, such as diverse

intra-domain image generation based on instance images,

diverse image super-resolution and diverse text-to-image

generation.
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