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Abstract

Recent years have witnessed great progress in deep

learning based object detection. However, due to the do-

main shift problem, applying off-the-shelf detectors to an

unseen domain leads to significant performance drop. To

address such an issue, this paper proposes a novel coarse-

to-fine feature adaptation approach to cross-domain ob-

ject detection. At the coarse-grained stage, different from

the rough image-level or instance-level feature alignment

used in the literature, foreground regions are extracted by

adopting the attention mechanism, and aligned according

to their marginal distributions via multi-layer adversarial

learning in the common feature space. At the fine-grained

stage, we conduct conditional distribution alignment of

foregrounds by minimizing the distance of global prototypes

with the same category but from different domains. Thanks

to this coarse-to-fine feature adaptation, domain knowledge

in foreground regions can be effectively transferred. Exten-

sive experiments are carried out in various cross-domain

detection scenarios. The results are state-of-the-art, which

demonstrate the broad applicability and effectiveness of the

proposed approach.

1. Introduction

In the past few years, Convolutional Neural Networks

(CNN) based methods have significantly improved the ac-

curacies of plenty of computer vision tasks [21, 38, 49].

These remarkable gains often rely on large-scale bench-

marks, such as ImageNet [11] and MS COCO [35]. Due to

a phenomenon known as domain shift or dataset bias [59],

current CNN models suffer from performance degradation

when they are directly applied to novel scenes. In practice,

we are able to alleviate such an impact by building a task-

specific dataset that covers sufficiently diverse samples. Un-

fortunately, it is rather expensive and time-consuming to an-
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Figure 1. Illustration of the proposed coarse-to-fine feature adapta-

tion approach. It consists of two components, i.e., Attention-based

Region Transfer (ART) and Prototype-based Semantic Alignment

(PSA). The ART module figures out foregrounds from entire im-

ages in different domains and then aligns the marginal distribu-

tions on them. Further, the PSA module builds the prototype for

each category to achieve semantic alignment. (Best viewed in

color.)

notate a large number of high-quality ground truths.

To address this dilemma, one promising way is to in-

troduce Unsupervised Domain Adaptation (UDA) to trans-

fer essential knowledge from an off-the-shelf labeled do-

main (referred to as the source domain) to a related un-

seen but unlabeled one (the target domain) [44]. Recently,

UDA methods have been greatly advanced by deep learning

techniques, and they mostly focus on generating domain-

invariant deep representation by reducing cross-domain dis-

crepancy (e.g. Maximum Mean Discrepancy [20] or H-

divergence [1]), which have proved very competent at im-

age classification [40, 15, 51, 12, 27] and semantic segmen-

tation [23, 42, 64, 6]. Compared to them, object detection

is more complex, which is required to locate and classify all

instances of different objects within images; therefore, how

to effectively adapt a detector is indeed a challenging issue.

In the literature, there are many solutions tackling this

problem, including Semi-Supervised Learning (SSL) based

[4], pixel-level adaptation based [31, 25, 50], and feature-
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level adaptation based [8, 22, 68, 52, 74]. The SSL based

method reduces the domain gap through consistency regu-

larization in a teacher-student scheme. However, the teacher

does not always convey more meaningful knowledge than

the student [28], and the detector thus tends to accumu-

late errors, leading to deteriorated detection performance.

Pixel-level based methods first conduct style transfer [73]

to synthesize a target-like intermediate domain, aiming to

limit visual shift, and then train detectors in a supervised

manner. Nevertheless, it still remains a difficulty to guar-

antee the quality of generated images, especially in some

extreme cases, which may hurt the adapted results. Alterna-

tively, feature-level adaptation based methods mitigate the

domain shift by aligning the features across domains. Such

methods work more conveniently with competitive scores,

making them dominate the existing community.

In this category, domain adaptive Faster R-CNN [8] is

a pioneer. It incorporates both image-level and instance-

level feature adaptation into the detection model. In [52],

Strong-Weak feature adaptation is launched on image-level.

This method mainly makes use of the focal loss to trans-

fer hard-to-classify examples, since the knowledge in them

is supposed to be more intrinsic for both domains. Al-

though they deliver promising performance, image-level or

instance-level feature adaptation is not so accurate as ob-

jects of interest locally distribute with diverse shapes. [74]

introduces K-means clustering to mine transferable regions

to optimize the adaptation quality. While attractive, this

method highly depends on the pre-defined cluster number

and the size of the grouped regions, which is not flexible,

particularly to real-world applications. Furthermore, in the

object detection task, there are generally multiple types of

objects, and each has its own sample distribution. But these

methods do not take such information into account and re-

gard the distributions of different objects as a whole for

adaptation, thereby leaving space for improvement.

In this paper, we present a coarse-to-fine feature adap-

tation framework for cross-domain object detection. The

main idea is shown in Figure 1. Firstly, considering that

foregrounds between different domains share more com-

mon features compared to backgrounds [30], we propose

an Attention-based Region Transfer (ART) module to high-

light the importance of foregrounds, which works in a class-

agnostic coarse way. We extract foreground objects of inter-

est by leveraging the attention mechanism in high-level fea-

tures, and underline them during feature distribution align-

ment. Through multi-layer adversarial learning, effective

domain confusion can be performed with the complex de-

tection model. Secondly, category information of objects

tends to further refine preceding feature adaptation, and

in this case it is necessary to distinguish different kinds

of foreground objects. Meanwhile, there is no guarantee

that foregrounds of source and target images in the same

batch have consistent categories, probably incurring object

mis-matches in some mini-batch, making semantic align-

ment in UDA rather tough. Consequently, we propose

a Prototype-based Semantic Alignment (PSA) module to

build the global prototype for each category across domains.

The prototypes are adaptively updated at each iteration, thus

suppressing the negative influence of false pseudo-labels

and class mis-matches.

In summary, the contributions are three-fold as follows:

• A new coarse-to-fine adaptation approach is designed

for cross-domain two-stage object detection, which

progressively and accurately aligns deep features.

• Two adaptation modules, i.e., Attention-based Region

Transfer (ART) and Prototype-based Semantic Align-

ment (PSA), are proposed to learn domain knowledge

in foreground regions with category information.

• Extensive experiments are carried out in three major

benchmarks in terms of some typical scenarios, and

the results are state-of-the-art, demonstrating the ef-

fectiveness of the proposed approach.

2. Related Work

Object Detection. Object detection is a fundamental step

in computer vision and has received increasing attention

during decades. Most of traditional methods [63, 10, 13]

depend on handcrafted features and sophisticated pipelines.

In the era of deep learning, object detection can be mainly

split into the one-stage detectors [48, 37, 34, 36] and the

two-stage ones [18, 17, 49, 33]. However, those generic de-

tectors do not address the domain shift problem that hurts

detection performance in real-world scenes.

Domain Adaptation. Domain adaptation [2, 1] aims to

boost performance in the target domain by leveraging com-

mon knowledge from the source domain, which has been

widely studied in many visual tasks [67, 12, 72, 41, 7, 14].

With the advent of CNNs, many solutions reduce do-

main shift by learning domain-invariant features. Methods

along this line can be divided into two streams: criterion-

based [61, 39, 57] and adversarial learning-based [15, 60, 3,

46]. The former aligns the domain distributions by min-

imizing some statistical distances between deep features,

and the latter introduces the domain classifier to construct

minimax optimization with the feature extractor. Despite

great success is achieved, the majority of them can only

handle relatively simple tasks, such as image classification.

Cross-domain Object Detection. A number of tradi-

tional studies [66, 62, 43, 70] focus on adapting a specific

model (e.g., for pedestrian or vehicle detection) across do-

mains. Later, [47] proposes the adaptive R-CNN by sub-

space alignment [19]. More Recently, the methods can be

mainly grouped into four categories, including (1) Feature-

level based: [8] presents domain adaptive Faster R-CNN to
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Figure 2. Overview of the proposed feature adaptation framework. We address the problem of domain shift on foreground regions by coarse-

to-fine scheme with the ART and PSA modules. First, we utilize the attention map learned from the RPN module to localize foregrounds.

Combined with multiple domain classifiers, the ART module puts more emphasis on aligning feature distributions of foreground regions,

which achieves a coarse-grained adaptation in a category-agnostic way. Second, the PSA module makes use of ground truth labels (for

source) and pseudo labels (for target) to maintain global prototypes for each category, and delivers fine-grained adaptation on foreground

regions in a category-ware mode.

alleviate image-level and instance-level shifts, and [22, 68]

extend this idea to multi-layer feature adaptation. [52] ex-

ploits strong-weak alignment components to attend strong

matching in local features and weak matching in global fea-

tures. [74] mines discriminative regions that contain ob-

jects of interest and aligns their features across domains.

(2) SSL based: [4] integrates object relations into the mea-

sure of consistency cost with the mean teacher [58] model.

(3) Pixel-level based: [25, 50] employ CycleGAN to trans-

late the source domain to the target-like style. [31] uses

domain diversification and multi-domain invariant repre-

sentation learning to address the imperfect translation and

source-biased problem. (4) Others: [29] establishes a ro-

bust learning framework that formulates the cross-domain

detection problem as training with noisy labels. [30] intro-

duces weak self-training and adversarial background score

regularization for domain adaptive one-stage object detec-

tion. [71] minimizes the wasserstein distance to improve

the stability of adaptation. [54] explores a gradient detach

based stacked complementary loss to adapt detectors.

As mentioned, feature-level adaptation is the main

branch in cross-domain object detection, and its perfor-

mance is currently limited by inaccurate feature alignment.

The proposed method concentrates on two-stage detectors

and substantially improves the quality of feature alignment

by a coarse-to-fine scheme, where the ART module learns

the adapted importance of foreground areas and the PSA

module encodes the distribution property of each class.

3. Method

3.1. Problem Formulation

In the task of cross-domain object detection, we are

given a labeled source domain DS = {(xs
i , y

s
i )}

Ns

i=1, where

xs
i and ysi = (bsi , c

s
i ) denote the i-th image and its corre-

sponding labels, i.e., the coordinates of the bounding box b
and its associated category c respectively. In addition, we

have access to an unlabeled target domain DT = {xt
i}

Nt

i=1.

We assume that the source and target samples are drawn

from different distributions (i.e., DS 6= DT ) but the cat-

egories are exactly the same. The goal is to improve the

detection performance in DT using the knowledge in DS .

3.2. Framework Overview

As shown in Figure 2, we introduce a feature adaptation

framework for cross-domain object detection, which con-

tains a detection network and two adaptation modules.

Detection Network. We select the reputed and powerful

Faster R-CNN [49] model as our base detector. Faster R-

CNN is a two-stage detector that consists of three major

components: 1) a backbone network G that extracts image

features, 2) a Region Proposal Network (RPN) that simul-

taneously predicts object bounds and objectness scores, and

3) a Region-of-Interest (RoI) head, including a bounding

box regressor B and a classifier C for further refinement.

The overall loss function of Faster R-CNN is defined as:

Ldet(x) = Lrpn + Lreg + Lcls (1)
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where Lrpn, Lreg , and Lcls are the loss functions for the

RPN, RoI based regressor and classifier, respectively.

Adaptation Modules. Different from most of the exist-

ing studies which typically reduce domain shift in the entire

feature space, we propose to conduct feature alignment on

foregrounds that are supposed to share more common prop-

erties across domains. Meanwhile, in contrast to current

methods that regard the samples of all objects as a whole,

we argue that the category information contributes to this

task and thus highlight the distribution of each category to

further refine feature alignment. To this end, we design two

adaptation modules, i.e., Attention-based Region Transfer

(ART) and Prototype-based Semantic Alignment (PSA), to

fulfill a coarse-to-fine knowledge transfer in foregrounds.

3.3. Attentionbased Region Transfer

The ART module is designed to raise more attention to

align the distributions across two domains within the re-

gions of foregrounds. It is composed of two parts: the do-

main classifiers and the attention mechanism.

To align the feature distributions across domains, we in-

tegrate multiple domain classifiers D into the last three con-

volution blocks in the backbone network G, where a two-

player minimax game is constructed. Specifically, the do-

main classifiers D try to distinguish which domain the fea-

tures come from, while the backbone network G aims to

confuse the classifiers. In practice, G and D are connected

by the Gradient Reverse Layer (GRL) [15], which reverses

the gradients that flow through G. When the training pro-

cess converges, G tends to extract domain-invariant feature

representation. Formally, the objective of adversarial learn-

ing in the l-th convolution block can be written as:

Ll
ADV = min

θGl

max
θDl

Exs∼DS
logDl(Gl(xs))

+ Ext∼DT
log(1−Dl(Gl(xt)))

(2)

where θGl
and θDl

are the parameters of Gl and Dl respec-

tively. Dl(·)
(h,w) stands for the probability of the feature in

location (h,w) from the source domain.

Recall that the detection task is required to localize and

classify objects, and RoIs are usually more important than

backgrounds. However, the domain classifiers align all the

spatial locations of the whole image without focus, which

probably degrades adaptation performance. To deal with

this problem, we propose an attention mechanism to achieve

foreground-aware distribution alignment. As mentioned

in [49], the RPN in Faster R-CNN serves as the attention to

tell the detection model where to look, and we naturally uti-

lize the high-level feature in RPN to generate the attention

map, as shown in Figure 3. To be specific, given an image x
from an arbitrary domain, we denote Frpn(x) ∈ R

H×W×C

as the output feature map of the convolutional layer in the

RPN Feature MapInput

H

W

C

Attention Map

FilteringBackbone Averaging

Figure 3. Illustration of the attention mechanism. We first extract

the feature map from the RPN module. Then, we construct a spa-

tial attention map by averaging values across the channel dimen-

sion. At last, filtering is applied to suppress the noise.

RPN module, where H ×W and C are the spatial dimen-

sions and the number of channels of the feature map, re-

spectively. Then, we construct a spatial attention map by

averaging activation values across the channel dimension.

Further, we filter out (set to zero) those values that are less

than the given threshold, which are more likely to belong to

the background regions. The attention map A(x) ∈ R
H×W

is formulated as:

M(x) = S(
1

C

∑

c

|F c
rpn(x)|) (3)

T (x) =
1

HW

∑

h,w

M(x)(h,w) (4)

A(x) = I(M(x) > T (x))⊗M(x) (5)

where M(x) stands for the attention map before filtering.

S(·) is the sigmoid function and I(·) is the indication func-

tion. F c
rpn(x) represents the c-th channel of the feature map.

⊗ denotes the element-wise multiplication. Threshold T (x)
is set to the mean value of M(x).

As the size of the attention map is not compatible with

the features in different convolution blocks, we adopt bi-

linear interpolation to perform up-sampling, thus produc-

ing the corresponding attention maps. Due to the fact that

the attention map may not always be so accurate, if a fore-

ground region is mistaken for background, its attention

weight is set to zero and cannot contribute to adaptation.

Inspired by the residual attention network in [65], we add a

skip connection to the attention map to enhance its perfor-

mance.

The total objective of the ART module is defined as:

LART =
∑

l,h,w

(1 + Ul(A(x)
(h,w))) · Ll,h,w

ADV (6)

where Ul(·) is the up-sampling operation and Ll,h,w
ADV stands

for the adversarial loss on pixel (h,w) in the l-th convolu-

tion block. Combining adversarial learning with the atten-

tion mechanism, the ART module aligns the feature distri-

butions of foreground regions that are more transferable for

the detection task.
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3.4. Prototypebased Semantic Alignment

Since the attention map from RPN carries no informa-

tion about classification, the ART module aligns the fea-

ture distributions of foregrounds in a category-agnostic way.

To achieve class-aware semantic alignment, a straightfor-

ward method is to train domain classifiers for each cate-

gory. Nevertheless, there are two main disadvantages: (1)

training multiple class-specific classifiers is inefficient; (2)

false pseudo-labels (e.g., backgrounds or misclassified fore-

grounds) occurred in the target domain may hurt the perfor-

mance of semantic alignment.

Inspired by the prototype-based methods in few-shot

learning [56] and cross-domain image classification [69,

5, 45], we propose the PSA module to handle the above

problems. Instead of directly training classifiers, PSA tries

to minimize the distance between the pair of prototypes

(PS
k , PT

k ) with the same category across domains, thus

maintaining the semantic consistency in the feature space.

Formally, the prototypes can be defined as:

PS
k =

1

|GTk|

∑

r∈GTk

F (r) (7)

PT
k =

1

|RoIk|

∑

r∈RoIk

F (r) (8)

where PS
k and PT

k represent the prototypes of the k-th cat-

egory in the source and target domain respectively. F (r)
denotes the feature of foreground region r after the second

fully-connected (FC) layer in the RoI head. We use the

ground truth GTk to extract the foreground regions in the

source domain. Due to the absence of target annotations,

we employ the RoIk provided by the RoI head module as

the pseudo labels in the target domain. | · | indicates the

number of regions.

The benefits of prototypes are two-fold: (1) the proto-

types have no extra trainable parameters and can be cal-

culated in linear time; (2) the negative influence of false

pseudo-labels can be suppressed by the correct ones whose

number is much larger when generating the prototypes. It

should be noted that the prototypes above are built over all

samples. In the training process, the size of each mini-batch

is usually small (e.g., 1 or 2) for the detection task, and the

foreground objects of source and target images in the same

batch may have inconsistent categories, making categori-

cal alignment not practical for all classes at this batch. For

example, two images (one for each domain) are randomly

selected for training, but Car only appears in the source im-

age. As a consequence, we cannot align the prototypes of

Car across domains in this batch.

To tackle the problem, we dynamically maintain global

prototypes, which are adaptively updated by local proto-

types at each mini-batch as follows:

α = sim(P
(i)
k , GP

(i−1)
k ) (9)

Algorithm 1: The coarse-to-fine feature adaptation

framework for cross-domain object detection.

Input: Labeled source domain DS .

Unlabeled target domain DT .

Batch size B. Category number C.

Output: An adaptive detector F (·; θ).

1 Calculate the initial global prototypes GP
S(0)
k and

GP
T (0)
k using the pretrained detector based on DS

2 for i = 1 to max iter do

3 XS , YS ← Sample(DS , B/2)
4 XT ← Sample(DT , B/2)
5 Supervised Learning:

6 Calculate Ldet according to Eq. (1)

7 Coarse-grained Adaptation:

8 Calculate A(XS) and A(XT ) by Eq. (5)

9 Calculate LART by Eq. (6)

10 Fine-grained Adaptation:

11 ŶT ← F (XT ; θ)
12 for k = 1 to C do

13 Calculate P
S(i)
k and P

T (i)
k by Eq. (7) and (8)

14 Update GP
S(i)
k and GP

T (i)
k by Eq. (10)

15 Calculate LPSA according to Eq. (11)

16 Optimize the detection model by Eq. (12)

GP
(i)
k = αP

(i)
k + (1− α)GP

(i−1)
k (10)

where sim(x1, x2) = (
xT

1
·x2

‖x1‖‖x2‖
+ 1)/2 denotes the cosine

similarity. P
(i)
k represents the local prototypes of the k-th

category at i-th iteration. It is worth noting that we calculate

the initial global prototypes GP
(0)
k by Eq. (7) (for source)

and Eq. (8) (for target) based on the pretrained model from

the labeled source domain.

We do not directly align the local prototypes, but mini-

mize the L2 distance between the source global prototypes

GPS
k and the target global prototypes GPT

k to achieve se-

mantic alignment. The objective of the PSA module at i-th
iteration can be formulated as following:

LPSA =
∑

k

‖GP
S(i)
k −GP

T (i)
k ‖2 (11)

3.5. Network Optimization

The training procedure of our proposed framework inte-

grates three major components, as shown in Algorithm 1.

1. Supervised Learning. The supervised detection loss

Ldet is only applied to the labeled source domain DS .

2. Coarse-grained Adaptation. We utilize the attention

mechanism to extract the foregrounds in images. Then,

we focus on aligning the feature distributions of those

regions by optimizing LART .
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Cityscapes → FoggyCityscapes

Method Arch. Bus Bicycle Car Motor Person Rider Train Truck mAP mAP* Gain

MTOR [4] R 38.6 35.6 44.0 28.3 30.6 41.4 40.6 21.9 35.1 26.9 8.2

RLDA [29] I 45.3 36.0 49.2 26.9 35.1 42.2 27.0 30.0 36.5 31.9 4.6

DAF [8] V 35.3 27.1 40.5 20.0 25.0 31.0 20.2 22.1 27.6 18.8 8.8

SCDA [74] V 39.0 33.6 48.5 28.0 33.5 38.0 23.3 26.5 33.8 26.2 7.6

MAF [22] V 39.9 33.9 43.9 29.2 28.2 39.5 33.3 23.8 34.0 18.8 15.2

SWDA [52] V 36.2 35.3 43.5 30.0 29.9 42.3 32.6 24.5 34.3 20.3 14.0

DD-MRL [31] V 38.4 32.2 44.3 28.4 30.8 40.5 34.5 27.2 34.6 17.9 16.7

MDA [68] V 41.8 36.5 44.8 30.5 33.2 44.2 28.7 28.2 36.0 22.8 13.2

PDA [25] V 44.1 35.9 54.4 29.1 36.0 45.5 25.8 24.3 36.9 19.6 17.3

Source Only V 25.0 26.8 30.6 15.5 24.1 29.4 4.6 10.6 20.8 - -

3DC (Baseline) V 37.9 37.1 51.6 33.1 32.9 45.6 27.9 28.6 36.8 20.8 16.0

Ours w/o ART V 41.6 35.4 51.5 36.9 33.5 45.2 26.6 28.2 37.4 20.8 16.6

Ours w/o PSA V 45.2 37.3 51.8 33.3 33.9 46.7 25.5 29.6 37.9 20.8 17.1

Ours V 43.2 37.4 52.1 34.7 34.0 46.9 29.9 30.8 38.6 20.8 17.8

Oracle V 49.5 37.0 52.7 36.0 36.1 47.1 56.0 32.1 43.3 - -

Table 1. Results (%) of different methods in the Normal-to-Foggy adaptation scenario. “V”, “R” and “I” represent the VGG16, ResNet50

and Inception-v2 backbones respectively. “Source Only” denotes the Faster R-CNN model trained on the source domain only. “3DC”

stands for the Faster R-CNN model integrated with three domain classifiers, which is our baseline method. “Oracle” indicates the model

trained on the labeled target domain. mAP* shows the result of “Source Only” for each method, and Gain displays its the improvement

after adaptation. The best results are bolded and the second best results are underlined among the methods with the VGG16 backbone.

3. Fine-grained Adaptation. At first, pseudo labels are

predicted in the target domain. We further update the

global prototypes for each category adaptively. Fi-

nally, semantic alignment on foreground objects is

achieved by optimizing LPSA.

With the terms aforementioned, the overall objective is:

Ltotal = Ldet + λ1LART + λ2LPSA (12)

where λ1 and λ2 denote the trade-off factors for the ART

module and the PSA module, respectively.

4. Experiments

4.1. Datasets and Scenarios

Datasets. Four datasets are used in evaluation. (1)

Cityscapes [9] is a benchmark for semantic urban scene un-

derstanding. It contains 2,975 training images and 500 val-

idation images with pixel-level annotations. Since it is not

designed for the detection task, we follow [8] to use the

tightest rectangle of an instance segmentation mask as the

ground truth bounding box. (2) FoggyCityscapes [53] de-

rives from Cityscapes by adding synthetic fog to the orig-

inal images. Thus, the train/val split and annotations are

the same as those in Cityscapes. (3) SIM10k [26] is a

synthetic dataset containing 10,000 images, which is ren-

dered from the video game Grand Theft Auto V (GTA5).

(4) KITTI [16] is another popular dataset for autonomous

driving. It consists of 7,481 labeled images for training.

Scenarios. Following [8], we evaluate the framework

under three adaptation scenarios as follows:

(1) Normal-to-Foggy (Cityscapes→ FoggyCityscapes).

It aims to perform adaptation across different weather con-

ditions. During the training phase, we use the training set

of Cityscapes and FoggyCityscapes as the source and target

domain respectively. Results are reported in the validation

set of FoggyCityscapes.

(2) Synthetic-to-Real (SIM10k → Cityscapes). Syn-

thetic images offer an alternative to alleviate the data an-

notation problem. To adapt the synthetic scenes to the real

one, we utilize the entire SIM10k dataset as the source do-

main and the training set of Cityscapes as the target domain.

Since only Car is annotated in both domains, we report the

performance of Car in the validation set of Cityscapes.

(3) Cross-Camera (Cityscapes → KITTI). Images cap-

tured by different devices or setups also incur the domain

shift problem. To simulate this adaptation, we use the train-

ing set of Cityscapes as the source domain and the training

set of KITTI as the target domain. Note that the classifica-

tion standards of categories in the two domains are different,

we follow [68] to classify {Car, Van} as Car, {Pedestrian,

Person sitting} as Person, Tram as Train, Cyclist as Rider in

KITTI. The results are reported in the training set of KITTI,

which is the same as in [8, 68].

4.2. Implementation Details
In all experiments, we adopt the Faster R-CNN with the

VGG16 [55] backbone pre-trained on ImageNet [11]. We

resize the shorter sides of all images to 600 pixels. The

batch size is set to 2, i.e., one image per domain. The detec-

tor is trained with SGD for 50k iterations with the learning

rate of 10−3, and it is then dropped to 10−4 for another 20k

iterations. Domain classifiers are trained by the Adam opti-

mizer [32] with the learning rate of 10−5. The factor λ1 is

set at 1.0. Since prototypes in the target domain are unre-

liable at the beginning, the PSA module is employed after

50k iterations with λ2 set at 0.01. We report mAP with an

IoU threshold of 0.5 for evaluation.
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SIM10k → Cityscapes

Method Arch. AP on Car AP* Gain

RLDA [29] I 42.6 31.1 11.5

MTOR [4] R 46.6 39.4 7.2

DAF [8] V 39.0 30.1 8.9

MAF [22] V 41.1 30.1 11.0

SWDA [52] V 42.3 34.6 7.7

MDA [68] V 42.8 34.3 8.5

SCDA [74] V 43.0 34.0 9.0

Source Only V 35.0 - -

3DC (Baseline) V 42.3 35.0 7.3

Ours w/o ART V 42.7 35.0 7.7

Ours w/o PSA V 43.4 35.0 8.4

Ours V 43.8 35.0 8.8

Oracle V 59.9 - -

Table 2. Results (%) of the Synthetic-to-Real adaptation scenario.

4.3. Results

We conduct extensive experiments and make comparison

to the state-of-the-art cross-domain object detection meth-

ods, including (1) Semi-Supervised Learning: MTOR [4],

(2) Robust Learning: RLDA [29], (3) Feature-level adap-

tation: DAF [8], SCDA [74], MAF [22], SWDA [52] and

MDA [68], and (4) Pixel-level adaptation + Feature-level

adaptation: DD-MRL [31] and PDA [25]. Moreover, we

also provide ablation studies to validate the effectiveness

of each module. Our baseline method is referred as 3DC,

which is the Faster R-CNN model integrated with three do-

main classifiers. We alternately remove the ART and PSA

module from the entire framework and report the perfor-

mance. Note that removing the ART means we only remove

the attention map while domain classifiers are still kept.

Normal-to-Foggy. As shown in Table 1, we achieve an

mAP of 38.6% on the weather transfer task, which is the

best result among all the counterparts. Since detection per-

formance before adaptation is different for each method,

we point out that “Gain” is also a key criterion for fair

comparison, which is ignored by previous work. In par-

ticular, we achieve a remarkable increase of +17.8% over

the source only model. Among all the feature-level adapta-

tion methods, we improve the mAP by +2.6% compared to

MDA [68]. Although we do not leverage extra pixel-level

adaptation, our method still outperforms previous state-of-

the-art PDA [25] by +1.7%. Besides, with the help of

coarse-to-fine feature adaptation on foregrounds, the pro-

posed method brings improvements on all the categories

than the 3DC model does, which shows that feature align-

ment on foregrounds can boost performance. Additionally,

we find that the proposed method is comparable to or even

better than the oracle model in several categories. It sug-

gests that the performance which is similar to that of super-

vised learning methods can be achieved, if we effectively

transfer knowledge across domains.

Synthetic-to-Real. Table 2 displays the results on the

Synthetic-to-Real task. We obtain an average precision of

Cityscapes → KITTI

Method Arch. Person Rider Car Truck Train mAP mAP* Gain

DAF [8] V 40.9 16.1 70.3 23.6 21.2 34.4 34.0 0.4

MDA [68] V 53.0 24.5 72.2 28.7 25.3 40.7 34.0 6.7

Source Only V 48.1 23.2 74.3 12.2 9.2 33.4 - -

3DC (Baseline) V 45.8 27.0 73.9 26.4 18.4 38.3 33.4 4.9

Ours w/o ART V 50.2 27.3 73.2 29.5 17.1 39.5 33.4 6.1

Ours w/o PSA V 50.5 27.8 73.3 26.8 20.5 39.8 33.4 6.4

Ours V 50.4 29.7 73.6 29.7 21.6 41.0 33.4 7.6

Oracle V 71.1 86.6 88.4 90.7 90.1 85.4 - -

Table 3. Results (%) of the Cross-Camera adaptation scenario.

43.8% on Car and find that there is a slight gain of +0.8%

compared to SCDA [74]. The reason is that knowledge

transfer is much easier for single category, and many other

methods can also adapt well. Further, one may wonder why

the PSA module is still effective for single category adapta-

tion, and we argue that it serves as another attention mech-

anism that focuses on foreground regions, which conveys

some complementary clues to the ART module in this case.

Cross-Camera. In Table 3, we illustrate the performance

comparison on the cross-camera task. The proposed method

reaches an mAP of 41.0% with a gain of +7.6% over the

non-adaptive model. Due to the fact that scenes are sim-

ilar across domains and the Car sample dominate the two

datasets, we can observe that the score on Car is already

good for the source only model. Compared with DAF [8]

and MDA [68], our method reduces the influence of nega-

tive transfer in Car detection. Meanwhile, our method also

outperforms the baseline model (3DC) in the rest categories.

4.4. Further Analysis

Feature distribution discrepancy of foregrounds. The

theoretical result in [2] suggests thatA-distance can be used

as a metric of domain discrepancy. In practice, we calcu-

late the Proxy A-distance to approximate it, which is de-

fined as dA = 2(1 − ǫ). ǫ is the generalization error of

a binary classifier (linear SVM in our experiments) that

tries to distinguish which domain the input features come

from. Figure 5 displays the distances for each category

on the Normal-to-Foggy task with the features of ground

truth foregrounds extracted from the models of Source Only,

SWDA and Ours. Compared with the non-adaptive model,

SWDA and Ours reduce the distances in all the categories by

large margins, which demonstrates the necessity of domain

adaptation. Besides, since we explicitly optimize the proto-

types of each category by PSA, we achieve a smaller feature

distribution discrepancy of foregrounds than the others do.

Error analysis of highest confident detections. To fur-

ther validate the effect of the proposed framework for cross-

domain object detection, we analyze the errors of the mod-

els of Source Only, SWDA and Ours caused by highest

confident detections on the Normal-to-Foggy task. We fol-

low [24, 8, 4] to categorize the detections into three error
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(a) Source Only (b) SWDA (c) Ours (d) Attention Map

Figure 4. Qualitative results on the Normal-to-Foggy adaptation scenario. (a)-(c): The detection results of the Source Only model, SWDA

and the proposed method. (d): Visualization of the corresponding attention maps (best viewed by zooming in).
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Figure 5. Feature distribution discrepancy of foregrounds.

types: 1) Correct (IoU with GT ≥ 0.5), 2) Mislocalization

(0.3 ≤ IoU with GT < 0.5), and 3) Background (IoU with

GT < 0.3). For each category, we select top-K predictions

to analyze the error type, where K is the number of ground

truths in this category. We report the mean percentage of

each type across all categories in Figure 6. We can see that

the Source Only model seems to take most of backgrounds

as false positives (green color). Compared with SWDA, we

improve the percentage of correct detections (blue color)

from 39.3% to 43.0% and reduce other error types simulta-

neously. The results indicate that the proposed framework

can effectively increase true positives and reduce false pos-

itives, resulting in better detection performance.

Qualitative results. Figure 4 shows some qualitative re-

sults. Due to the domain shift problem, the Source Only

model simply detects some salient objects as shown in (a).

From (b) to (c), we can observe that the proposed method

not only increases true positives (detects more cars in the

first and second row), but also reduces false positives (dis-

cards persons in the third row), which is consistent with

previous analysis. Further, we visualize the attention maps

generated from the ART module. Despite some noise, the

(a) Source Only

22.6%
5.4%

72.0%

(b) SWDA

39.3%

9.4% 51.3%

(c) Ours

43.0%

9.0%
48.0%

Correct Mislocalization Background

Figure 6. Error analysis of highest confident detections.

attention maps well locate the foreground regions, which is

beneficial to knowledge transfer across domains.

5. Conclusion

In this paper, we present a novel coarse-to-fine feature

adaptation approach to address the issue of cross-domain

object detection. The proposed framework achieves the goal

with the incorporation of two delicately designed modules,

i.e., ART and PSA. The former highlights the importance of

the foreground regions figured out by the attention mecha-

nism in a category-agnostic way, and aligns their feature

distributions across domains. The latter takes the advantage

of prototypes to perform fine-grained adaptation of fore-

grounds at the semantic level. Comprehensive experiments

are conducted on various adaptation scenarios and state-of-

the-art results are reached, demonstrating the effectiveness

of the proposed approach.
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main adaptation of deformable part-based models. T-PAMI,

36(12):2367–2380, 2014.

[71] P. Xu, P. Gurram, G. Whipps, and R. Chellappa. Wasserstein

distance based domain adaptation for object detection. arXiv

preprint arXiv:1909.08675, 2019.

[72] S. Zhao, H. Fu, M. Gong, and D. Tao. Geometry-aware sym-

metric domain adaptation for monocular depth estimation. In

CVPR, 2019.

[73] J.-Y. Zhu, T. Park, P. Isola, and A. A. Efros. Unpaired image-

to-image translation using cycle-consistent adversarial net-

works. In ICCV, 2017.

[74] X. Zhu, J. Pang, C. Yang, J. Shi, and D. Lin. Adapting object

detectors via selective cross-domain alignment. In CVPR,

2019.

13775


