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Abstract

In this paper, we propose a deep metric learning via

adaptive learnable assessment (DML-ALA) method for im-

age retrieval and clustering, which aims to learn a sample

assessment strategy to maximize the generalization of the

trained metric. Unlike existing deep metric learning meth-

ods that usually utilize a fixed sampling strategy like hard

negative mining, we propose a sequence-aware learnable

assessor which re-weights each training example to train

the metric towards good generalization. We formulate the

learning of this assessor as a meta-learning problem, where

we employ an episode-based training scheme and update

the assessor at each iteration to adapt to the current model

status. We construct each episode by sampling two subsets

of disjoint labels to simulate the procedure of training and

testing and use the performance of one-gradient-updated

metric on the validation subset as the meta-objective of the

assessor. Experimental results on the widely used CUB-

200-2011, Cars196, and Stanford Online Products datasets

demonstrate the effectiveness of the proposed approach.

1. Introduction

Developing an effective metric to measure similarities of

examples is at the core of many computer vision tasks. Gen-

erally, the distance of two points can be represented as the

Euclidean distance in an embedding space, and deep met-

ric learning utilizes deep neural networks [15, 19, 32, 39]

to learn discriminative embeddings of images, so that sam-

ples from the same class have similar representations while

samples from different classes have dissimilar representa-

tions. Recently a variety of deep metric learning methods

have been proposed in the literature and demonstrate great

power in various tasks, such as person re-identification [3,

31, 45, 57], face recognition [16, 22, 30], image set classifi-
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Figure 1. Flow-chart of our DML-ALA and comparisons with con-

ventional deep metric learning (DML) methods. The proposed

DML-ALA employs a simultaneously trained assessor to perform

sampling instead of a hand-crafted sampling strategy. At each

iteration, the training of our model consists of three stages: 1)

updating the metric once using the weighted loss on the training

subset, 2) training the assessor to maximize the performance of

the updated metric on the validation subset, and 3) training the

original metric using examples weighted by the trained assessor.

Note that we only use the updated mehtric for the training of the

assessor and discard it after each iteration.

cation [23] and image retrieval [20, 27, 36].

Losses in metric learning are usually defined over two or

more examples with a certain class structure called a “tu-

ple”. The number of m-tuples that can be formed from N

examples has O(Nm) complexity, rendering it inefficient

to utilize all of them equally even for datasets of modest
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sizes. There have been many studies exploring an efficient

sampling strategy [10, 14, 17, 25, 30, 50]. Most existing

methods utilize a hand-crafted sampling strategy, which is

pre-defined based on some prior knowledge. However, dur-

ing training the model is being updated constantly, and thus

a fixed sampling strategy may not be effective at all stages.

For example, the widely used hard mining strategy mines

hard tuples that affect training the most, but it also ignores

a variety of easy samples that might be helpful at the begin-

ning [56]. This raises a natural question: how to choose the

appropriate sampling strategy at different training stages?

In this work, we provide a positive solution to answer

this question. We propose an adaptive learnable assess-

ment (ALA) method which performs sampling adaptively

to maximize the generalization ability of the trained metric,

where the flow-chart is shown in Figure 1. The conventional

hard mining strategy equals re-weighting each tuple by 0 or

1 according to a criterion regarding its hardness. We ex-

tend it by adopting a soft weighting scheme that generates

weights between 0 and 1. Considering that inputs for the

training of the metric are a sequence of tuples, we propose

a sequence-aware assessor that is able to incorporate knowl-

edge refined from previous inputs and the current model

status. In addition, we argue that the success of existing

deep metric learning methods has been impeded by over-

fitting, as verified in [43]. Inspired by this, we formulate the

learning of the proposed assessor as a meta-learning prob-

lem with a meta-objective of maximizing the generaliza-

tion. To achieve this, we employ an episode-based training

scheme [42] and construct each episode with two subsets of

disjoint labels to simulate the training set and test set parti-

tion. The metric trained in this manner works along with the

assessor to seek the direction of good generalization. Exper-

imental results on the CUB-200-2011 [44], Cars196 [18],

and Stanford Online Products [36] datasets show that the

proposed ALA improves the performance of existing meth-

ods in both image retrieval and clustering tasks.

2. Related Work

Deep Metric Learning: The training of a representative

deep metric learning method involves two essential com-

ponents: sampling and updating. There are two trends of

recent progress regarding loss function and sampling strat-

egy. The first trend of works designs different losses to

consider various information buried beneath training sam-

ples [2, 6, 12, 30, 34, 36, 47, 48, 53]. For example, the

triplet loss [5, 30, 46] pushes away the distance of a negative

pair to be larger than that of a positive pair. Sohn [34] ex-

tended the triplet loss to an N-pair loss which pushes away

N-1 negatives in an (N+1)-tuple all at once. Ustinova et

al. [40] presented a histogram loss to punish the overlap be-

tween similarity distributions of positive and negative pairs.

The other trend of works aims at exploring for an ef-

fective sampling strategy to train the metric. The quality

of samples used in the metric learning process has a cru-

cial influence not only on the convergence speed of training

but more importantly on the performance of the method.

A widely used approach is the hard negative mining strat-

egy [10, 14, 17, 30, 54], which essentially under-samples

the training set for false positive samples that provide the

most information. Hard mining may cause a distribu-

tion shift due to the under-sampling [52], motivating some

works to consider other sampling frameworks to avoid sam-

pling only the hard ones [7, 8, 10, 24, 25, 37, 50, 51, 55, 56].

For example, Wu et al. [50] proposed to select samples

uniformly based on distances. Movshovitz et al. [25] pro-

posed to use proxies to efficiently represent a set of samples,

reducing the sampling complexity dramatically. Duan et

al. [8] and Zhao et al. [55] trained a generator to synthesize

hard samples in an adversarial manner. Zheng et al. [56]

utilized linear interpolation to generate hardness-aware syn-

thetics. However, all these methods utilize fixed pre-defined

sampling strategies which assume some prior knowledge,

and thus cannot flexibly adapt to the current model status.

Meta-Learning: Recently deep learning [15, 19, 32, 39]

has shown great power and enabled machines to outperform

humans in various tasks. The main issue hindering further

development is the demand for numerous training data and

massive computing resources. As an attempt to address

this issue, meta-learning [1, 4, 9, 26, 29, 33, 38, 42] aims

to learn a higher-level model (meta-learner) to instruct the

learning process of the original model (learner) to adapt to

new tasks rapidly. For example, Vinyals et al. [42] proposed

an episode-based training strategy to simulate the process

of one-shot learning, which is used to train a matching net-

work to directly map a few labelled samples and an unla-

belled sample to its label. Finn et al. [9] proposed a model-

agnostic meta-learning algorithm to learn a set of initial pa-

rameters enabling a model to adapt to a new task quickly.

Inspired by recent works in meta-learning, we design a

learnable assessor as the meta-learner and utilize it to train

the metric adaptively to maximize the generalization abil-

ity. To achieve this, we employ an episode-based training

scheme [42], where we construct each episode to simulate

the procedure of training and testing. Different from most

existing meta-learning methods, we train a meta-learner to

perform sampling, which is shown in [50] to have a signifi-

cant effect in deep metric learning.

3. Proposed Approach

In this section, we first introduce the basic ideas of deep

metric learning and review the conventional hard mining

sampling strategy. Then, we present our adaptive learnable

assessor considering the sequential information of training

examples. Finally, we propose an efficient approach to learn

the assessor simultaneously by maximizing the generaliza-
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Figure 2. Illustration of the proposed sequence-aware learnable assessment. For each loss over a tuple, the assessor generates an adaptive

weight combining information about this tuple’s structure with the knowledge of previous inputs and current model status. To achieve this,

a latent state is passed through the assessor over the whole training process, containing information learned from previous experience.

tion ability of the trained metric.

3.1. Problem Formulation

Suppose we have a set of samples X = [x1,x2, · · · ,xN ]
and their corresponding class labels L = [l1, l2, · · · , lN ].
The objective of deep metric learning is to learn an embed-

ding function f(x; θ) which maps a sample from the origi-

nal space to an n-dimensional embedding (metric) space so

that in this space samples from the same class form a cluster

far away from the other samples. More concretely, we mea-

sure the distance between two examples by computing the

Euclidean distance between them in the embedding space:

D(xi,xj) = d(yi,yj ; θ) = ||yi − yj ||2, (1)

where y = f(x; θ) is the learned embedding of x. The

objective of deep metric learning can be formulated as:

min
θ

{

d(yi,yj ; θ) , if li = lj
−d(yi,yj ; θ) , if li ∕= lj .

(2)

Deep metric learning methods usually utilize a deep net-

work as the embedding function f(x; θ), where θ represents

the parameters of the network. The network is trained to-

wards (2) by minimizing a well-designed loss function:

θ∗ = argmin
θ

∑

T∈TTT

L(T; fθ), (3)

where T = {yi} ∈ TTT is a tuple composed of several exam-

ples with a certain class structure.

For example, the conventional triplet loss acts on a tuple

of three samples (which is also called a triplet). A triplet

T = {y,y+,y−} is composed of an anchor point y, a pos-

itive point y+ which is from the same class as the anchor,

and a negative point y− which is from a different class. The

triplet loss aims at increasing the distance between the an-

chor and negative to be larger than the distance between the

anchor and positive by a fixed margin m:

L(T(y,y+,y−)) = [d(y,y+)2 − d(y,y−)2 +m]+, (4)

where [·]+ = max(·, 0) is the hinge function.

Given N training samples, the set of triplets TTT has the

complexity size O(N3), making it inefficient to utilize all

of them equally. A widely used technique is the hard mining

strategy, which mines the hard triplets in a batch and ignores

the easy ones since they provide little information for the

network. One simple way to obtain a hard triplet Thard =
{yh,y

+
h ,y

−

h } in a batch is to find a negative y−

h with the

smallest distance from the anchor yh:

y−

h = argmin
y
−

h

d(yh,y
−

h ). (5)

We see from (4) and (5) that hard triplets lead to substan-

tial loss and thus provide abundant information for training.

The training of a network equipped with the hard mining

strategy can be represented as:

θ∗ = argmin
θ

∑

T∈TTT hard

L(T; fθ)

= argmin
θ

∑

T∈TTT

TTT hard
(T)L(T; fθ), (6)

where TTT hard
(T) is an indicator function which equals 1

when T ∈ TTT hard and 0 otherwise.

3.2. Sequence-Aware Learnable Assessment

Suppose we randomly sample N tuples sequentially

from the training set. We divide this sampled sequence

TN ∈ TTT N into batches and use them to train the network

by mini-batch gradient descent. The hard mining strategy

can be seen as assigning a weight to each sample in the se-

quence, which equals 1 for hard tuples and 0 otherwise.

We go beyond the hard mining strategy and define a sam-

ple assessment strategy S ∈ SSS to be a mapping which

maps a tuple sequence TN ∈ TTT N to a weight sequence

(w1, w2, · · · , wN ) ∈ RRRN where each wi ∈ (0, 1). We de-
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Figure 3. The network architecture of the proposed DML-ALA.

We add a fully connected layer after a CNN network as the met-

ric. The assessor is composed of an LSTM module and a fully

connected layer. The embeddings of a tuple are concatenated and

then taken as inputs of the assessor.

fine the training using assessment strategy S as:

θ∗ = argmin
θ

N
∑

i=1

Si(T
N )L(Ti; fθ), (7)

where Si denotes the ith output of sample assessment strat-

egy S and Ti denotes the ith example in the sequence TN .

We argue that SSS includes a variety of sampling strategies.

For example, we can represent the hard mining strategy as

Sh(TN ) = { TTT hard
(Ti)} ∈ SSS .

Most existing methods utilize hand-crafted sampling

strategies, which usually assume some prior knowledge and

cannot adapt to the model at different stages. For exam-

ple, the hard mining strategy may be effective at the begin-

ning, but the number of hard samples decreases as the train-

ing proceeds and little supervision can be further provided.

Also, the under-sampling of the hard mining strategy may

cause a distribution shift, harming the generalization ability.

To address this problem, we propose a sequence-aware

learnable sample assessment strategy, which adaptively

generates a weight for each tuple to best benefit training of

the metric considering knowledge about the current model

status, as shown in Figure 2. In practice, the tuple sequence

TN is usually generated progressively, so we do not see the

whole sequence until the last step. We instead consider a

subset of SSS and define a learnable assessor A which takes

as inputs a tuple T and a state variable h, and outputs a real

number w ∈ (0, 1), i.e., A(T,h;φ) = w, where φ is the

parameters. We also assume that the assessor A determines

a state transformation function HA : h $→ H(h,T;φ). The

assessor A naturally induces a sample assessment strategy:

SA(TN ) = {A(Ti,hi−1;φi)} ∈ SSS, (8)

where Ti is the ith tuple in the sequence TN , hi−1 =
H(hi−2,Ti−1;φi−1) is the state variable at step i− 1, and

φi is the parameters of assessor A at step i.

The state variable h encodes information from previous

states, making the generated weights aware of the order of

TN . It passes knowledge about previous input tuples and

model status through training, enabling the assessor to in-

teract with the metric. The assessor and the transformation

function are also updated throughout training, capable of

adapting to different training stages and model status.

We exploit a long short-term memory (LSTM) [11] net-

work to integrate both the assessor and state transformation

function. Having obtained a tuple of embeddings, we first

concatenate them into a vector and use it as the input of

the LSTM. At each step, the LSTM network takes in this

concatenated vector and outputs a vector on the basis of a

latent state cell which is simultaneously refined to incor-

porate knowledge learned from this step. We add a fully

connected layer with a sigmoid activation function follow-

ing the LSTM network to map the output vector to a real

number w ∈ (0, 1) as the assessed weight. The state vari-

able is hidden inside the LSTM module, so in the context of

a sequence TN , we can omit it from the assessor input for

brevity (i.e., w = A(T;φ)). The training using assessor A

can be represented as:

θ∗ = argmin
θ

N
∑

i=1

A(Ti;φ)L(Ti; fθ). (9)

The proposed sequence-aware learnable assessor can

preserve information from previous training process and ex-

ploit it to determine the current strategy. In addition, the

assessor interacts with the metric and updates itself to pro-

duce adaptive weights that can best benefit the following

training process. Figure 3 shows the network architecture

of the proposed DML-ALA.

3.3. Adaptive Meta-Training of the Assessor

With a learnable assessor, we adaptively customize the

training of the metric model. However, the learning of such

a assessor is not trivial. Directly minimizing (9) with re-

spect to φ leads to a trivial solution of A(T;φ∗) = 0, ∀T ∈

TTT . We present an efficient meta-learning based approach to

simultaneously learn the assessor in the training process by

maximizing the generalization ability of the trained metric,

as shown in Figure 1.

The assessor plays a vital role in the training process. It

acts more like an optimizer for the metric, guiding the train-

ing direction. Furthermore, the assessor itself is learnable.

The learning of the assessor is a learning problem at a higher

level, which we formulate as a meta-learning problem.

The success of existing deep metric learning methods

has been impeded by over-fitting. Real images usually vary

widely in the aspects of background, illumination, pose, etc.

However, intra-class variations are usually discouraged by

the general objective of metric learning (2), leading to a

metric with poor generalization ability.
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Algorithm 1: DML-ALA

Input: Training image set, labels, learning rates α and β,

episode size m, iteration number T , and iteration num-

ber for assessor at each episode K.

Output: Parameters of metric θ, and parameters of asses-

sor φ.

1: for iter = 1, 2, · · · , T do

2: Construct an episode of m samples and form two

sets of tuples {T}tr and {T}va.

3: Perform one gradient update to θ and obtain θ′ fol-

lowing (10).

4: for iter = 1, 2, · · · ,K do

5: Update assessor parameters φ following (12).

6: end for

7: Update metric parameters θ with the updated asses-

sor parameters φ∗ following (13).

8: end for

9: return θ and φ.

This issue is hard to tackle by designing a loss function,

which would probably be contradictory with (2). Instead,

we propose to train an assessor to maximize the generaliza-

tion ability of learned metric. We achieve this by exploiting

the idea of episode-based training [42]. At each training it-

eration, we construct an episode by sampling two subsets of

M and N examples with disjoint labels. We denote them as

the training subset and validation subset. We then form two

sets of tuples {T}tr and {T}va from the respective subsets.

We design one episode to simulate the procedure of

training and testing. Our goal is to seek a sample assess-

ment strategy to maximize the metric performance on the

validation subset, after utilizing it to update the metric on

the training subset. At each iteration, we first perform one

gradient update to θ using (9) and obtain the updated pa-

rameters θ′:

θ′ = θ − α∇θ

∑

T∈{T}tr

A(T;φ)L(T; fθ)

= θ − α
∑

T∈{T}tr

A(T;φ)∇θL(T; fθ), (10)

where α is the learning rate of the metric.

We then evaluate the updated model on the validation

subset and employ the validation loss to train the assessor.

More concretely, the meta-training objective of the assessor

can be represented as:

min
φ

∑

T′∈{T}va

L(T′; fθ′) (11)

= min
φ

∑

T′∈{T}va

L(T′; fθ−α
∑

T∈{T}tr
A(T;φ)∇θL(T;fθ)).

Note that this loss is computed over the metric with the up-

dated parameters θ′ which is differentiable w.r.t. φ.

Ideally, we want to train the assessor A to minimize (11),

but to improve the efficiency we only update it for a fixed

times K. For each update:

φ ← φ− β∇φ

∑

T′∈{T}va

L(T′; fθ′), (12)

where β is the meta learning rate of assessor A.

Finally, we update the original metric (i.e., fθ, not fθ′ )

once using the updated assessor Aφ∗ :

θ ← θ − α
∑

T∈{T}tr

A(T;φ∗)∇θL(T; fθ), (13)

and use it as the learned metric parameters at this iteration.

We only utilize updated model fθ′ to evaluate the gener-

alization ability of the current optimizer (with assessor Aφ)

and discard it after each iteration. The metric is optimized

using (13) with the updated assessor Aφ∗ , ensuring that the

metric is always trained towards good generalization.

We sample each episode randomly from the training set,

so the optimization of the metric and assessor can be per-

formed using stochastic gradient descent (SGD). The met-

ric and assessor are updated alternately at each iteration,

but can be seen as being trained simultaneously across it-

erations throughout the whole process. The metric and as-

sessor are coupled with each other, collaborating to seek a

representation with good discrimination and generalization

ability. Algorithm 1 details the proposed DML-ALA.

3.4. Implementation Details

We implemented our method using the Tensorflow pack-

age throughout the experiments. For fair comparisons

with most deep metric learning methods, we employed the

GoogLeNet [39] model pre-trained on ImageNet ILSVRC

dataset [28] followed by a randomly initialized fully con-

nected layer. We set the output embedding size of our

method to 512. We implemented the assessor with a two-

layer LSTM [11] model and a fully connected layer, where

there are 64 hidden units in each layer. We normalized all

the images to 256 by 256 as inputs. For training, we per-

formed standard random cropping at 227 by 227 and hor-

izontal random mirror for data augmentation. We set the

base learning rate to 10−4 for the CNN, 10−3 for the last

fully connected layer, and 4 × 10−4 for the assessor. At

each iteration, we constructed an episode with a training

subset of 100 samples and a validation subset of 20 sam-

ples and updated the assessor for 3 times. We tuned all the

hyperparameters via cross-validation on the training set.

4. Experiments

In this section, we evaluated the proposed framework in

both image retrieval and clustering tasks. We conducted
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experiments on three widely used benchmark datasets, in-

cluding the CUB-200-2011 [44], Cars196 [18], and Stan-

ford Online Products [36] datasets.

4.1. Datasets

We followed [36] and evaluated our method under the

setting where the training set is disjoint from the test set. We

split each dataset into training/test set as described below:

• The CUB-200-2011 dataset [44] is composed of

11,788 images including 200 bird species. We split

the images into a training set containing the first 100

species (5,864 images) and a test set containing the rest

100 species (5,924 images).

• The Cars196 dataset [18] is composed of 16,185 im-

ages of 196 car makes and models. We split the images

into a training set containing the first 98 models (8,054

images) and a test set containing the rest 100 models

(8,131 images).

• The Stanford Online Products dataset [36] is com-

posed of 120,053 images of 22,634 online products

from eBay.com. We split the images into a training

set containing the first 11,318 products (59,551 im-

ages) and a test set containing the rest 11,316 products

(60,502 images).

4.2. Evaluation Metrics

Following recent works [8, 35, 36] on deep metric learn-

ing, we conducted experiments in image retrieval and clus-

tering tasks. We employed Recall@Ks to evaluate our

method in the retrieval task, which computes the percent-

age of images with at least one correct retrieved example

from the K nearest neighbors. We employed NMI and F1

to evaluate our method in the clustering task. The normal-

ized mutual information (NMI) is defined as the ratio of

mutual information and the arithmetic mean of entropy of

clusters and the ground truth classes, i.e., NMI(Ω,C) =
2I(Ω;C)

H(Ω)+H(C) , where Ω = {ω1, · · · ,ωK} is a set of clusters

and C = {c1, · · · , cK} is a set of ground truth classes. ωi

represents the set of samples assigned to the ith cluster, and

cj represents the set of samples belonging to the jth class.

F1 is defined as the harmonic mean of precision and recall,

i.e., F1 = 2PR
P+R

.

4.3. Results and Analysis

Effect of Episode Construction: We construct the

training and validation subsets to simulate the procedure of

training and testing so that we can evaluate the generaliza-

tion ability of the metric. To study the effect of using dis-

joint labels, we performed an ablation study where both the

original triplet loss and our method used random tuples.

Table 1. Results using different tuple settings on CUB-200-2011.

Method NMI F1 R@1 R@2 R@4

Triplet (random) 48.3 14.5 34.7 47.0 58.3

ALA (random) 56.6 25.5 44.4 58.4 70.9

Triplet (disjoint) 49.8 15.0 35.9 47.7 59.1

ALA (disjoint) 58.7 26.3 46.3 60.1 72.4

Table 2. Results on the training and test set of CUB-200-2011.

Method NMI F1 R@1 R@2 R@4

Triplet (training) 76.5 53.0 65.2 72.5 79.9

ALA (training) 79.3 56.1 66.5 74.3 81.0

Triplet (testing) 49.8 15.0 35.9 47.7 59.1

ALA (testing) 58.7 26.3 46.3 60.1 72.4

(a) Variance (b) Mean

(c) Hardness (d) Ratio

Figure 4. Weight analysis of ALA (triplet loss) on CUB-200-2011.

Table 1 shows that ALA using a random validation sub-

set still boosts the performance of the original method, but

with a smaller margin compared to that using disjoint tu-

ples. The reason is that the assessor is less restricted due

to joint labels and each episode cannot precisely simulate

the training and test set partition. This illustrates that both

the adaptive assessment and the use of disjoint subsets con-

tribute to the performance improvement.

Alleviation of Overfitting: Table 2 shows the train-

ing and testing performance of the triplet loss with/without

ALA on the CUB-200-2011 dataset. We see that with com-

parable training performance, our proposed ALA achieves

much better results on the test set. This verifies that the

proposed ALA can alleviate overfitting to some extent.

Analysis of Assessed Tuple Weights: We conducted ex-

periments with the triplet loss on the CUB-200-2011 dataset

to analyze the assessed tuple weights. Figures 4(a) and 4(b)

show the weight variance and mean in each iteration. We

observe that in the beginning our ALA treats all the sam-

ples almost equally, but learns to assign different weights as

training proceeds. This suggests that the sampling strategy

mainly influences the latter half of training, when further

training of the model requires more challenging tuples.
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Table 3. Comparisons with existing sampling methods on the

CUB-200-2011 dataset.

Method NMI F1 R@1 R@2 R@4 R@8

Rand-disjoint 49.8 15.0 35.9 47.7 59.1 70.0

Semi-hard 53.4 17.9 40.6 52.3 64.2 75.0

Smart mining 58.1 - 45.9 57.7 69.6 79.8

Dis-weighted 56.3 25.4 44.1 57.5 70.1 80.5

DAML 51.3 17.6 37.6 49.3 61.3 74.4

DVML 55.5 25.0 43.7 56.0 67.8 76.9

HDML 55.1 21.9 43.6 55.8 67.7 78.3

DE-DSP 53.7 19.8 41.0 53.2 64.8 -

ALA 58.7 26.3 46.3 60.1 72.4 82.6

Table 4. Comparisons with existing sampling methods on the

Cars196 dataset.

Method NMI F1 R@1 R@2 R@4 R@8

Rand-disjoint 52.9 17.9 45.1 57.4 69.7 79.2

Semi-hard 55.7 22.4 53.2 65.4 74.3 83.6

Smart mining 58.2 - 56.1 68.3 78.0 85.9

Dis-weighted 58.3 25.4 59.4 72.3 81.6 87.2

DAML 56.5 22.9 60.6 72.5 82.5 89.9

DVML 61.1 28.2 64.3 73.7 79.2 85.1

HDML 59.4 27.2 61.0 72.6 80.7 88.5

DE-DSP 55.0 22.3 59.3 71.3 81.3 -

ALA 61.7 29.6 67.2 78.4 86.6 92.0

Table 5. Comparisons with existing sampling methods on the Stan-

ford Online Products dataset.

Method NMI F1 R@1 R@10 R@100

Rand-disjoint 86.3 20.2 53.9 72.1 85.7

Semi-hard 86.7 22.1 57.8 75.3 88.1

Dis-weighted 87.9 23.4 58.9 77.2 89.6

DAML 87.1 22.3 58.1 75.0 88.0

DVML 89.0 31.1 66.5 82.3 91.8

HDML 87.2 22.5 58.5 75.5 88.3

DE-DSP 87.4 22.7 58.2 75.8 88.4

ALA 89.7 35.4 68.6 83.1 91.9

To show in one aspect what triplets our ALA assigns

larger weights, we define the average weighted hardness

(AWH) as 1
n

∑n

i=1 wi
d(yi,y

+

i
)

d(yi,y
−

i
)
, where

d(yi,y
+

i
)

d(yi,y
−

i
)

is the ratio

of distances between the positive and negative pair in each

triplet, and wi is the assessed weight. The AWH reflects

the average hardness level of weighted tuples. Figure 4(c)

shows the AWH of ALA and the original method in each

iteration, and figure 4(d) shows the ratio of the two. We

can see that the AWH tends to decrease, but ALA assigns

larger weights to harder tuples as training proceeds to keep

AWH at a high level. This is reasonable since it is benefi-

cial to train the model with samples of increasing hardness

levels [14, 56].

Comparisons with Existing Sampling Methods: We

compared the proposed ALA with existing sampling

methods, including random sampling of disjoint tu-

ples, semi-hard negative mining [30], smart mining [14],

distance-weighted sampling [50], DAML [8], DVML [21],

HDML [56], and DE-DSP [7]. We equipped the widely

Table 6. Applications to various losses on CUB-200-2011.

Method NMI F1 R@1 R@2 R@4 R@8

Lifted 56.4 22.6 46.9 59.8 71.2 81.5

Clustering 59.2 - 48.2 61.4 71.8 81.9

N-pair 60.2 28.2 51.9 64.3 74.9 83.2

Angular 61.0 30.2 53.6 65.0 75.3 83.7

Contrastive 47.2 12.5 27.2 36.3 49.8 62.1

Cont + ALA 50.6 19.3 37.3 46.5 58.2 74.0

Triplet 49.8 15.0 35.9 47.7 59.1 70.0

Triplet + ALA 58.7 26.3 46.3 60.1 72.4 82.6

Margin 58.7 26.6 49.6 62.7 74.1 82.9

Margin + ALA 66.3 35.1 61.6 73.9 83.1 89.7

Table 7. Applications to various losses on Cars196.

Method NMI F1 R@1 R@2 R@4 R@8

Lifted 57.8 25.1 59.9 70.4 79.6 87.0

Clustering 59.0 - 58.1 70.6 80.3 87.8

N-pair 62.7 31.8 68.9 78.9 85.8 90.9

Angular 62.4 31.8 71.3 80.7 87.0 91.8

Contrastive 42.3 10.5 27.6 38.3 51.0 63.9

Cont + ALA 43.7 12.5 36.3 48.2 60.1 73.2

Triplet 52.9 17.9 45.1 57.4 69.7 79.2

Triplet + ALA 61.7 29.6 67.2 78.4 86.6 92.0

Margin 59.7 28.1 71.5 79.3 87.8 91.6

Margin + ALA 68.5 38.4 80.5 87.9 92.8 95.9

used triplet loss with these sampling methods and con-

ducted experiments under the same settings (e.g., CNN ar-

chitecture and batch construction).

Tables 3, 4, and 5 show the experimental results of dif-

ferent sampling methods, where red numbers represent the

best results. We observe that the proposed ALA outper-

forms existing sampling methods. The reason is that the

other methods utilize a fixed strategy, while the proposed

ALA can simultaneously learn an adaptive assessor to max-

imize the generalization ability of the learned metric. In

particular, although DAML [8] and HDML [56] can exploit

more potential of existing samples by generating synthetic

samples as complements, our method still achieves better

results. Furthermore, we emphasize that ALA does not con-

flict with these generative methods, which can be integrated

to further boost the performance.

Applications to Various Losses: We applied the pro-

posed ALA to three losses for direct comparisons, including

contrastive loss [13], triplet loss [49], and margin loss [50].

We also compared our method with other four baseline

losses, including lifted structure [36], clustering loss [35],

N-pair loss [34], and angular loss [47].

We conducted all the experiments under the same set-

tings for fair comparisons. In particular, for all baseline

methods, we sample tuples of disjoint labels in each iter-

ation as previous works (e.g., [47] for triplet loss). There-

fore, our framework takes in batches of the same structure

as baseline methods as shown in 1. The only difference is
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Figure 5. Barnes-Hut t-SNE visualization [41] of the learned embedding (Margin + ALA) on the CUB-200-2011 dataset.

Table 8. Applications to various losses on Stanford Online Prod-

ucts.

Method NMI F1 R@1 R@10 R@100

Lifted 87.2 25.3 62.6 80.9 91.2

Clustering 89.5 - 67.0 83.7 92.2

N-pair 88.1 28.2 67.7 83.8 93.0

Angular 87.8 26.5 67.9 83.2 92.2

Contrastive 82.4 10.1 37.5 53.9 71.0

Cont + ALA 84.3 12.5 42.9 58.5 74.1

Triplet 86.3 20.2 53.9 72.1 85.7

Triplet + ALA 89.7 35.4 68.6 83.1 91.9

Margin 87.3 26.7 65.5 80.7 90.9

Margin + ALA 91.0 39.3 77.0 89.4 96.1

that ALA further splits each batch into two subsets. Also,

we discard the temporary updated metric and only update

the original metric once during each iteration.

Tables 6, 7, and 8 show the quantitative results on the

CUB-200-2011, Cars196, and Stanford Online Products

datasets respectively. We use red numbers to indicate the

best results and bold numbers to represent an improvement

over the corresponding original methods. We observe that

our proposed ALA can uniformly boost the performance of

original methods on all the three datasets. In particular, our

framework combined with the margin loss outperforms the

other baseline methods and achieves the best results. We see

that the performance boost is relatively small on the large-

sized Stanford Online Products dataset. We think this is be-

cause the large amount of training data alleviate the problem

of over-fitting, which our method is designed to address.

For a training iteration, our framework (with the triplet

loss) takes an average of 0.65s with one GTX 1080 Ti

card, which is approximately twice as much as the origi-

nal method takes (0.31s). However, we emphasize that our

ALA is only used for more effective training and introduces

no additional workload to computation during evaluation.

Qualitative Results: Figure 5 visualizes the embed-

ding of our method (Margin + ALA) using Barnes-Hut t-

SNE [41] on the CUB-200-2011 dataset. We represent the

label of each image by the color of the border and enlarge

several areas for clarity. We see that our method can effec-

tively group semantically similar images, in spite of subtle

visual cues and large variations of viewpoints, poses, etc.

5. Conclusion

In this paper, we have proposed a deep metric learning

via adaptive learnable assessment (DML-ALA) method to

maximize the generalization ability of the learned metric.

By utilizing an episode-based training scheme, we can sim-

ulate the procedure of training and testing at one iteration,

where we simultaneously train a sequence-aware assessor

to instruct the learning process adaptively. Experimental re-

sults on three widely used benchmarks have shown that the

proposed ALA outperforms existing sampling methods and

improves current deep metric learning methods in both im-

age retrieval and clustering tasks. While the proposed sam-

ple assessment method is designed for deep metric learning,

it can be easily modified to apply to other machine learning

approaches where sampling is a vital component.
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