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Abstract

This paper aims to calibrate the orientation of glass and

the field of view of the camera from a single reflection-

contaminated image. We show how a reflective amplitude

coefficient map can be used as a calibration cue. Different

from existing methods, the proposed solution is free from

image contents. To reduce the impact of a noisy calibra-

tion cue estimated from a reflection-contaminated image,

we propose two strategies: an optimization-based method

that imposes part of though reliable entries on the map and

a learning-based method that fully exploits all entries. We

collect a dataset containing 320 samples as well as their

camera parameters for evaluation. We demonstrate that our

method not only facilitates a general single image camera

calibration method that leverages image contents but also

contributes to improving the performance of single image

reflection removal. Furthermore, we show our byproduct

output helps alleviate the ill-posed problem of estimating

the panorama from a single image.

1. Introduction

Camera calibration [65] has been a widely studied prob-

lem, due to its indispensability for a broad category of vi-

sion tasks such as scene understanding [50, 42], metrol-

ogy [6], 3D inference [55, 8], and augmented reality [13,

15, 20]. Classic camera calibration requires multiple im-

ages containing specific objects or patterns (e.g., [26, 36]).

Calibrating a complete camera model using a single image

is a rather challenging problem. With comprehensive priors

(e.g., horizon line [16]) learned by deep neural networks,

recent progress shows a successful estimation of extrinsic

and intrinsic parameters (e.g., [32]) from a single noise-free

image in the wild.

The classical physically based formation of a reflection-

contaminated image can be formulated as [25, 53]1,

I = (1−Ω) ◦T+Ω ◦R, (1)

∗Corresponding authors.
1For simplicity, we consider the reflection image R can be blur or con-

tain ghost effects which is consistent with prior works (e.g., [64, 49]).

where I,T,R are the reflection-contaminated image, trans-

mission image, and reflection image, respectively. ‘◦’ de-

notes an element-wise multiplication operator. Ω is the re-

flective amplitude coefficient map. The Fresnel equations

describe the relative amplitude of transmission and reflec-

tion, based on which Kong et al. [25] derive a formation of

Ω for glass with double surfaces. One of the properties in

their formation is that Ω is a monotonically increasing func-

tion of the angle of incidence Θ (AoI, w.r.t. glass plane).

This property is widely studied in the topic of multi-image

reflection separation using polarization (e.g., [25, 54, 33]),

while seldom considered in the context of single image re-

flection separation (e.g., [7, 53]). On the other hand, thanks

to the rapid progress in studying single image reflection re-

moval, recent methods (e.g., [64, 53] provide a reliable es-

timation of T,R) can be used to calculate Ω pixel-wisely.

In this paper, we observe that Ω or Θ reflects useful cues

for camera calibration which motivates us to estimate cam-

era parameters from a single reflection-contaminated image

(formed by putting a piece of plate glass between the left

and right scenes in Figure 1 row 1©). More specifically,

we attempt to solve for extrinsic (tilt, roll, w.r.t. the glass

plane) and intrinsic (focal length) parameters. In this paper,

these camera parameters are represented as the orientation

of glass n and the horizontal field of view (FoV) of cam-

era H (Figure 1 row 2©). Figure 1 row 3© intuitively shows

our observations about how these two parameters affect the

reflection. As can be observed, the orientation of glass n

affects the direction of reflective intensity change (left and

middle figures), the angle of H affects the magnitude of re-

flective intensity change (middle and right figures). Differ-

ent from previous works of camera calibration that leverage

image contents from a noise-free image (e.g., [56, 16, 32]),

our method exploits Ω (free from image contents, Figure 1

row 4©) as the calibration cue.

We solve for n and H by incorporating a reflection sepa-

ration method (taking I as input) into a calibration algorithm

(taking an estimated Ω as the input). The major difficulty

is brought by the calibration cue Ω that may be inaccurate.

Based on our observation that estimating n and H from Ω is

to solve an over-determined system, we present two strate-

gies to achieve robust calibration, i.e., an optimization-

based method that imposes part of though reliable entries of
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Figure 1. 1© An object with simple background as transmission

(left) and the scene with (approximately) uniform illumination as

reflection (right). 2© Geometric camera models with parameters n

and H for reflection-contaminated images capture. 3© Reflection-

contaminated images I captured with geometric camera models

above. White arrows with different orientations and gray scale

gradients indicate reflective intensity change with different direc-

tions (left and middle) and magnitude (middle and right). 4© Vi-

sualizations of the corresponding reflective amplitude coefficient

maps Ω, simulated according to formation model in [25]. Blue to

yellow means small to large values.

an estimated Ω and a learning-based method to indiscrim-

inately exploit all entries of it. To evaluate our methods,

we collect a dataset containing 320 reflection-contaminated

images as well as their calibration parameters, with various

scenes, glass types, n, and H. To summarize, our major

contributions are:

• We propose an optimization-based method to recover

extrinsic (glass orientation) and intrinsic (horizontal

FoV) parameters of the camera from a reflection-

contaminated image. To the best of our knowledge,

this is the first work to address the single image camera

calibration problem in the context of glass reflection.

• We further propose a learning-based method to jointly

estimate the reflective amplitude coefficient map and

camera parameters. We collect a validation dataset

containing 320 reflection-contaminated images as well

as their calibration parameters to evaluate our methods.

• We demonstrate that our calibration method, which is

free from image contents, facilitates both single im-

age camera calibration and single image reflection re-

moval. As an additional application, it helps alleviate

the ill-posedness of single image panorama estimation.

2. Related Work

The key differences of our method from existing sin-

gle image camera calibration methods are that we take a

reflection-contaminated image instead of a noise-free one

as inputs and we exploit the calibration cue of the reflective

amplitude coefficient map instead of image contents. To the

best of our knowledge, there is little related work directly

addressing the problem of single image camera calibration

in the context of plate glass reflection. We thereby briefly

review the literature of two relevant topics: single image

reflection removal and single image camera calibration.

2.1. Single Image Reflection Removal

Single image reflection separation or removal is a typical

ill-posed problem that estimates more than two unknowns

from a single input. To make this problem tractable, several

priors are made in the literature. Some of them are based on

the physical form of the reflection, e.g., ghost effects due to

double surfaces of glass [40], or blurry reflection due to out-

of-focus and limited depth of field of a camera [30, 31, 62].

Some other priors are observed from transmission and re-

flection, e.g., the sparsity of gradient due to natural image

priors [29, 2], or image contents priors due to known scenes

or objects [46]. Data-driven methods are proposed to nar-

row down the solution space of separation results. Some

of them constrain outputs by a reconstruction loss func-

tion [53], or introduce additional constraints for information

such as edge [7], gradient [48], perceptual metric [64], con-

text [49]. Some others design specific units, e.g., a cascade

network [61], or context encoding modules [52].

These methods formulate Ω as a scalar (e.g., [61, 49]),

or a spatially-varying variable (e.g., modeled by a Gaussian

distribution [7, 64], generated by a GAN [53]). In contrast,

we consider Ω as a function of Θ which involves constraints

from the geometric camera model.

2.2. Single Image Camera Calibration

Earlier work for the problem of single image camera

calibration relies on a manually inserted calibration tar-

get [14, 44, 65]. Geometric based methods calibrate a cam-

era through detecting some specific patterns, such as vanish-

ing lines or points [39, 27], concentric circles [21], coplanar

circles [5, 59], plumb-lines [34], repeated patterns [36], or

lighting cues [26, 57]. Recently, learning-based methods

are proposed to deal with a single image in the wild. These

methods solve for different components of calibration pa-

rameters, such as vanishing points [63] (combined with ge-

ometric based methods), FoV [56], horizon line [58] (to es-

timate the extrinsic rotation matrix), the radial distortion pa-

rameter [38], the extrinsic rotation matrix and FoV [16], or

the extrinsic rotation matrix together with intrinsic parame-

ters of FoV and radial distortion [32]. Different from these

methods that leverage image contents from a noise-free im-

age for calibration, our method exploits the calibration cue

of the reflective amplitude coefficient map from a reflection-

contaminated image.
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Figure 2. Illustrations of geometric relation between Θ and n, H , and the Cartesian coordinate system used in this paper where x-y plane

is parallel to the image plane. For bottom view: each blue cone indicates light direction with the same Angle of Incidence (AoI). The vector

of glass orientation n intersects the glass plane and image plane at c and pc.

Our calibration cue Ω comes from the pattern of imaged

concentric circles (to be introduced in Section 3.2). There

are several previous works calibrating a camera based on

imaged concentric circles, e.g., multiple views [23, 22, 18],

multiple pairs [21], or known radii [9, 1]. However, these

methods cannot be directly used to our problem because the

imaged concentric circles from Ω are always incomplete,

noisy, with only one view, one pair, and unknown radii.

3. Proposed Methods

In this paper, we assume that reflection occurs over

a piece of plate glass [43], which is homogeneous,

isotropic [3], and fills the whole FoV. We adopt the pin-

hole camera model with square pixels and centered princi-

pal points, similar to a recent work [32] for single image

camera calibration.

3.1. Preliminary

We study camera parameters of the extrinsic rotation ma-

trix w.r.t. the glass plane and the intrinsic FoV, from a single

image with a size of h×w. We represent these two parame-

ters as the orientation of glass plane n, and H , respectively.

The geometric relation of the AoI map Θ and camera pa-

rameters is illustrated in Figure 2, which can be expressed

as Θ = P(n, H). To be more specific, considering a point

p = (u, v)⊤ on the image plane, its coordinate in 3D space

is (u, v,−f)⊤, where f = w

2 tan(H

2
)
. The AoI θ ∈ Θ of p

can be computed as θ = arccos 〈p,n〉
‖p‖2

. Inspired by the an-

alytic formation of Ω in [25], we represent Ω = F(Θ, κ),
where κ is the refractive index. Therefore, the calibration

problem in this paper is to inversely recover n and H from

an input I with a formation model such that,

I = (1− α(n, H, κ)) ◦T+ α(n, H, κ) ◦R, (2)

where Ω = α(n, H, κ) = F(P(n, H), κ).

Our basic idea to solve this problem is to incorporate

a reflection separation method (taking I as input) into a

calibration algorithm (taking an estimated Ω as the input).

Without losing of generality, we can adopt any state-of-the-

art reflection separation method (e.g., [64, 53]) to approxi-

mately fit Ω based on Equation (1). We then focus on how

to robustly solve the inverse problem with Ω = α(n, H, κ),
i.e., recovering n, H from an estimated Ω. We observe that

this inverse problem forms an over-determined system be-

cause all entries of Ω are expected to be determined by

about 5 unknowns (e.g., κ, radial distortion, n, and H)

while the number of equations is much larger (h×w). How-

ever, we only have a noisy estimate of Ω, which is the

biggest challenge of accurate calibration. To this end, we

propose two strategies to achieve robust calibration, i.e., an

optimization-based method that imposes part of though reli-

able entries of an estimated Ω and a learning-based method

to indiscriminately exploit all.

We achieve the calibration through estimating the coor-

dinate of pc = (uc, vc,−f)⊤, which is the intersection of

n and image plane, as shown in Figure 2. Once pc is ob-

tained, the glass orientation n and horizontal FoV H can be

calculated by

n =
p

‖p‖2
,

H = 2arctan
w

2f
.

(3)

3.2. An Optimization­based Method

As can be observed from the bottom view of Figure 2,

Ω contains specific patterns of conics (intersections of two

blue cone surfaces and image plane in this figure), whose

corresponding cones share the same apex (origin o) and the

same axis (n). Such a pattern is called imaged or projected

concentric circles [21, 22]. Our optimization-based method

is to impose the imaged concentric circles to estimate pc.
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Assumption. Previous calibration methods using imaged

concentric circles cannot be directly applied to our problem

due to the under-constrained input, as mentioned in Sec-

tion 2.2. To make this problem more tractable, we take

the analytic formation in [25] for Ω (glass with double sur-

faces). Given an entry α ∈ Ω and its θ ∈ Θ, we have2

α = F(θ, κ) =
1

2
(R⊥ +R‖) =

1

2
(

2Rs
⊥

1 +Rs
⊥

+
2Rs

‖

1 +Rs
‖

), (4)

where refractive index κ = 1.474 as suggested by [25],

subscripts ‘⊥’ and ‘‖’ represent polarized components per-

pendicular and parallel to the glass plane, Rs
⊥ and Rs

‖ are

the polarized components for single surface,

Rs
⊥ = (

cos θ − κ cos θt
cos θ + κ cos θt

)2, Rs
‖ = (

cos θt − κ cos θ

cos θt + κ cos θ
)2, (5)

where θt = arcsin( 1
κ
sin θ) according to Snell’s law. Fig-

ure 3 shows that both F(θ, κ) and Fθ(θ, κ) are monotoni-

cally increasing functions of θ. Kindly note that polarized

images are not required at all and the formation above is just

for the analytic formation of Ω in our method.

Detecting reliable points to fit conics. Note that points

on the contour of a conic sharing the same value of θ (or α

due to their monotonically increasing relation). Therefore,

a contour is a set of points sharing the same α, or fall within

a given small interval. A larger interval is expected to in-

clude points of a contour tolerating larger errors of noisy Ω.

However, it may also include outliers from other contours.

Considering that F(θ, κ) and
∂F(θ,κ)

∂θ
are monotonically in-

creasing functions, we obtain two sets of reliable points by

a fixed size of an interval decreasing from large numbers.

This procedure is outlined in Algorithm 1. Parameter η is

set to 80 in our implementation. We then fit two conics from

these points according to method [45].

Solving for pc. We first estimate an initial guess of co-

ordinate of pc w.r.t. image plane, and represent it as

(u0
c , v

0
c )

⊤. As shown in Figure 2, point pc is the projected

circular point [12], therefore, (u0
c , v

0
c )

⊤ can be estimated by

method [22]. We then estimate pc by solving

min
pc

2∑

i=1

mi∑

j=1

(F(θij , κ)− αij)
2
,

θij = arccos
〈pc,pi,j〉

‖pc‖2 · ‖pi,j‖2
, s.t., f > 0,

(6)

where pij , i = 1, 2, j = 1, 2, ...,mi are points in the i-th

point sets (mi is points number) we obtained through Algo-

rithm 1, αij is their corresponding reflective amplitude co-

efficients. Note that the x- and y-axis coordinates of pij and

αij are known, and the z-axis coordinate of pij is the same

to that of pc. We solve Equation (6) based on the Quasi-

Newton method [35] initialized by p0
c = (u0

c , v
0
c ,−w)⊤.

2We consider function F takes either a scalar θ or matrix Θ as the input

and outputs either a scalar α or matrix Ω accordingly.

Figure 3. Curves of F(θ, κ) and
∂F(θ,κ)

∂θ
varying with AoI θ falling

in an interval of [0◦, 90◦] regarding different κ.

Algorithm 1 Detecting two sets of reliable points.

set a = max(Ω)−min(Ω)
w+h

, b = max(Ω)− ηa,

repeat

repeat

set an interval J = (b− a, b+ a],
b = b− a,

until more than (h+w) points whose α fall within J ,

obtain a set of points,

b = b− ηa,

until obtain two sets of points or b− a < min(Ω)

3.3. A Learning­based Method

The optimization-based method above achieves our goal

for clean data, but it is hardly applicable in a real scenario

since it requires a known formation of α with a given refrac-

tive index κ. Besides, the fitted conics may cause accumu-

lative errors for the estimation of pc. Considering that all

entries of Ω are expected to be determined by about 5 un-

knowns (including the radial distortion parameter), we pro-

pose a learning-based method that fully exploits all entries

of Ω to overcome above limitations. We jointly optimize a

reflection separation network (denoted by S) and a calibra-

tion network (denoted by C) such that,

(T,R,Ω) = S(I), pc = C(Ω). (7)

We borrow the method in [53] for our reflection separation

network, which can also be replaced by other reflection sep-

aration methods such as [64]. An overview of our frame-

work is shown in Figure 43. We use notations with subscript

‘est’ to represent estimated variables and those with ‘gt’ to

represent their ground truth.

Calibration network. Considering pc and Ω are spa-

tially consistent, our calibration network has the property

of pseudo-invariance regarding to rotation and flipping:

G(pc) = C(G(Ω)), (8)

3The down-sampling or up-sampling block in reflection separation

network is concatenated by units of convolution or deconvolution,

normalization, and ReLU. For implementation details, please refer

their paper [53] and code (https://github.com/csqiangwen/

Single-Image-Reflection-Removal-Beyond-Linearity).
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Figure 4. The framework of our learning-based method. The reflection separation network predicts a reflective amplitude coefficient map

Ω taking a reflection-contaminated image I as input. The calibration network estimates coordinate of pc taking the predicted Ω as input.

where G represents a flipping or rotation operation. To

avoid invalid regions from rotation, this paper only con-

siders flipping operation, i.e., left-right G1, up-down G2,

and their combination G3. For simplicity of notation, we

use G0 to represent the operation without flipping, i.e.,

Ω = G0(Ω),pc = G0(pc).
Loss functions. We alternatively optimize S and C. The

loss functions of LS and LC are,

LS = LWT + Le, LC = Le + Lg, (9)

where LWT is the same loss function as in [53], which

is composed of five ℓ1 loss functions for transmission and

its gradient, reflection, reconstructed or synthesized image,

and reflective amplitude coefficient map. Le and Lg are ℓ1
loss functions for pc,

Le =
1

4

3∑

i=0

‖C(Gi(Ωest))−Gi(pc,gt)‖1,

Lg =
1

4

3∑

i=0

‖C(Gi(Ωgt))−Gi(pc,gt)‖1,

(10)

where Ωest is estimated from reflection separation net-

work, i.e., Ωest = S(Igt). Both of these neural networks

are trained using Adam solver [24] with β1 = 0.5 and

β2 = 0.999. The batch size is set to 4, and learning rates

are 0.0002 and 0.0001 for the reflection separation network

and calibration network, respectively.

3.4. Data Preparation

Training dataset. Following strategies adopted in

learning-based methods for single reflection separation

(e.g., [49, 53]) and single image camera calibration

Figure 5. Data collection for controlled and wild scenarios.

(e.g., [32, 56]), we synthesize our training data. We

randomly select 22082 images with a focal length between

24mm and 105mm from the FocalLens dataset [60] and

divide these images into two sets with paired focal length.

We then select T and R with same focal length from these

two sets respectively, and randomly add noise of blurry,

ghost effects, or luminance decay to R by convoluting it

with a Gaussian kernel, one-pulse or two-pulse shaping

filter to simulate different types of reflection [47]. We

calculate the AoI map Θ according to a randomly generated

variables of glass orientation n and horizontal FoV H .

Then Ω is calculated based on Equation (4) with a random

κ. Finally, we synthesize 11041 reflection-contaminated

images I according to Equation (1).

Validation dataset. To demonstrate the generality and

practicability of the proposed method, we collect 320 real

data for validation. The focal length or FoV is automatically

provided by the camera and we calibrate the orientation of

glass through a checkboard pasting on it (Figure 5). These

320 images are captured with 8 different commonly used fo-

cal lengths, each for about 40 images (between 35 and 45).

3026



Regarding the glass, 160 out of 320 images are captured in a

controlled scenario and the remaining in the wild scenario.

Figure 5 shows the data collection for these scenarios. For

the controlled one, we capture images with portable glass.

Therefore, we are able to obtain the transmission (by re-

moving the glass) and control the glass orientations (in 5
levels, w.r.t. the angle of the pan). Transmission or reflec-

tion images in this scenario are also controlled to be simple.

For the wild one, we capture images with fixed natural glass

found in daily scenarios, such as glass doors or walls, shop

windows, and glass-paneled cabinets or cases.

4. Experimental Results

In this section, we report our evaluation for camera cali-

bration and reflection separation. Moreover, we provide an

interesting byproduct to estimate a panorama based on the

results of our method.

4.1. Evaluation for Camera Calibration

We conduct experiments for camera calibration on our

validation dataset with 320 samples. We compute errors of

the estimated glass orientation n and horizontal FoV H by

comparing them with their ground truth, with metrics of the

angular error en (in degree) and the absolute error eH (in

degree), respectively.

4.1.1 Overall Performance

Considering camera distortion is not addressed in our meth-

ods, we report results regarding inputs with or without dis-

tortion correction. Table 1 displays the quantitative per-

formance of our optimization-based method (represented

as ‘Baseline’) and learning-based method (represented as

‘Ours’). As can be observed, both our optimization-

based method and learning-based method achieve bet-

ter performance with UNDISTORTED inputs, because our

optimization-based method requires undistorted images to

maintain patterns of conics for a better initialization of

Equation (6) and our learning-based method is trained with

undistorted Ω. Our learning-based method outperforms our

optimization-based method, because it fully exploits all en-

tries of an estimated reflective amplitude coefficient map

Ω and implicitly fits unknowns for function α(n, H, κ) in

Equation (2). Considering the superior performance of our

learning-based method and the applicability to real data re-

sults in the following sections are from our learning-based

method with distorted inputs.

4.1.2 Free from Image Contents

Different from existing methods for single image camera

calibration that leverage image contents for calibration, our

method takes the reflective amplitude map as the calibra-

tion cue. Therefore, the performance of our method is ex-

pected to be free from image contents or scenarios. Be-

Table 1. Quantitative performance of our methods in terms of en
and eH with distorted and undistorted inputs.

DISTORTED UNDISTORTED

Baseline Ours Baseline Ours

en 28.33 27.61 28.27 27.31

eH 18.76 16.30 18.49 15.96

Table 2. Quantitative performance of HS [16], our methods, and

their fusion in terms of eH .
CONTROLLED WILD

HS [16] Ours Fusion HS [16] Ours Fusion

eH 14.38 16.48 13.91 12.48 16.11 12.43

Figure 6. Results of HS [16] and our method. Each subplot shows

the results from HS [16] or our method on CONTROLLED or WILD

subset; the X-axis is the horizontal FoV of inputs in ascending or-

der; the Y -axis is the absolute angular error eH in degrees; statis-

tics of eH for all testing with a same FoV are displayed using the

box-and-whisker plot. The red dot indicates the mean value, the

red line is the median, the top and bottom bounds of the blue box

indicate the first and third quartile values, and the top and bottom

ends of the black lines indicate the minimum and maximum eH .

Figure 7. Images from our CONTROLLED and WILD subsets. Ta-

ble on the right shows the predicted horizontal FoVs and its ground

truth (GT) in degree.

sides, due to the fundamental difference of observations for

calibration cues, our method can be combined with general

calibration methods (e.g., [16, 32]), to improve the perfor-

mance of camera calibration. We investigate these argu-

ments by taking the performance of a state-of-the-art cali-

bration method HS [16]4 (for a single image, leverage im-

age contents for calibration) as a reference and conduct

experiments on data from different scenarios, i.e., CON-

TROLLED and WILD subsects. The inputs of HS [16] are

transmission images recovered by our method.

As can be observed from Table 2 and Figure 6, the over-

all performance of our method is not as good as that of

HS [16] due to challenging calibration cue used. HS [16]

shows a larger performance divergence against that of ours

4http://rachmaninoff.gel.ulaval.ca:8003/
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Table 3. Comparisons of quantitative results in terms of SSIM and PSNR on SIR2 [47], ZN18-DATA [64], PB19-DATA [37], and our

CONTROLLED datasets for reflection removal. Green to red means small to large errors.
Methods ZN18 [64] YM19 [62] WS19 [49] WY19 [52] WT19 [53] Ours

SIR2 [47]
SSIM 0.8453 0.8547 0.9003 0.8885 0.8550 0.8895

PSNR 19.24 21.42 24.19 23.35 23.71 23.74

ZN18-DATA [64]
SSIM 0.8210 0.7220 0.7654 0.7193 0.8180 0.7510

PSNR 21.30 18.22 19.07 18.99 21.28 19.08

PB19-DATA [37]
SSIM 0.7970 0.8308 0.8580 0.8713 0.8359 0.8736

PSNR 15.57 17.06 19.82 20.23 17.02 16.88

CONTROLLED
SSIM 0.8115 0.7877 0.8283 0.7950 0.8004 0.8445

PSNR 21.93 21.50 20.69 21.27 22.48 23.93

over different scenarios and achieves much better results for

WILD scenario against CONTROLLED scenario. This is be-

cause images in our WILD subset contain more contents for

calibration against those in CONTROLLED subset, as shown

in Figure 7. Our superior performance for CONTROLLED

data against WILD data indicates the difficulty brought by a

variety of glass in WILD data.

As can also be observed from Figure 6, HS [16] and

our method achieve their own best performance with differ-

ent FoVs of inputs, which reflects that they fundamentally

use different calibration cues. We conduct the experiment

to fuse outputs from ours and those from HS [16], with a

simple weighted summation strategy (weights are 0.2 and

0.8, respectively). Table 2 displays that the performance of

such a simple fusion. Figure 7 shows the fusion results of

two examples. The performance improvement for both sub-

sets demonstrates the fundamental difference between our

method and HS [16] that leverages image contents for cam-

era calibration.

4.2. Evaluation for Reflection Removal

Considering our calibration network implicitly con-

strains the output (i.e., Ω) of the separation network, we

investigate this impact on the performance of single im-

age reflection removal. Specifically, we compare the per-

formance with five state-of-the-art single image reflection

removal methods, including an optimization-based method

(i.e., YM19 [62]) and four learning-based methods (i.e.,

ZN18 [64], WS19 [49], WY19 [52]). We conduct ex-

periments on three publicly available datasets as well as

our CONTROLLED data with commonly used metrics (i.e.,

SSIM [51] and PSNR [19]) for this topic. The num-

bers of testing images from these datasets are, SIR2 [47]

(454), ZN18-DATA [64] (109), PB19-DATA [37] (150),

and CONTROLLED (160), respectively. For all learning-

based methods, we retrain their models using our training

data. To perform a fair comparison with these methods, we

report the results with better performance by comparing us-

ing the pre-trained models provided by authors and our re-

trained models for each dataset.

As can be observed from Table 3, our method achieves

state-of-the-art performance. Considering we borrow the

reflection separation network from WT19 [53], our supe-

Figure 8. From top to bottom are samples from SIR2 [47], ZN18-

DATA [64], PB19-DATA [37], and CONTROLLED. From left to

right: inputs of reflection-contaminated images, ground truth of

transmission, results from ZN18 [64], YM19 [62], WS19 [49],

WY19 [52], WT19 [53], and ours. Zoom in for better details.

rior performance over WT19 [53] validates the effective-

ness of considering camera parameters for the problem of

single image reflection removal. The visual quality compar-

ison is shown in Figure 8. As can be observed, ZN18 [64]

and WS19 [49] produce darker results, YM19 [62] and

WY19 [52] output over-smooth ones, and results from

WT19 [53] contain unexpected artifacts. Our method al-

leviates these problems and hence produces better results as

compared with other methods.

4.3. Byproduct for Panorama Estimation

In this section, we show how our byproduct output con-

tributes to the problem of panorama estimation. Infer-

encing of a panoramic photograph from a single view is

quite challenging due to its limited and unknown FoV. Re-

cent progress leverages deep learning-based methods and

shows the successful estimate of the panorama for indoor

and outdoor scenes, however, they use parametric represen-

tations that generate environment maps lacking sufficient

high-frequency information (i.e., [17, 10, 28]), due to the

ill-posedness of this problem. Taking a single reflection-

contaminated image as an input, our method produces more

knowledge of a scene than a single image by taking plate

glass as a lighting probe, i.e., two views of a panoramic

photograph with geometric relation. We thereby study to al-

leviate the ill-posed problem of panorama estimation from

a single reflection-contaminated image. Similar to previous

works [11, 41] for this topic, we consider the indoor scene

and regard the problem of panorama estimation as to com-

plete a panoramic photograph.
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Figure 9. Left: The framework to estimate a panorama from (a) a single reflection-contaminated image I. (b) Our calibration method

estimates transmission T and reflection R as well as their camera parameters n, H . (c) An incomplete panorama is then obtained by

embedding T and R based on the geometric relation determined by n, H , i.e., fix T at the middle, the spatial position of R in this

incomplete panorama is determined by n, the size of embedding views is determined by H . The panorama completion network takes the

incomplete panorama as input and outputs (d) a panorama. Right: Visual quality comparison of light probes from (f) our method, (g)

ground truth, and (h) GS [11]. GS [11] takes the (e) transmission image Tgt as the input.

The framework of estimating panorama from a

reflection-contaminated image is outlined in Figure 9 (left).

To train the panorama completion network, we borrow an

existing image inpainting network [66] and train it with

10, 800 indoor panoramas from Matterport3D dataset [4] as

outputs. We generated inputs of training data from these

panoramas by locating two regions computed from a ran-

dom n, H and masking out remaining regions.

Figure 9 (right) shows our estimated result as well as

the visual quality comparison with GS [11]5. Note that

GS [11] takes reflection-free Tgt as the input. For easier

comparison, we provide the panorama captured by a light-

ing probe for reference and transform panoramas as light

probes through HDRshop6. As can be observed, our result

contains more details as compared to that from GS [11].

Moreover, we also provide a more plausible prediction of

the dominant lighting, thanks to the additional information

from the separated reflection (red rectangle in Figure 9 (b)).

5. Conclusion

This paper answers the question ‘What plate glass re-

veals about calibration cues’, by proposing a new calibra-

tion method that estimates camera parameters taking the

reflective amplitude coefficient map as the calibration cue.

Different from previous works that leverage image contents

from a noise-free image, our method deals with the cali-

bration problem in the context of plate glass reflection and

takes a reflection-contaminated image as the input. It fa-

cilitates single image reflection removal by involving the

constraint of geometric relation to the reflective amplitude

5http://rachmaninoff.gel.ulaval.ca:8001/
6Note that the images of light probes are left-right flipped for easier

comparison. HDRshop: http://ict.debevec.org/~debevec/

HDRShop/main-pages/tutorials.html

Figure 10. Two failure examples from our validation data with a

small and a large FoVs. Left: ground truth Hgt = 39.6◦, esti-

mated Hest = 123.4◦. Right: ground truth Hgt = 73.4◦, esti-

mated Hest = 23.0◦.

coefficient map. Based on outputs from our method, our

byproduct shows a solution to the problem of single image

panorama estimation by considering reflection as an addi-

tional view. Our promising performance on problems of

camera calibration and reflection removal benefits to solv-

ing high-level vision tasks such as food recognition behind

showcases or face recognition behind vehicle windows.

Limitations. Although our method is free from image

contents, it is sensitive to incorrectly estimated calibration

cue Ω. Figure 10 shows two failure examples. We leave

the prediction of a robust representation of calibration cue

Ω from a single contaminated image as our future work.
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