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Abstract

The recent integration of attention mechanisms into seg-

mentation networks improves their representational capa-

bilities through a great emphasis on more informative fea-

tures. However, these attention mechanisms ignore an

implicit sub-task of semantic segmentation and are con-

strained by the grid structure of convolution kernels. In this

paper, we propose a novel squeeze-and-attention network

(SANet) architecture that leverages an effective squeeze-

and-attention (SA) module to account for two distinctive

characteristics of segmentation: i) pixel-group attention,

and ii) pixel-wise prediction. Specifically, the proposed

SA modules impose pixel-group attention on conventional

convolution by introducing an ‘attention’ convolutional

channel, thus taking into account spatial-channel inter-

dependencies in an efficient manner. The final segmentation

results are produced by merging outputs from four hierar-

chical stages of a SANet to integrate multi-scale contexts

for obtaining an enhanced pixel-wise prediction. Empirical

experiments on two challenging public datasets validate the

effectiveness of the proposed SANets, which achieves 83.2%

mIoU (without COCO pre-training) on PASCAL VOC and

a state-of-the-art mIoU of 54.4% on PASCAL Context.

1. Introduction

Segmentation networks become the key recognition el-

ements for autonomous driving, medical image analysis,

robotic navigation and virtual reality. The advances of seg-

mentation methods are mainly driven by improving pixel-

wise representation for accurate labeling. However, se-

mantic segmentation is not fully equivalent to pixel-wise

prediction. In this paper, we argue that semantic segmen-

tation can be disentangled into two independent dimen-

Figure 1: Semantic segmentation can be disentangled into

two sub-tasks: explicit pixel-wise prediction and implicit

pixel grouping. These two tasks separate semantic segmen-

tation from image classification. Motivated by designing a

module that accounts for pixel grouping, we design a novel

squeeze-and-attention (SA) module along with a SANet to

improve the performance of dense prediction and account

for the largely ignored pixel grouping.

sions: pixel-wise prediction and pixel grouping. Specifi-

cally, pixel-wise prediction addresses the prediction of each

pixel, while pixel grouping emphasizes the connection be-

tween pixels. Previous segmentation works mainly focus

on improving segmentation performance from the pixel-

level but largely ignore the implicit task of pixel grouping

[26, 5, 41, 40, 4, 3].

The largely ignored task of pixel grouping can be dis-

covered by disentangling semantic segmentation into two

sub-tasks. As shown in Figure 1, the first sub-task requires

precise pixel-wise annotation and introduces spatial con-

straints to image classification. Recent segmentation mod-

els achieved significant advances by aggregating contextual

features using pyramid pooling and dilated convolution lay-

ers for pixel-wise labeling [41, 5]. However, the grid struc-
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tures of these kernels restrict the shapes of spatial features

learned in segmentation networks. The feature aggrega-

tion strategy enhances pixel-wise prediction results, but the

global perspective of understanding images remains under-

exploited.

To this end, we introduce the second sub-task of pixel

grouping that directly encourages pixels that belong to the

same class being grouped together without spatial limita-

tion. Pixel grouping involves translating images sampled

from a range of electromagnetic spectrum to pixel groups

defined in a task-specific semantic spectrum, where each

entry of the semantic spectrum corresponds to a class. Mo-

tivated by designing a module that accounts for pixel group-

ing, we design a novel squeeze-and-attention (SA) module

to alleviate the local constraints of convolution kernels. The

SA module contains down-sampled but not fully squeezed

attention channels to efficiently produce non-local spatial

attention, while avoiding the usage of heavy dilated convo-

lution in output heads. Specifically, An attention convolu-

tion are used to generate attention masks because each con-

volution kernel sweeps across input feature maps. Different

from SE modules [19] that enhance backbones, SA modules

integrate spatial attentions and are head units, the outputs

of which are aggregated to improve segmentation perfor-

mance. The spatial attention mechanism introduced by the

SA modules emphasizes the attention of pixel groups that

belong to the same classes at different spatial scales. Ad-

ditionally, the squeezed channel works as global attention

masks.

We design SANets with four SA modules to approach

the above two tasks of segmentation. The SA modules learn

multi-scale spatial features and non-local spectral features

and therefore overcome the constraints of convolution lay-

ers for segmentation. We use dilated ResNet [17] and Ef-

ficient Nets [32] as backbones to take advantage of their

strong capacity for image recognition. To aggregate multi-

stage non-local features, we adopt SA modules on the multi-

stage outputs of backbones, resulting in better object bound-

aries and scene parsing outcomes. This simple but effective

innovation makes it easier to generalize SANets to other re-

lated visual recognition tasks. We validate the SANets using

two challenging segmentation datasets: PASCAL context

and PASCAL VOC 2012 [11, 45, 44].

The contributions of this paper are three-fold:

• We disentangle semantic segmentation into two sub-

tasks: pixel-wise dense prediction and pixel grouping.

• We design a squeeze-and-attention (SA) module that

accounts for both the multi-scale dense prediction of

individual pixels and the spatial attention of pixel

groups.

• We propose a squeeze-and-attention network (SANet)

with multi-level heads to exploit the representational

Figure 2: (a) Residual Block; (b) Squeeze-and-excitation

(SE) module; (c) Squeeze-and-attention (SA) module; and

For simplicity, we show convolution (CONV), fully con-

nected (FC), average pooling (Avg. Pool) layers, while

omitting normalization and activation layers. The SA mod-

ule has a similar structure as the SE module that contains

an additional path to learn weights for re-calibrating chan-

nels of output feature maps Xout. The difference lies in that

the attention channel of SA modules uses average pooling

to down sample feature maps but not fully squeeze as in the

SE modules. Therefore, we term this channel the attention

convolution (ACONV) channel.

boost from SA modules, and to integrate multi-scale

contextual features and image-level categorical infor-

mation.

2. Related Works

Multi-scale contexts. Recent improvements for se-

mantic segmentation have mostly been made possible by

incorporating multi-scale contextual features to facilitate

segmentation models to extract discriminative features. a

Laplacian pyramid structure is introduced to combine multi-

scale features[15] introduced. A multi-path RefineNet ex-

plicitly integrate features extracted from multi-scale inputs

to boost segmentation outputs. Encoder-decoder architec-

tures have been used to fuse features that have different lev-

els of semantic meaning [2, 29]. The most popular methods

adopt pooling operations to collect spatial information from

different scales [41, 5]. Similarly, EncNet employs an en-

coding module that projects different contexts in a Gaussian

kernel space to encode multi-scale contextual features [40].

Graphical models like CRF and MRF are used to impose
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smoothness constraints to obtain better segmentation results

[43, 24, 1]. Recently, a gather-excite module is designed to

alleviate the local feature constraints of classic convolution

by gathering features from long-range contexts [18]. We

improve the multi-scale dense prediction by merging out-

puts from different stages of backbone residual networks.

Channel-wise attention. Selectively weighting the

channels of feature maps effectively increases the represen-

tational power of conventional residual modules. A good

example is the squeeze-and-excitation (SE) module because

it emphasizes attention on the selected channels of feature

maps. This module significantly improves classification ac-

curacy of residual networks by grouping related classes to-

gether [19]. EncNet also uses the categorical recognition

capacity of SE modules [40]. Discriminative Feature Net-

work (DFN) utilize the channel-weighting paradigm in its

smooth sub-network. [21].

Although re-calibrating the spectral weights of feature

map channels has been proved effective for improving the

representational power of convolution layers, but the im-

plementation (e.g. squeeze-and-excitation modules) leads

to excessive model parameters. In contrast to SE module

[19], we design a novel squeeze-and-attention (SA) module

with a down-sampled but not fully squeezed convolutional

channel to produce a flexible module. Specifically, this ad-

ditional channel generates categorical specific soft attention

masks for pixel grouping, while adding scaled spatial fea-

tures on top of the classical convolution channels for pixel-

level prediction.

Pixel-group attention. The success of attention mecha-

nism in neural language processing foster its adoption for

semantic segmentation. Spatial Transform Networks ex-

plicitly learn spatial attention in the form of affine transfor-

mation to increase feature invariance [20]. Since machine

translation and image translation share many similarities,

RNN and LSTM have been used for semantic segmentation

by connecting semantic labeling to translation [43, 21]. [7]

employed a scale-sensitive attention strategy to enable net-

works to focus on objects of different scales. [42] designed

a specific spatial attention propagation mechanism, includ-

ing a collection channel and a diffusion channel. [35] used

self-attention masks by computing correlation metrics. [18]

designed a gather-and-excite operation via collecting local

features to generate hard masks for image classification.

Also, [36] has proved that not-fully-squeezed module is ef-

fective for image classification with marginal computation

cost. Since the weights generated by spatially-asymmetric

recalibration (SAR) modules are vectors, they cannot be di-

rectly used for segmentation.Different from exiting atten-

tion modules, we use the down-sampled channels that im-

plemented by pooling layers to aggregate multi-scale fea-

tures and generate soft global attention masks simultane-

ously. Therefore, the SA models enhance the objective of

pixel-level dense prediction and consider the pixel-group at-

tention that has largely been ignored.

3. Framework

Classical convolution mainly focuses on spatial local

feature encoding and Squeeze-and-Excitation (SE) modules

enhance it by selectively re-weighting feature map channels

through the use of global image information[19]. Inspired

by this simple but effective SE module for image-level cat-

egorization, we design a Squeeze-and-Attention (SA) mod-

ule that incorporates the advantages of fully convolutional

layers for dense pixel-wise prediction and additionally adds

an alternative, more local form of feature map re-weighting,

which we call pixel-group attention. Similar to the SE mod-

ule that boosts classification performance, the SA module is

designed specifically for improving segmentation results.

3.1. Squeeze­and­excitation module

Residual networks (ResNets) are widely used as the

backbones of segmentation networks because of their strong

performance on image recognition, and it has been shown

that ResNets pre-trained on the large image dataset Ima-

geNet transfer well to other vision tasks, including seman-

tic segmentation [41, 5]. Since classical convolution can

be regarded as a spatial attention mechanism, we start from

the residual blocks that perform as the fundamental compo-

nents of ResNets. As shown in Figure 2 (a), conventional

residual blocks can be formulated as:

Xout = Xin +Xres = Xin + F (Xin; Θ,Ω) (1)

where F (·) represents the residual function, which is pa-

rameterized by Θ and Ω denotes the structure of two convo-

lutional layers. Xin ∈ R
C′

×H′
×W ′

and Xout ∈ R
C×H×W

are input and output feature maps. The SE module improve

residual block by re-calibrating feature map channels, It is

worth noting that we adopt the updated version of SE mod-

ule, which perform equivalently to original one in [19]. As

shown in Figure 2 (b), the SE module can be formulated as:

Xout = w ∗Xin + F (Xin; Θ,Ω) (2)

where the learned weights w for re-calibrating the channels

of input feature map Xin is calculated as:

w = Φ(W2 ∗ σ(W1 ∗APool(Xin))), (3)

where the Φ(·) represents the sigmoid function and σ(·) de-

notes the ReLU activation function. First, an average pool-

ing layer is used to ‘squeeze’ input feature map Xin. Then,

two fully connected layers parameterized by W1 and W2 are

adopted to get the ‘excitation’ weights. By adding such a

simple re-weighting mechanism, the SE module effectively

increases the representational capacity of residual blocks.
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Figure 3: Squeeze-and-attention Network. The SANet aggregates outputs from multiple hierarchical SA heads to generate

multi-scale class-wise masks accounting for the largely ignored pixel grouping task of semantic segmentation. The training

of these masks are supervised by corresponding categorical regions in ground truth annotation. Also, the masks are used

to guide the pixel-wise prediction, which is the output from a FCN head. In this way, we utilize the pixel-group attention

extraction capacity of SA modules and integrate multi-scale contextual features simultaneously.

3.2. Squeeze­and­attention module

Useful representation for semantic segmentation appears

at both global and local levels of an image. At the pixel

level, convolution layers generate feature maps conditional

on local information, as convolution is computed locally

around each pixel. Pixel level convolution lays the foun-

dation of all semantic segmentation modules, and increased

receptive field of convolution layers in various ways boost

segmentation performance [41, 40], showing larger context

is useful for semantic segmentation.

At the global image level, context can be exploited to de-

termine which parts of feature maps are activated, because

the contextual features indicate which classes likely to ap-

pear together in the image. Also, [40] shows that the global

context provides a broader field of view which is beneficial

for semantic segmentation. Global context features encode

these areas holistically, rather than learning a re-weighting

independently for each portion of the image. However,

there remains little investigation into encoding context at a

more fine-grained scale, which is needed because different

sections of the same image could contain totally different

environments.

To this end, we design a squeeze-and-attention (SA)

module to learn more representative features for the task of

semantic segmentation through a re-weighting mechanism

that accounts for both local and global aspects. The SA

module expands the re-weighting channel of SE module, as

shown in Figure 2 (b), with spatial information not fully

squeezed to adapt the SE modules for scene parsing. There-

fore, as shown in Figure 2 (c), a simple squeeze-attention

module is proposed and can be formulated as:

Xout = Xattn ∗Xres +Xattn (4)

where Xattn = Up(σ(X̂attn)) and Up(·) is a up-sampled

function to expand the output of the attention channel:

X̂attn = Fattn(APool(Xin); Θattn,Ωattn) (5)

where X̂attn represents the output of the attention convo-

lution channel Fattn(·), which is parameterized by Θattn

and the structure of attention convolution layers Ωattn. A

average pooling layer APool(·) is used to perform the not-

fully-squeezed operation and then the output of the attention

channel X̂attn is up-sampled to match the output of main

convolution channel Xres.

In this way, the SA modules extend SE modules with

preserved spatial information and the up-sampled output of

the attention channel Xattn aggregates non-local extracted

features upon the main channel.

3.3. Squeeze­and­attention network

We build a SA network (SANet) for semantic segmen-

tation on top of the SA modules. Specifically, we use SA

modules as heads to extract features from the four stages

of backbone networks to fully exploit their multi-scale. As

illustrated in Figure 3, the total loss involves three parts:

dense loss(CE loss), mask loss(CE loss), and categorical

loss(binary CE loss). ynj is the average pooled results of

Y den” Therefore, the total loss of SANets can be repre-

sented as:
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Figure 4: Ablation study of α and β that weight the cate-

gorical loss and dense prediction loss, respectively. We test

SANets using ResNet50 as backbones and train 20 epochs

for each case. Left: mIoUs of SANets with fixed β = 0.8
for selecting α. Right mIoUs of SANets with fixed α = 0.2
for selecting β.

LSANet = Lmask + α ∗ Lcat + β ∗ Lden (6)

where α and β are weighting parameters of categorical loss

and auxiliary loss, respectively. Each component of the total

loss can be formulated as follows:

Lmask =
1

N ×M

∑N

n=1

∑M

i=1

∑C

j=1

Ynij log Ŷ
mask
nij

(7)

Lcat =
1

N

∑N

n=1

∑C

j=1

ynj log ŷ
cat
nj

+(1− ynj) log (1− ŷcatnj )
(8)

Lden =
1

N ×M

∑N

n=1

∑M

i=1

∑C

j=1

Ynij log Ŷ
den
nij

(9)

where N is number of training data size for each epoch, M

represents the spaital locations, and C denotes the number

of classes for a dataset. Ŷnij and Ynij are the predictions

of SANets and ground truth, ŷnj and ynj are the categorical

predictions and targets to calculate the categorical loss Lcat.

The Lcat takes a binary cross entropy form. Lmask and

Lden are typical cross entropy losses. The auxiliary head

is similar to the strategy of deep supervision [41, 40], but

its input comes from the fourth stage of backbone ResNet

instead of the commonly used third stage. The prediction of

SANets integrates the pixel-wise prediction and is regular-

ized by the fourth SA feature map. Hence, the regularized

dense segmentation prediction of a SANet is Ŷ den+ Ŷ SA4.

Dilated FCNs have been used as the backbones of

SANets. Suppose that the input image has a size of 3×512×
512. The main channel of SA modules has the same channel

numbers as their attention counterparts and the same spatial

sizes as the input features. Empirically, we reduce the chan-

nel sizes of inputs to a fourth in both main and attention

channels, set the downsample (max pooling) and upsample

ratio of attention channels to 8, and set the channel num-

ber of the intermediate fully connected layer of SE modules

to 4 in both datasets. We adopt group convolution using 2

Figure 5: Sample semantic segmentation results on PAS-

CAL Context validation set. Example of semantic segmen-

tation results on PASCAL VOC validation set. (a) Raw im-

ages. (b) Groud truth images. (c) Results of a FCN baseline.

(d) Results of a SANet. SANet generates more accurate re-

sults, especially for object boundaries. The last raw shows a

failed example with relative complex contexts, which bring

challenges for segmentation models.

Model Backbone SA Cat Den PAcc mIoU

FCN Res50 74.5 43.2

SANet Res50 X 77.2 49.2

SANet Res50 X X 79.0 50.7

SANet Res50 X X X 79.3 51.9

SANet Res101 X X X 80.6 53.0

SANet EffNet-b7 X X X 81.6 55.3

Table 1: Ablation study results of SANets on PASCAL

Context dataset (59 classes without background). SA:

Squeeze-and-attention heads. Cat: Categorical loss. Den:

Dense prediction Loss. PAcc: Pixel accuracy (%). mIoU:

Mean intersection of union (%).

groups for the first convolution operations in both main and

attention channels. Also, we adapt outputs of SA heads to

the class number of segmentation datasets.

4. Experimental Results

In this section, we first compare SA module to SE mod-

ules, then conduct an ablation study using the PASCAL

Context [28] dataset to test the effectiveness of each compo-

nent of the total training loss, and further validate SANets

on the challenging PASCAL VOC dataset [12]. Follow-

ing the convention for scene parsing [5, 40], we paper both

mean intersection and union (mIoU) and pixel-wise accu-

racy (PAcc) on PASCAL Context, and mIoU only on PAS-

CAL VOC dataset to assess the effectiveness of segmenta-
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Model Backbone mIoU

FCN [26] 37.8

CRF-RNN[43] 39.3

ParseNet[24] 40.4

BoxSup[10] 40.5

HighOrder-CRF[1] 41.3

Piecewise[23] 43.3

Deeplab-v2[5] ResNet101 45.7

RefineNet[22] ResNet152 47.3

EncNet[40] ResNet101 51.7

SANet (ours) ResNet101 52.1

SANet (ours) EffNet-b7 54.4

Table 2: Mean intersection over union (%) results on PAS-

CAL Context dataset (60 classes with background).

Model PAcc mIoU

FCN50 76.2 44.9

FCN101 76.7 45.6

FCN50-SE 76.0 44.6

FCN101-SE 76.6 45.7

SANet50 (ours) 78.9 49.0

SANet101 (ours) 79.2 50.1

Table 3: Pixel accuracy (PAcc) and mIoUs of baseline

dilated FCNs, dilated FCNs with SE modules (FCN-SE),

and SANets using ResNet50 or ResNet101 as backbones

on PASCAL Context. SANet significanly output their SE

counterparts and baseline models. Each model is trained

for 20 epochs

tion models.

4.1. Implementation

We use Pytorch [30] to implement SANets and con-

duct ablation studies. For the training process, we adopt a

poly learning rate decreasing schedule as in previous works

[41, 40]. The starting learning rates for PASCAL Con-

text and PASCAL VOC are 0.001 and 0.0001, respectively.

Stochastic gradient descent and poly learning rate anneal-

ing schedule are adopted for both datasets. For PASCAL

Context dataset, we train SANets for 80 epochs. As for the

PASCAL VOC dataset, we pretrain models on the COCO

dataset. Then, we train networks for 50 epochs on the vali-

dation set. We adopt the ResNet50 and ResNet101 as the

backbones of SANets because these networks have been

widely used for mainstream segmentation benchmarks. We

set the batch-size to 16 in all training cases and use sync

batch normalization across multiple gpus recentely imple-

mented by [40]. We concatenate four SA head outputs to

exploit the multi-scale features of different stages of back-

bones and also to regularize the training of deep networks.

4.2. Results on PASCAL Context

The Pascal Context dataset contains 59 classes, 4998

training images, and 5105 test images. Since this dataset is

relatively small in size, we use it as the benchmark to design

module architectures and select hyper-parameters including

α and β. To conduct an ablation study, we explore each

component of SA modules that contribute to enhancing the

segmentation results of SANets.

The ablation study includes three parts. First, we test

the impacts of the weights α and β of the total training

loss. As shown in Figure 4, we test α from 0 to 1.0, and

find that the SANet with α = 0.2 works the best. Simi-

larly, we fix α = 0.2 to find that β = 0.8 yields the best

segmentation performance. Second, we study the impacts

of categorical loss and dense prediction loss of in equation

(7) using selected hyper-parameters. Table 1 shows that the

SANet, which contains the four dual-usage SA modules,

using ResNet50 as the backbone improves significantly (a

2.7% PAcc and 6.0% mIoU increase) compared to the FCN

baseline. Also, the categorical loss and auxiliary loss boost

the segmentation performance.

We compare SANets with state-of-the-art models to val-

idate their effectiveness, as shown in Table 2, the SANet us-

ing ResNet101 as its backbone achieves 53.0% mIoU. The

mIoU equals to 52.1% when including the background class

this result and outperforms other competitors. Also, we use

the recently published Efficient Net (EffNet) [32] as back-

bones. Then, the EffNet version SANet achieved state-of-

the-art 54.4% mIoU that sets new records for the PASCAL

Context dataset. Figure 5 shows the segmentation results

of a dilated ResNet50 FCN and a SANet using the same

backbone. In the first three rows, SANets generate better

object boundaries and higher segmentation accuracy. How-

ever, for complex images like the last row, both models fail

to generate clean parsing results. In general, the qualitative

assessment is in line with quantitative papers.

We also validate the effectiveness of SA modules by

comparing them with SE modules on top of the baseline

dilated FCNs, including ResNet50 and ResNet101. Table

3 shows that the SANets achieve the best accuracy with

significant improvement (4.1% and 4.5% mIoU increase)

in both settings, while FCN-SE models barely improve the

segmentation results.

4.3. Attention and Feature Maps

The classic convolution already yields inherent global

attention because each convolutional kernel sweeps across

spatial locations over input feature maps. Therefore, we vi-

sualize the attention and feature maps of a example of PAS-

CAL VOC set and conduct a comparison between Head1

and Head4 within a SANet To better understand the effect

of attention channels in SA modules. We use L2 distance

to show the attention maps of the attention channel within
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Figure 6: Attention and feature map visualization of SA

head1 and head4 of a trained SANet on PASCAL VOC

dataset. For each head, the feature maps of main channel,

attention channel, and output are demonstrated. (a) Raw

image and its ground truth; the pixel group visualization of

(b) blue point; (c) yellow point; and (d) magenta point.

SA module, and select the most activated feature map chan-

nels for the outputs of the main channel within the same SA

module. The activated areas (red color) of the output feature

maps of SA modules can be regarded as the pixel groups of

selected points. For the sake of visualization, we scale all

feature maps illustrated in Figure 6 to the same size. we se-

lect three points (red, blue, and magenta) in this examples to

show that the attention channel emphasizes the pixel-group

attention, which is complementary to the main channels of

SA modules that focus on pixel-level prediction.

Interestingly, as shown in Figure 6, the attention chan-

nels in low-level (SA head1) and high-level (SA head4) play

different roles. For the low-level stage, the attention maps

of the attention channel have broad field of view, and feature

maps of the main channel focus on local feature extraction

with object boundary being preserved. In contrast, for the

high-level stage, the attention maps of the attention chan-

nel mainly focus on the areas surrounding selected points,

and feature maps of the main channel present more homo-

geneous with clearer semantic meaning than those of head1.

Figure 7: Example of semantic segmentation results on

PASCAL VOC validation set. (a) Raw images. (b) Groud

truth images. (c) FCN baseline. (d) A SANet. SANet gener-

ates more accurate parsing results compared to the baseline.

4.4. Results on PASCAL VOC

The PASCAL VOC dataset [12] is the most widely stud-

ied segmentation benchmark, which contains 20 classes and

is composed of 10582 training images, and 1449 validation

images, 1456 test images. We train the SANet using aug-

mented data for 80 epochs as previous works [26, 10].

First, we test the SANet without COCO pretraining. As

shown in Table 4, the SANet achieves 83.2% mIoU which is

higher than its competitors and dominates multiple classes,

including aeroplane, chair, cow, table, dog, plant, sheep,

and tv monitor. This result validates the effectiveness of the

dual-usage SA modules. Models [9, 6] use extra datasets

like JFT [31] other than PASCAL VOC or COCO are not

included in Table 4.

Then, we test the the SANet with COCO pretraining. As

shown in Table 5, the SANet achieves an evaluated result

of 86.1% mIoU using COCO data for pretraining, which is

comparable to top-ranking models including PSPNet [41],

and outperforms the RefineNet [22] that is built on a heavy

ResNet152 backbone. Our SA module is more computa-

tionally efficient than the encoding module of EncNet [40].

As shown in Figure 6, the prediction of SANets yields

clearer boundaries and better qualitative results compared

to those of the baseline model.

4.5. Complexity Analysis

Instead of pursing SOTA without considering computa-

tion costs, our objective is to design lightweight modules for

segmentation inspired by this intuition. We use MACs and

model parameters to analyze the complexity of SANet. As

shown in Table 6, both Deeplab V3+ (our implementation)
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Method aero bike bird boat bottle bus car cat chair cow table dog mIoU

FCN [26] 76.8 34.2 68.9 49.4 60.3 75.3 74.7 77.6 21.4 62.5 46.8 71.8 62.2

DeepLabv2 [5] 84.4 54.5 81.5 63.6 65.9 85.1 79.1 83.4 30.7 74.1 59.8 79.0 71.6

CRF-RNN [43] 87.5 39.0 79.7 64.2 68.3 87.6 80.0 84.4 30.4 78.2 60.4 80.5 72.0

DeconvNet [29] 89.9 39.3 79.7 63.9 68.2 87.4 81.2 86.1 28.5 77.0 62.0 79.0 72.5

GCRF [33] 85.2 43.9 83.3 65.2 68.3 89.0 82.7 85.3 31.1 79.5 63.3 80.5 73.2

DPN [25] 87.7 59.4 78.4 64.9 70.3 89.3 83.5 86.1 31.7 79.9 62.6 81.9 74.1

Piecewise [23] 90.6 37.6 80.0 67.8 74.4 92.0 85.2 86.2 39.1 81.2 58.9 83.8 75.3

ResNet38 [37] 94.4 72.9 94.9 68.8 78.4 90.6 90.0 92.1 40.1 90.4 71.7 89.9 82.5

PSPNet [41] 91.8 71.9 94.7 71.2 75.8 95.2 89.9 95.9 39.3 90.7 71.7 90.5 82.6

DANet [13] – – – – – – – – – – – – 82.6

DFN [38] – – – – – – – – – – – – 82.7

EncNet [40] 94.1 69.2 96.3 76.7 86.2 96.3 90.7 94.2 38.8 90.7 73.3 90.0 82.9

SANet(ours) 95.1 65.9 95.4 72.0 80.5 93.5 86.8 94.5 40.5 93.3 74.6 94.1 83.2

Table 4: Class-wise IoUs and mIoU of PASCAL VOC dataset without pretraining on COCO dataset. The SANet achieves

83.2% mIoU that outperforms other models and dominates multiple classes. The best two entries of each column are high-

lighted. To make a fair comparison, modelsuse extra datasets (e.g. JFT) are not included like [6, 27, 34, 8].

Model Backbone mIoU

CRF-RNN[43] 74.4

BoxSup[10] 75.2

DilatedNet[39] 75.3

DPN[25] 77.5

PieceWise[23] 78.0

Deeplab-v2[5] ResNet101 79.7

RefineNet[22] ResNet152 84.2

PSPNet[41] ResNet101 85.4

DeeplabV3[5] ResNet101 85.7

EncNet[40] ResNet101 85.9

DFN[38] ResNet101 86.2

SANet (ours) ResNet101 86.1

Table 5: Mean intersection over union (%) results on PAS-

CAL VOC dataset with pretraining on COCO dataset. The

SANet achieves 86.1% mIoU that is comparable results to

state-of-the-art models.

and SAN use ResNet101 backbone and are evaluated on

PASCAL VOC dataset to enablea a fair comparison. With-

out using COCO dataset for pretraining, our SANet sur-

passes Deeplab V3+ with an increase of 1.7% mIoU. Com-

pared to heavy-weight models like SDN (238.5M params),

SANet achieves slightly under-performed results with less

than a fourth number of parameters (55.5M params). The

comparison results demonstrate the SANet is effective and

efficient.

5. Conclusion

In this paper, we rethink semantic segmentation from

two independent dimensions — pixel-wise prediction and

pixel grouping. We design a SA module to account for the

Model Backbone mIoU MACs Params

Dilated FCN ResNet101 78.7 162.7G 42.6M

SDN [14] DenseNet 84.2 – 238.5M

APCNet [16] ResNet101 83.5 – –

Deeplab V3+†[8] ResNet101 81.5 235.6G 59.5M

SANet (ours) ResNet101 83.2 204.7G 55.5M

† Our implementation

Table 6: MIoUs (%), Multiply-Accumulate operation per

second (MACs) and network parameters (Params) using

ResNet101 as backbones evaluated on PASCAL VOC test

set without COCO pretraining. We re-implement Deeplab

V3+ using dilated ResNet101 as its backbone to enable a

fair comparison.

implicit sub-task of pixel grouping. The SA module en-

hances the pixel-wise dense prediction and accounts for the

largely ignored pixel-group attention. More importantly, we

propose SANets that achieve promising segmentation per-

formance on two challenging benchmarks. We hope that

the simple yet effective SA modules and the SANets built

on top of SA modules can facilitate the segmentation re-

search of other groups.
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