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Abstract

Multi-modal clustering aims to cluster data into different

groups by exploring complementary information from mul-

tiple modalities or views. Little work learns the deep fused

representations of multiple modalities and simultaneously

discovers the cluster structure with a discriminative loss. In

this paper, we present an End-to-end Adversarial-attention

network for Multi-modal Clustering (EAMC), where adver-

sarial learning and attention mechanism are leveraged to

align the latent feature distributions and quantify the im-

portance of modalities respectively. To benefit from the joint

training, we introduce a divergence-based clustering objec-

tive that not only encourages the separation and compact-

ness of clusters but also enjoy a clear cluster structure by

embedding the simplex geometry of the output space into

the loss. The proposed network consists of modality-specific

feature learning, modality fusion and cluster assignment

three modules. It can be trained from scratch with batch-

mode based optimization and avoid an autoencoder pre-

training stage. Comprehensive experiments conducted on

five real-world datasets show the superiority and effective-

ness of the proposed clustering method.

1. Introduction

With the development of data collection techniques,

multi-modal or view data has become an important part of

current data resources in real-world applications. For exam-

ple, in visual data, an image could be represented by differ-

ent descriptor, such as SIFT, HoG and LBP, and a video con-

tains audio signal and visual signal; in web news, a message

could be delivered by pictures and texts. Although each

modality has its own information and statistical properties,

distinct modalities usually admit the same cluster structure.

The rationale for using multi-modal data to learn the struc-

tured partition is that they can provide comprehensive esti-

mation for the common pattern with the aid of the comple-
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mentary information from modalities [33]. Recently, multi-

modal clustering has gained significant momentum in ma-

chine learning and computer vision communities [3, 47].

A straightforward way to group this kind of data is firstly

concatenating them into single-modal data and then resort-

ing to single-modal clustering methods. However, this way

can not guarantee good performance and even obtains worse

results. As a consequence, the mainstream research is to

learn low-dimensional latent representations such that the

mutual agreement of modalities can be reached in the la-

tent space. Recently, a variety of multi-modal clustering

methods have been proposed, including CCA-based meth-

ods [7, 39], matrix factorization based methods [5, 42, 37],

subspace learning based methods [44, 45, 48] and graph

model based methods [32, 34]. Although these proposed

methods have achieved promising results, they are greatly

limited due to the use of shallow and linear embedding func-

tions, which are not able to capture the nonlinear nature of

complex data. To tackle this issue, some multiple kernel

learning based methods [11, 27] have been proposed. How-

ever, it is difficult to select the proper kernel functions.

With the rapid development of deep neural network

(DNN) models that are able to capture complex features

in single-modal scenarios, such as image clustering, DNN

has increasingly been exploited in multi-modal clustering

task. Existing DNN-based multi-modal clustering methods

fall into two categories. The first category regards multi-

modal feature learning and cluster assignment as separated

processes. The representative methods of this branch are

DCCA [2] and DMSC [1]. DCCA first maximizes the cor-

relation between the projected deep features of two views

by CCA and then conducts the subsequent K-means cluster-

ing. DMSC takes convolutional neural networks for multi-

modal subspace learning and next does spectral clustering

based on the learned affinity graph. This kind of two-step

learning strategy may disconnect closely related processes

of feature learning and cluster assignment. The direct affect

is that the learned representations can not friendly adapt to

the predefined clustering algorithm. To close this gap, the

other category unifies these two processes into joint opti-
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mization step. DAMC [25] exemplifies this line of work.

It works by pretraining multi-view autoencoder and then

jointly optimizing the consensus cluster centroids, autoen-

coder networks and adversarial networks. Although DAMC

has gained satisfactory results, it still faces some issues. On

one hand, it equally treats each modality regardless of the

quality difference among modalities, which makes it dif-

ficult to obtain optimal latent representations for cluster-

ing. On the other hand, the clustering loss used in this

method overly relies on good initialization of pretaining

stage. Moreover, it is difficult for this loss to ensure clear

cluster structure since marginal samples are weakened and

thus may not walk towards the correct clusters. On the

whole, this line of research is in its infancy and at least two

key problems are under explored: (1) How to learn the deep

fused representations across multiple modalities? (2) What

kind of loss function is suitable to train deep neural network

for multi-modal clustering analysis?

In this paper, we propose an End-to-end Adversarial-

attention Multi-modal Clustering (EAMC) method, which

unifies multi-modal feature learning, modality fusion as

well as clustering analysis into a joint process. The pro-

posed method is built on the concepts of adversarial learn-

ing [14], attention mechanism [8] as well as information-

theoretic divergence measures [17]. To be specific, we pro-

pose to align latent feature distribution of different modali-

ties by introducing the adversarial regularizer. Through the

adversarial process, modality invariance in the latent space

can be reached more efficiently. We argue that a better

alignment of modality distributions contributes to the subse-

quent fusion especially when the fused features are obtained

by weighted average of latent features. Besides, we propose

to quantify the importance of different modalities by intro-

ducing attention layer, which adaptively assigns the weight

for each modality. Furthermore, we introduce a divergence-

based clustering loss to guide the network training. The

clustering loss we defined explicitly encourages the separa-

tion between clusters and the compactness within clusters,

which are desirable properties to increase identifiability of

clustering model. In addition, a precise geometry property

of the output space induced by the softmax function is em-

bedded into the Cauchy-Schwartz divergence to avert the

degenerated structure of the clustering partition. It is also

worth mentioning that the proposed clustering model can

be trained from scratch without an autoencoder-based pre-

training, compared to existing deep multi-modal clustering

methods.

Figure 1 shows the overview of the proposed network

architecture. In general, the proposed method consists of

three main parts, i.e., modality-specific feature learning,

modality fusion and cluster assignment. The modality-

specific feature learning is designed to estimate the data

similarity in the low-dimentional latent space, which also

acts as feature encoders (or generators) to reveal the non-

linearity of data. The modality fusion is constituted of

modality alignment and modality-awareness modules. Con-

cretely, a min-max game is played between a set of dis-

criminators and generators in modality-alignment module

to steer feature distribution learning. Meanwhile, three

fully connected layers and a sigmoid layer are deployed in

modality-awareness module to learn the weights of modal-

ities. In tail, the cluster assignment layer made up of two

fully connected layer and a softmax layer is added to con-

duct the network training with the defined loss. To sum up,

the main contributions for multi-modal clustering commu-

nity are as follows:

• A deep end-to-end multi-modal clustering method

which unifies modality-specific feature learning, fu-

sion and cluster assignment into a joint optimization

procedure is proposed. Besides, for the first time ad-

versarial learning and attention mechanism are simul-

taneously introduced for modality fusion process.

• A new discriminative clustering loss is defined to guide

the network training. This loss explicitly encourages

the separation and compactness of clusters and mean-

while ensures clear cluster structure by embedding the

simplex geometry.

• Experimental results on five datasets convey the effec-

tiveness and superiority of the proposed method.

2. Related Works

There are significant works on multi-modal clustering

problem. From the perspective of representation learning,

existing multi-modal clustering methods can be categorized

into two groups, i.e., traditional and deep methods.

Traditional multi-modal clustering methods can be

roughly divided into five streams. The methods in the

first stream use non-negative matrix factorization technique

to seek a common latent factor among multi-modal data

[46, 42]. For instance, Cai et al. [5] formulated multi-

modal clustering as the constrained matrix factorization

problem with a shared clustering indicator matrix across

different modalities. The methods in the second stream take

self-representation way to characterize the relationships be-

tween the samples [44, 45, 6, 26]. A recent work [28] pro-

posed to simultaneously learn a shared consistent represen-

tations and a set of view-specific representations for multi-

modal subspace clustering. The methods in third stream

exploit dimensionality reduction technique to firstly learn

low-dimentional subspace and then conduct existing clus-

tering algorithms to get the results [4, 7]. For this branch,

canonical correlation analysis (CCA) [7] is a represntative

method for multi-modal clustering which projects the multi-

modal high dimensional data into a low-dimensional sub-
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space by maximizing the correlation. The methods in the

fourth stream exploit graph model for multi-modal cluster-

ing [32, 34]. The basic idea of this line is to find a consen-

sus graph across multiple modalities and then uses graph-

cut algorithms, e.g., spectral clustering, on the consensus

graph to get clustering results. The limitation of the above

methods is that they use shallow and linear embedding func-

tions which can not reavel the nonlinear nature of complex

data. The methods in the last stream draw support from

kernel trick to address this issue [13, 24, 40, 11, 27]. Usu-

ally some predefined kernel functions, e.g. Gaussian kernel,

are required to deal with different modalities. These kernel

functions are then combined either linearly or nonlinearly

to arrive at a consensus kernel. The difficulty of this stream

lies in the choice of kernel functions.

Deep neural networks have increasingly been exploited

in multi-modal clustering issue due to powerful feature

transformation ability. In the early stage, Ngiam et al. [30]

took deep auto-encoder network architecture to learn the

common representations of multi-modal data and achieved

superior performance in speech and vision tasks. Later, An-

drew et al. [2] proposed a deep extension of CCA (DCCA)

to learn the common representations by maximizing the cor-

relation with CCA based on extracted deep features. Re-

cently, Wang et al. [39] developed a new CCA variant

by merging DCCA and autoencoder. Later, Abavisani et

al. [1] introduced deep multi-modal subspace clustering

network to find a shared affinity across all modalities. A

disadvantage of the above deep models is that two closely

related tasks of feature learning and clustering are discon-

nected. To make these two tasks benefit from each other, Li

et al. [25] proposed a joint learning framework (DAMC) for

multi-modal clustering and achieved current state-of-the-art

performance.

The method proposed in this paper falls into the cate-

gory of joint learning methods. Our method is inspired, on

the one hand, by the ideas in traditional multi-modal clus-

tering methods, especially regarding weight learning aspect

[31, 43, 38], which have been found extremely influential

for clustering results. On the other hand, our method is

also inspired by the success of adversarial learning in many

tasks, such as cross-modal retrieval [36], domain adaptation

[9]. Furthermore, our method is especially inspired by the

superiority of divergence-based clustering for single modal

data [17, 20, 35].

3. The Proposed Method

Consider the problem of clustering a set of n data points

consisting of V modalities D = {X1, ...Xv, ...,XV } into c
clusters, where Xv ∈ Rdv×n denotes the samples of the

dimension dv from the v-th modality. We build an end-

to-end adversarial-attention clustering network to make it.

In the following, we first introduce the proposed network

architecture and then describe the defined loss function.

3.1. Network Architecture

The proposed network architecture consists of modality-

specific feature learning, modality fusion and cluster assign-

ment, which is illustrated in Figure 1.

(A) Modality-Specific Feature Learning

Different statistical properties of multi-modal data hint

it is rather difficult to fuse different modalities in the data

space. In light of this, we design a modality-specific feature

learning module to transform the data into low-dimentional

latent space. This module performs the main task of feature

learning. It also has a objective to confuse the discrimina-

tor, which we will discuss later. To be concrete, for the

v-th modality, we firstly encode the corresponding latent

features as Hv = Ev(X
v; θve ), where Ev(.) refers to the

v-th modality’s encoder parameterized by θve . Then based

on Hv , we can estimate data metric, e.g., Gaussian met-

ric, of data in latent space. Formally, it can be written as

Kv
ij = exp(−||hv

i − hv
j ||2/2σ

2). Here, hv
i denotes the i-

th column of Hv (i.e., i-th sample) and σ represents the

bandwidth. Note that we constrain encoder networks with

random i.i.d Gaussian weights to avoid degenerated met-

ric structure of data, which is different from existing deep

multi-modal clustering methods that leverage the decoder

network for the purpose. This design choice takes the in-

spiration from the recent advanced work in the theory of

neural networks [12]. It showed that the metric structure of

data can be preserved by DNN with random i.i.d Gaussian

weights when the intrinsic dimensionality of the data is pro-

portional to the network width. In the experiment, this can

be met since [12] proved that the intrinsic dimensionality of

the data does not increase as the data propagate through the

network.

(B) Modality Fusion

Modality fusion module is designed to fuse diverse in-

formation of different modalities for comprehensive estima-

tion. In our model, this module is made of modality align-

ment and modality-awareness submodules.

Modality alignment submodule serves for aligning the

latent feature distributions of modalities. It consists of V −1
discriminators, each of which is three fully connected lay-

ers. Specifically, taking the first modality as an anchor,

we assign a discriminator between the first modality and

one of the rest in pairwise fashion. For each latent feature

Hv(v = 2, 3, ..., V ) drawn from the distribution pv , the dis-

criminator Dv parameterized by θvd aims to verify whether

its real data h1

i ∈ H1 and fake data h̃v
i ∈ Hv belong to the

same distribution. In this process, the discriminator network

Dv is optimized in alternating manner with the encoder net-

work Ev to solve adversarial min-max problem [14]. By

this way, the discriminator networks can guide encoder net-

works to learn the same latent feature distribution. Note
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Figure 1. Illustration of the proposed EAMC network (here we take two modalities X and Y as example). EAMC consists of modality-

specific feature learning module, modality fusion mudule (modality alignment and modality-awareness) and cluster assignment module.

Modality-specific feature learning is to learn non-linear property of data and estimate data similarity in latent space. Modality fusion

module aims to align the feature distributions and quantify the importance of modalities. Finally, a cluster assignment layer is applied to

guide the network training by a discriminative loss.

that considering all possible combinations (up to 2V ) will

dramatically increase the burden of network training.

Modality-awareness submodule is introduced to learn

the weights for different modalities, the input of which is

the concatenated features h and the output of which is a V -

dimensional vector w. In general, it is composed of three

fully connected layers and a softmax layer. We describe the

process with the following formulas:

h = [h1, h2, ..., hV ], (1)

act = FCs(h), (2)

e = Softmax(sigmoid(act)/τ), (3)

w = Mean(e, dim=0) (4)

where [·] denotes the concatenation operator; FCs(·) rep-

resents 3 fully connected layers; τ is a calibration factor.

Sigmoid function together with calibration factor can be re-

garded as a trick to avoid assigning close-to-one score to

the most related modality. For the sake of simplicity, the

parameters in this module are denoted as θa.

At this time, we can get the fused representations of the

sample with the formulas: hf =
∑

v wvhv . Then, hf is fed

into the clustering layer to get soft clustering assignment.

(C) Cluster Assignment

In order to benefit from joint learning methods, we de-

ploy a clustering layer parameterized by θc in the network.

The clustering layer is stacked on the top of fusion layer,

which consists of two fully connected layer and a softmax

layer. The softmax layer output the soft cluster membership

matrix A = [αqi], with elements αqi ∈ (0, 1) that repre-

sents the crisp cluster assignment of data point q to cluster

Ci . We then use the defined loss to guide network training.

3.2. Loss Function

1) Fusion Loss. In our model, the min-max game is

played between the generators (encoders) and discrimina-

tors to steer feature distribution learning towards the first

modality. The corresponding optimization objective for this

purpose can be expressed as:

Ladv = min
θv
e

max
θv
d

V∑

v=2

Eh1
∼p1

[logDv(h
1)]+

Ehv
∼pv

[log(1−Dv(h
v))] (5)

What’s more, in order to make the metric structures of

different modalities reach the mutual agreements, inspired

by the success of companion loss [23] in supervised deep

models, we impose the following loss on fusion module:

Latt = ||K
f −Kc||2F (6)

where Kf is computed based on the fused features with

Gaussian kernel and Kc =
∑

v wvKv . The extra affect of

(6) is that the weight is further considered in metric level

such that the fused results are more reliable.

2) Clustering Loss. In order to learn a good partition

structure, recent advances [25, 41] usually use Kullback-

Leibler (KL) divergence based loss to guide clustering pro-

cess. It works by emphasizing on data points assigned

with high confidence. The way like this does not neces-

sarily enforces cluster compactness due to the neglect for

the marginal samples. In this section, we introduce a new

clustering loss based on Cauchy-Schwarz divergence to al-

leviate this issue. The introduced clustering loss encourages

the separation between clusters and the compactness within

clusters. Meanwhile, it also explicitly exploits the geometry

structure of the output space during the optimization.
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Here we firstly recap the definition of multiple-pdf gen-

eralization of the Cauchy-Schwartz (CS) divergence[17]:

Dsc = −log
(1
k

k−1∑

i=1

∑

j>i

Eh∼pi
(pj(h))√

Eh∼pi
(pi(h))Eh∼pj

(pj(h))

)

(7)

where k is the number of distributions, pi and pj respec-

tively denotes probability density functions (pdf) of the

cluster Ci and Cj . A large divergence would lead to well

separated and compact clusters. According to a data-driven

approach [20], maximizing (7) is in practice equivalent to

minimizing the following formula:

Dsc =
1

k

k−1∑

i=1

∑

j>i

αT
i Kαj√

αT
i Kαiα

T
j Kαj

(8)

where K is data metric matrix based on Gaussian kernel.

The vectors α1,α2, ...,αk denote the columns of the hard

cluster assignment matrix A ∈ R
n×k. In our architecture,

we relax the hard membership to soft one in order to pre-

serve differentiability of the loss.

Furthermore, to avoid a degenerated clustering partition,

we exploit the output space property, i.e., a simplex in R
k,

induced by the softmax activation to enforce the closeness

of the output to a corner of the simplex. Concretely, we

intergrate this geometry structure into CS divergence by the

following form:

Dsim =
1

k

k−1∑

i=1

∑

j>i

βT
i Kβj√

βT
i Kβiβ

T
j Kβj

(9)

where βi, βj are the i-th, j-th column of the matrix B =
[βqi] with βqi = exp(−||αq − ei||). Here ei denotes the

i-th corner of the simplex. By this way, the cluster assign-

ment vectors would be compactly centered around distinct

simplex corners. In the experiments, K is replaced with Kf .

Lastly, we hope that the clusters are orthogonal in n-

dimentional observation space. Mathematically, it can be

formulated as

Dreg = triu(AT A) (10)

where triu(·) denotes the sum of the strictly upper triangu-

lar elements of its argument. Now, we can write the total

clustering loss as

Lc = Dsc +Dsim +Dreg (11)

3.3. Optimization Training

We present the detailed optimization steps in Algorithm

1. From the perspective of adversarial optimization, the

proposed EAMC is conducted by alternately optimizing the

following processes:

(θ̂ve , θ̂a, θ̂c) = argmin
θv
e ,θa,θc

(Lc + Latt − γLadv) (12)

θ̂vd = argmax
θv
d

(Lc + Latt − γLadv) (13)

Algorithm 1 Pseudocode of optimizing our EAMC

Initialization: Batch multi-modal data (of size m) Db =
{X1

b ,X2

b , ...,XV
b } ∈ D;

The hyperparameters γ and t;
Initialize encoder networks with random i.i.d Gaussian

weights in order to preserve the metric structure [12];

Update until convergence:

1: for t steps do

2: update parameters θve , θa and θc(v = 1, 2, ..., V ) by

descending their stochastic gradients:

3: θve ← θve - η · ∇θv
e

1

m
(Lc + Latt − γLadv)

4: θa ← θa - η · ∇θa
1

m
(Lc + Latt − γLadv)

5: θc ← θc - η · ∇θc
1

m
(Lc + Latt − γLadv)

6: end for

7: update parameters θvd of the discriminator by ascending

its stochastic gradient:

8: θvd ← θvd + η · ∇θv
d

1

m
(Lc + Latt − γLadv)

9: return Cluster assignment matrix A;

4. Experiments

4.1. Experimental Setup

Datasets NUS-WIDE-C5(NWC): A image-text dataset con-

sists of 4,000 objects for 5 classes (bird, food, sun, tower,

toy). Each class has 800 objects which is represented

by a 500-dimensional visual codeword vector and 1000-

dimensional annotation vector. SentencesNYUv2 (RGB-D):

A dataset includes 1,449 images with 13 indoor scenes. Ev-

ery image is captioned with a paragraph which describes

the content of the image. We use ResNet-50, pretrained on

ImageNet, to extract 2048 dimentional image features and

doc2vec, pretrained on Wikipedia via skip-gram, to extract

300 dimentional text features. Pascal VOC: A dataset in-

cludes 9,963 image-text pairs with 20 classes. Each im-

age is represented by a 512-D Gist Feature vector and

each text is represented as 399-dimensional word frequency

count. We pick 5,649 images with only one object in

our experiment. The Columbia Consumer Video (CCV):

A dataset contains 9,317 YouTube videos with 20 diverse

semantic categories. We use the subset (6773 videos) of

CCV provided by [18], along with three hand-crafted fea-

tures: STIP features with 5,000 dimensional Bag-of-Words

(BoWs) representation, SIFT features extracted every two

14623



seconds with 5,000 dimensional BoWs representation, and

MFCC features with 4,000 dimensional BoWs representa-

tion. MNIST: A large-scale handwritten digit dataset in-

cludes 70,000 samples with 28 × 28 pixels. The first view

is the original gray images, and the other is given by images

only highlighting the digit edge. Table 1 provides a brief

description of each dataset.

Dataset type #sample #modal #class

NWC image-text 4,000 2 5

RGB-D image-text 1,449 2 13

VOC image-text 5,649 2 20

CCV video 6,773 3 20

MNIST digit 70,000 2 10
Table 1. Dataset Description

Evaluation Metrics The clustering performance is mea-

sured using two standard evaluation matrices, i.e., Accu-

racy (ACC) and Normalized Mutual Information (NMI).

For the two metrics, higher value indicates better perfor-

mance. More details about the two metrics refer to [22].

Implementation Details The proposed network architec-

ture is trained with the PyTorch platform. We use a com-

mon architecture for EAMC in order to provide a practical

method for real-world datasets. For all types of data, we

firstly transform them into vectorial representation and then

feed them into the network. In the experiments, we use the

Adam solver [21] with a batch size of 100. Training is per-

formed with learning rate 10−3 for the encoder and discrim-

inator networks, 10−4 for the attention layer and 10−5 for

the clustering layer. For each iteration, we reshuffle the or-

dering of the mini-batches. Weights of the network are ini-

tialized following [15]. The kernel width, σ, is set to 15%
of the median pairwise distance between the latent repre-

sentations within each batch following [16]. To increase the

models’ robustness, batch-normalization is applied before

the softmax output. As unsupervised deep models easily get

stuck in local minima, we run EAMC for 20 runs and report

the accuracy of the run with the lowest clustering loss.

Baseline Models To evaluate the performance of our

method, we compare it with the following methods:

(A) Spectral clustering (SC). The standard spectral cluster-

ing algorithm [29] is conducted on every modality and the

concatenated modality.

(B) Traditional Methods. 1) RMKMC: Robust multi-

view k-means clustering (RMKMC) [5] searches a con-

sensus cluster indicator across multiple views; 2) tRLMvc:

Tensor-based representation learning multi-view cluster-

ing (tRLMvc) [10] unifies the self-expressive tensor learn-

ing and low-dimensional representation learning together

to capture the essential structure hidden in the multi-view

data; 3) CSMCS: Consistent and specific multi-view sub-

space clustering (CSMCS) [28] formulates the multi-view

self-representation property using a shared consistent rep-

resentation and a set of specific representations; 4) WMSC:

Weighted multi-view spectral clustering (WMSC) [49] em-

ploys spectral perturbation theory to model the weights of

modalities; 5) MCGC: Multi-view consusens graph cluster-

ing (MCGC) [19] learns a consensus graph with minimizing

disagreement between different views and constraining the

rank of the Laplacian matrix.

(C) Deep Methods. 1) DCCA: Deep canonical correla-

tion analysis (DCCA) [2] learns nonlinear transformations

of two views such that the extracted features are highly

linearly correlated; 2) DMSC: Deep multimodal subspace

clustering (DMSC) [1] presents convolutional neural net-

work based approaches for unsupervised multimodal sub-

space clustering; 3) DAMC: Deep adversarial multi-view

clustering (DAMC) [25] adopts deep auto-encoders to learn

latent representations shared by multiple views and mean-

while leverages adversarial training to further capture the

data distribution.

The default parameters of each compared method are

adopted in our experiments. For all these compared meth-

ods, we run each method 10 times and report the average

performance. For the postprocessing methods (CSMCS,

tRLMvc, WMSC, DCCA and DMSC), we run K-means

clustering 20 runs and report the result with the minimum

loss. Since CCA-based methods (CCA and DCCA) can

only deal with two modalities, we choose the best two

modalities on CCV dataset according to their performance.

4.2. Performance Evaluation

Compared with Baselines Experimental results are shown

in Table 2. It can be seen that the clustering results from

multi-modal clustering methods including traditional and

deep methods significantly outperform that from the single-

modal (based on only one or concatenated modality), which

demonstrates the necessity of fusing multi-modal informa-

tion for clustering. Compared with five traditional cluster-

ing methods, EAMC surpasses them with a large margin.

For instance, on NWC, our model has a growth by (94.5-

87.3) 7.2%, (93.7-86.2) 7.5% and (95.2-87.6) 7.6% against

the second best method in terms of ACC, NMI and Purity.

The pivotal reason behind this is that traditional methods are

greatly limited by using shallow and linear embedding func-

tions, which are not able to capture the complex property of

real-world data. Besides, compared with deep models, our

model also shows clear advantage. In particular, our method

outperforms joint learning method DAMC with a clear im-

provement on all four datasets. We attribute this success to

feature distribution alignment and weight learning among

modalities.

Clustering on Large-scale Dataset In order to show our

model is applicable on the large-scale dataset, we have con-

ducted the experiments on MNIST dataset. The compared
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Dataset NWC RGB-D VOC CCV

Metric ACC NMI Purity ACC NMI Purity ACC NMI Purity ACC NMI Purity

SC(1) 0.712 0.768 0.747 0.334 0.297 0.347 0.384 0.392 0.379 0.102 0.005 0.104

SC(2) 0.647 0.689 0.699 0.297 0.305 0.326 0.402 0.411 0.395 0.188 0.173 0.213

SC(3) - - - - - - - - - 0.113 0.008 0.109

SC(con) 0.652 0.673 0.686 0.312 0.286 0.320 0.372 0.387 0.382 0.093 0.074 0.102

RMKMC 0.784 0.793 0.791 0.379 0.398 0.397 0.458 0.469 0.473 0.176 0.165 0.186

tRLMvc 0.873 0.849 0.869 0.445 0.439 0.460 0.534 0.547 0.556 0.212 0.226 0.231

CSMCS 0.824 0.813 0.829 0.392 0.414 0.426 0.488 0.496 0.517 0.194 0.186 0.198

WMSC 0.798 0.787 0.816 0.408 0.425 0.420 0.471 0.462 0.477 0.205 0.196 0.208

MCGC 0.853 0.862 0.876 0.438 0.447 0.453 0.527 0.546 0.539 0.224 0.216 0.240

DCCA 0.784 0.798 0.809 0.355 0.362 0.374 0.397 0.425 0.433 0.173 0.182 0.186

DMSC 0.877 0.864 0.876 0.419 0.426 0.433 0.541 0.538 0.566 0.183 0.194 0.196

DAMC 0.891 0.914 0.916 0.463 0.475 0.481 0.560 0.552 0.583 0.243 0.231 0.264

EAMC 0.945 0.937 0.952 0.497 0.499 0.511 0.607 0.615 0.628 0.261 0.266 0.271

Table 2. Clutering results on NWC, RGB-D, VOC and CCV datasets.

methods include three deep baseline models, i.e., DCCA,

DMSC and DAMC. The other methods are not scalable

on this dataset due to their optimization methods and the

limited memory. Benefiting from the architecture design

and loss function, our model is able to support batch-mode

based optimization and thus easily addresses the large-scale

multi-modal clustering issue. As shown in Table 3, EAMC

clearly outperforms other deep models in ACC and NMI,

which validates the effectiveness of the proposed model on

the large-scale dataset.

Model ACC NMI Purity

DCCA 0.476 0.443 0.492

DMSC 0.653 0.614 0.644

DAMC 0.646 0.594 0.657

EAMC 0.668 0.628 0.651
Table 3. Clustering result on large-scale MNIST dataset.

4.3. Further Evaluation

Component Study We train three variants to examine

the effect of adversarial and attention components: (1)

EAMCatt denotes the network which is obtained by remov-

ing adversarial module in EAMC: (2) EAMCadv denotes

the network which is obtained by removing attention mod-

ule in EAMC; (3) EAMCnone denotes the network which is

obtained by removing both adversarial and attention mod-

ules in EAMC. After removing the attention layers, we as-

sign the equal weight (i.e., wv = 1

V
) for each modality.

Table 4 shows the experimental results on NWC dataset.

Here some important observations can made as follows.

Firstly, it can be seen that EAMCatt and EAMCadv out-

perform EAMCnone with a clear improvement. Addition-

ally, EAMC further improve the performace compared with

three variants. These results convey that adversarial and

attention components are key technical choice for multi-

modal clustering.

Model ACC NMI Purity

EAMCatt 0.921 0.917 0.932

EAMCadv 0.908 0.896 0.903

EAMCnone 0.871 0.884 0.892

EAMC 0.945 0.937 0.952
Table 4. Component study on NWC dataset.

Loss Analysis We empirically analyze the clustering loss

to evaluate the influence of different terms. The accuracy

results for the NWC and RGB-D datasets are reported in

Table 5. First of all, it is clearly observed that combining

the term Dsc with Dsim greatly boost the performance. In

addition, by using three terms together, the performance can

be further improved.

Loss NWC RGB-D

Dsc 0.836 0.364

Dsim 0.852 0.379

Dsc +Dsim 0.918 0.437

Dsc +Dreg 0.877 0.426

Dsim +Dreg 0.898 0.412

Dsc +Dsim +Dreg 0.945 0.497
Table 5. Clustering loss analysis on NWC and RGB-D datasets

Weight Score Different modalities usually make distinct

contributions to the final clustering results. To clearly see

this fact, we report the weight score in Table 6. For ex-

ample, on NWC, the weight of annotation vector is larger

than that of codeword vector, which reflects the modality

of annotation vector would provide more useful informa-

tion for clustering. On MNIST dataset, EAMC considers

the edge modality palys more important role for clustering.

The similar phenomena can be observed in the remaining

three datasets. The results in Table 6 are in accordance with
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Figure 2. Visualization of original pixel features for each modality and the fused features obtained through competitive baselines with

t-SNE on the MNIST dataset. (a) Original digit image features of the first modality, (b) Edge image of the second modality, (c) DMSC, (d)

DAMC, and (e) EAMC.

Figure 3. Visualization of the kernel matrix computed over the latent features on the MNIST dataset. From the left to right, (a) kernel

matrix of the edge modality, (b) kernel matrix of the digit modality, (c) kernel matrix of the fused representations.

the idea that different modalities usually have a distinct con-

tributions to clustering results.

Dataset modal-1 modal-2 modal-3 Relation

NWC 0.438 0.562 - 2 >1

RGB-D 0.467 0.533 - 2 >1

VOC 0.483 0.517 - 2 >1

CCV 0.257 0.384 0.359 2>3>1

MNIST 0.477 0.523 - 2>1
Table 6. Weight score of different modalities for clustering on five

datasets. The symbol ‘>’ denotes the degree of importance.

Visualization To further evaluate the advantage of the pro-

posed model over other deep models, we provide a t-

SNE visualization for latent features of clustering layer on

MNIST dataset. Two deep models, i.e., DMSC and DAMC,

are selected for comparison. We randomly pick 2,000 sam-

ples and visualize two-dimensional embedded features of

the fused representations. The visualization results are

shown in Figure 2. It is clear that EAMC gives a more clear

and compact cluster structure than the baseline models. Fur-

thermore, we also provide a visualization of kernel matrix

computed over the latent representations. It can be seen

from Figure 3 that the kernel matrix of the fused represen-

tations reflects a more accurate block structure compared

with the kernel matrices of the edge and digit modalities

computed over the respective latent space.

5. Conclusion

In this paper, we propose an end-to-end adversarial-

attention network for multi-modal clustering (EAMC).

The proposed method exploits adversarial learning and

attention mechanism to align the latent feature distributions

and quantify the importance of modalities respectively.

Besides, a discriminative clustering loss that not only

encourages the separatin and compactness of the clusters

but also enjoy a clear cluster structure is introduced

to support end-to-end training. The proposed network

consisting of modality-specific feature learning, modality

fusion and cluster assignment three modules can be trained

from scratch without an extra initialization component.

Experimental results on five real-world datasets show the

superiority and effectiveness of the proposed method.
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