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Abstract

Recently, contour information largely improves the per-

formance of saliency detection. However, the discussion

on the correlation between saliency and contour remains

scarce. In this paper, we first analyze such correlation and

then propose an interactive two-stream decoder to explore

multiple cues, including saliency, contour and their corre-

lation. Specifically, our decoder consists of two branches,

a saliency branch and a contour branch. Each branch is

assigned to learn distinctive features for predicting the cor-

responding map. Meanwhile, the intermediate connections

are forced to learn the correlation by interactively trans-

mitting the features from each branch to the other one. In

addition, we develop an adaptive contour loss to automat-

ically discriminate hard examples during learning process.

Extensive experiments on six benchmarks well demonstrate

that our network achieves competitive performance with a

fast speed around 50 FPS. Moreover, our VGG-based mod-

el only contains 17.08 million parameters, which is signif-

icantly smaller than other VGG-based approaches. Code

has been made available at: https://github.com/

moothes/ITSD-pytorch.

1. Introduction

Saliency detection is a task to segment the most visu-

ally distinctive objects or regions in an image. The main

challenge of this task is to distinguish the salient objects as

well as their boundaries. Different from other segmenta-

tion techniques, such as semantic or instance segmentation,

saliency detection always focuses on a few primary regions.

Therefore, it often serves as the first step in many research-

es, like object tracking [20], object recognition [28], action

categorization [1] and so on.
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Figure 1. F-score and FPS comparisons of our ITSD with AFNet

[8], PCA [22], Amulet [45], EGNet [48], CKT [18], CTLoss [4],

NLDF [24], PoolNet [21], PAGE [35] and CPD [37] on DUTS-TE

dataset [31]. All methods are based on VGG [29] network. The

radius of circles are proportional to their model sizes.

Recently, Convolutional Neural Networks (CNNs) [16,

29, 10] have been introduced for this task and achieved

very promising results on many benchmarks. One repre-

sentative network – U-Net [27] effectively combines low-

level and high-level cues and therefore can generate more

accurate detection results. More recently, many researches

[18, 24, 48, 26] further improve the U-shape structure by

incorporating contour information.

However, existing saliency detection models still hold

many problems that are not well addressed. First, the result-

ing saliency maps are still far away from being satisfactory,

especially when encountering complex scenes. Second, to

achieve good performance, most of existing works have led

to a radical increase in the number of model parameters.

Furthermore, the complexity of such models causes a slow

detection speed. As an example, EGNet [48] provides state-

of-the-art performance as shown in Figure 1. This approach

contains around 108 million trainable parameters and runs

around only 10 FPS for inference, which may hinder its us-

age in other applications like real-time video understanding.

On the other hand, some smaller and faster models, such as

CPD [37] and PAGE [35], cannot obtain comparable result-

s. It is interesting to investigate whether we can design a

lightweight model for accurate and fast detection.
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In this work, we aim at discovering the contour informa-

tion of saliency targets to improve the performance and to

reduce the computational cost. Note that the contour maps

discussed in this paper are calculated from the boundary of

saliency regions, not the boundaries of all objects. Close to

our method, some previous works [48, 24, 26, 21] also take

advantage of contour for saliency detection. However, the

correlation between the contour map and the saliency map

is rarely explored, which can be further utilized as an im-

portant cue to improve the result segmentation maps as our

experiment demonstrated.

To exploit both saliency and contour information, we

propose a lightweight two-stream model that uses two

branches to learn the representations of salient regions and

their contours respectively. Furthermore, to promote the

network to learn their correlation, we propose a new fu-

sion module that can well exploit information from each

branch. Additionally, we develop an adaptive contour loss

to explore the hard examples located near the boundary

of the salient regions. Extensive experiments validate that

the proposed method achieves comparable results against

some state-of-the-art approaches on six popular benchmark-

s. Moreover, our model just has 17.08 million parameters

and runs at around 50 FPS, which provides a good balance

between accuracy, model size and speed as shown in Figure

1. In summary, our main contributions are:

1) We discuss the correlation between the saliency maps

and corresponding contour maps.

2) We propose a lightweight Interactive Two-Stream De-

coder (ITSD) for saliency detection by exploring multi-

ple cues of the saliency and contour maps. We further

propose a fusion module to learn their correlation.

3) We develop an Adaptive ConTour (ACT) loss to improve

the representation power of the learned network by tak-

ing advantage of hard examples.

4) We conduct a series of experiments to demonstrate the

effectiveness and efficiency of the proposed model.

2. Related work

In this section, we mainly discuss some works based on

deep neural networks. For other researches please refer the

recent survey [2, 6, 34, 23, 33] for more details.

2.1. High accuracy saliency detection

To adapt the deep networks to the segmentation task,

Ronneberger et al. introduced U-Net [27] to gradually ex-

pand the learned feature maps to input sizes by utilizing an

encoder-decoder structure. In the U-shape network, features

from the encoder are skip-connected to the features with the

same spatial sizes in the decoder, where this simple connec-

tion has been demonstrated its power in various pixel-wise

predictions [14, 39, 43].

Due to the remarkable performance of U-Net, many re-

searches follow this structure for saliency detection. Zhang

et al. [45] achieved good performance by improving the

fusion module in U-Net. Besides, hierarchical supervision

signals are attached to intermediate features. Luo et al. [24]

predicted salient regions by integrating both local and glob-

al features from a U-shape network. Li et al. [18] developed

a multi-task architecture to predict salient objects and their

contours simultaneously. In [22], Liu et al. employed mul-

tiple LSTMs [11] to capture both global and local contexts

by scanning over images in four directions. Furthermore,

Zhang et al. [47] integrated spatial and channel-wise atten-

tion to assist the network to learn more distinctive features.

Moreover, [44, 13, 42] introduced various structures to bet-

ter integrate hierarchical representations.

2.2. High efficiency saliency detection

In the last few years, efficiency becomes an importan-

t criterion with increasing attention, multiple approaches

have been proposed to improve the processing speed. For

example, Chen et al. [3] predicted a global saliency map

and recursively utilized it to adjust feature distribution by

integrating the reversed saliency maps into learned features.

By using limited number of parameters to learn side-output

residual features, they achieved good performance with a

speed of 35 FPS. Since many methods generate blurred

boundaries of saliency objects, Feng et al. [8] developed

an Attentive Feedback Module (AFM) to refine the coarse

predictions. Furthermore, to underline the object boundary,

they used L2 loss for boundary pixels, and employed binary

cross-entropy (BCE) loss for the other pixels. Rather than

concatenating hierarchical features, Wu et al. [36] only used

low-level features to accelerate the process to a speed over

100 FPS. However, lacking of multi-level feature fusion re-

sults in inferior performance.

Recently, Liu et al. [21] claimed that features from the

top of encoders are gradually diluted by fusing low-level

features in existing U-shape networks. Thus, they intro-

duced a global guidance module to alleviate this problem.

Since the bottommost features require heavy calculation

cost, Wu et al. [37] cut off the skip-connections of these

features to accelerate the network to 60 FPS. Furthermore,

they employed a cascaded structure and achieved remark-

able detection performance.

Contrary to the abovementioned works, we keep our net-

work lightweight by restricting the number of channels to

64 and employing the channel-pooling layers to reduce the

computation cost in feature fusion.

2.3. Use of contour information

Since existing methods are struggling with object bound-

ary, contour cue attracts increasing interest in recent years.

First, several works introduced contour into networks by
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Figure 2. The transformation methods between the saliency maps and the contour maps are shown in green and blue dash boxes respectively.

The white and black regions mean foreground and background respectively, while color image is employed to show different regions.

proposing a boundary-aware objective function. Qin et al.

[26] proposed a contour-aware objective function for salien-

cy detection, which is a mixture formulation of BCE, struc-

tural similarity index (SSIM) and Intersection over Union

(IOU). Chen et al. [4] claimed that many boundary pixels

are hard examples. To urge the network to pay more atten-

tion to these pixels in the training phase, they developed a

weighted BCE loss according to the groundtruth contours.

Additional hyperparameters are employed to determine the

range of hard examples to learn more robust networks.

Second, constructing a boundary-aware network be-

comes an impressive method in the saliency detection task.

Zhao et al. [48] used contour as another supervised sig-

nal to guide the learning process of bottom features. After-

ward, these features are up-sampled to input size and con-

catenated with high-level representations. In [35], Salient

Edge Detector (SED) was presented to predict salient ob-

jects and their contours simultaneously by a residual struc-

ture. Furthermore, Li et al. [18] proposed a contour-to-

saliency transferring method to integrate the feature from

different branches. However, since the intermediate blocks

are trained only using the loss backpropagated from the top

layers, no restriction is attached to their features to conclude

more useful information.

In conclusion, contour-aware objective function ignores

the correlation between the salient regions and the contour

maps. Besides, constructing boundary-aware networks on-

ly utilizes the contour cue to improve the saliency maps.

In contrast, we additionally employ the saliency supervi-

sion to improve the distinctiveness of contour representa-

tion, which in return helps our model learn more powerful

saliency representation through our new fusion module.

3. Approach

3.1. Analysis on correlation

We observe that the contour map can be easily generat-

ed by calculating the difference between dilated and eroded

saliency maps, as shown in green dash box in Figure 2. To

obtain a saliency map from the generated contour, we adop-

t seed filling algorithm [15] to find the region within the

closed contour. However, we do not know whether pixels

in the closed contour are foreground or not. Therefore, the

contour will generate two contrary saliency maps as shown

in blue dash box in Figure 2. In summary, the saliency maps

and the contour maps are highly associated with each oth-

er, except that the saliency maps exactly define background

and foreground. These observations motivate us to use two

branches for representing saliency and contour respectively

and to take their correlation into consideration for improv-

ing predictions.

We are awared that some works also use contour cue in

saliency detection task. They either regarded bottom fea-

tures of the predicted contour map as a complementary cue

[35, 48] or treated contour pixels different from the other

ones [4, 26]. Although these methods can produce good

saliency maps, they (1) cannot make sure the learned two

branches are complementary to each other and (2) ignored

the high correlation between contour and saliency maps.

Contrary to these works, we integrate saliency maps,

contour cues, and their correlation into our framework. We

not only add such cues into objective function but also fuse

features from both branches to exploit the correlation be-

tween them. Detail structure of our method is illustrated in

the following section.

3.2. The proposed FCF module

As our analysis in the above section, we need two in-

dividual branches to represent saliency and contour cues,

as well as adding a module to fuse the correlation between

these two types of signals. Figure 3 shows two variants of

the proposed fusion modules. In both of our modules, t-

wo branches are used to represent saliency Si and contour

Ci and additional submodules to explore their correlation.

The first proposed module is a straightforward method, re-

ferred as naive Feature Correlation Fusion (FCF-a), which

uses a fusion block Fi to combine features from two branch-

es. Then the fused feature is concatenated with each branch
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Figure 3. Two variants of our FCF modules for correlation fusion.

as inputs to the next layers. Fi is instantiated with two chan-

nel pooling layers and a convolutional layer. It is notewor-

thy that each branch is supervised by corresponding map-

s, while no supervision is attached to the common blocks.

This simple module cannot guarantee that the fused features

can be complementary to each branch. Therefore, it is nec-

essary to design a new fusion method to improve represen-

tation power of both branches.

To this end, we develop an interactive Feature Corre-

lation Fusion (FCF-b) module to integrate the correlation.

Like the above module, two branches Si and Ci are adopt-

ed. Furthermore, some intermediate connections denoted

as S
′

i and C
′

i directly deliver the features from one branch

to another as shown in Figure 3. S
′

i and C
′

i contain sever-

al convolution layers to generate two outputs. One output

is used for predicting corresponding maps, while the other

one is transmitted into another branch. Unlike FCF-a, su-

pervisions are attached to these connections to ensure the

transferred features are related to their original branch. In

this way, the fused features are exactly from two cues.

3.3. Overall network architecture

The proposed network in line with the encoder-decoder

pattern like most saliency detection models. We provide a

detailed introduction in the following.

Feature encoder: Here, standard VGG [29] or ResNet

[10], pre-trained on ImageNet [7], are adopted as our fea-

ture extractor for fairly compared with other popular salien-

cy detection methods. For VGG network, fully-connected

layers are truncated for our lightweight purpose. Both net-

works contain hierarchical feature maps with progressive-

ly decreasing size to well integrate diverse information of

images. Those feature maps (outputs before sub-sampling

layers) with different sizes are collected as the encoder fea-

tures, denoted as Ei, i = 1, 2, 3, 4, 5. An example based on

VGG network is shown in Figure 4.

To reduce feature channels and computation loads, we

attach a channel pooling layer on the top of each select-

ed feature map to enable information flow through different

channels. Compared with traditional convolution operator,

it has much fewer computational costs without any extra

learnable parameters. We define channel pooling as:

Ai = cp(Ei), (1)

cp(X) = collectj∈[0,m−1](maxk∈[0, n

m
−1]X

j× n

m
+k), (2)

where j, k are integers and i ∈ [1, 5] is the index of each

feature. In addition, cp denotes the channel pooling opera-

tor and Xj× n

m
+k indicates the (j× n

m
+k)-th channel of the

feature map X . Similar with Maxout [9], this layer collects

the maximum values over every n
m

channels, where n and

m are the input and output channels of features respectively

and n is divisible by m.

Interactive two-stream decoder: As Figure 4 shown,

five features are provided by the encoder, we apply five

FCF-b modules to integrate these features correspondingly,

forming our interactive two-stream decoder (ITSD). In our

framework, all Si and Ci are cascaded to compose saliency

and contour stream. To transmit the learned features be-

tween two streams, we develop some intermediate connec-

tions that implement the following formulas:

S′

i = fs′
i
(Si), P

s
i = cp(S′

i), (3)

C ′

i = fc′
i
(Ci), P

c
i = cp(C ′

i), (4)

where f denotes convolutional operations, and the subscript

of f stands for its corresponding branch. Moreover, PS
i and

PC
i represent task related predictions, where intermediate

supervisions are attached.

Because the final goal is to predict the saliency map,

we only integrate encoder features into the saliency stream.

Our ITSD is formulated with:

Si = fsi(upsample(concat(Si+1, C
′

i+1, Ai))), (5)

Ci = fci(concat(S
′

i, upsample(Ci+1))), (6)

where upsample and concat are the operators of upsampling

and concatenation. For the final prediction, all features in

the saliency stream are concatenated to balance hierarchical

information, which can be formulated as:

S0 = fs0(concat([upsample(Si), i = 1, 2, 3, 4, 5])), (7)

P s
0 = cp(S0), (8)

where all Si are up-sampled to the input size before con-

catenation and the final prediction is aggregated by pooling

over the concatenated feature.
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Figure 4. VGG-based network of the proposed model. Ei, Ai, Si and Ci indicates encoder, embedding block, saliency branch and contour

branch respectively. Interactive connections, including S
′

i and C
′

i , are fusion blocks named by their source branch. S0 upsamples all

features in saliency stream to input size for generating the final prediction.

3.4. Objective function

Since our network is based on two-stream framework,

we train our model using two losses. For the contour

branch, conventional BCE loss is employed due to its ro-

bustness in segmentation task:

lbce(x, y) = y log(x) + (1− y) log(1− x) (9)

Lc(P c, Gc) = −
1

n

n∑

k=1

lbce(p
c
k, g

c
k) (10)

where pck and gck are pixels in the prediction (P c) and

ground truth (Gc) contour maps respectively. k indicates

the index of each pixel while n is the number of pixels.

For the saliency branch, it is hard to correctly classify

many pixels near to the object boundaries, where those pix-

els are called hard examples. To improve the resulting map,

contour loss [4] increases their weights to promote the net-

work to pay more attention to such pixels:

Ls(P s, Gs, Gc) = −
1

n

n∑

k=1

(gck ×m+ 1)lbce(p
s
k, g

s
k) (11)

where P s and Gs are the predicted and ground truth salien-

cy maps respectively. m is the factor for hard examples. All

weights plus one to prevent too imbalance ratios between

hard and easy examples. However, the definition of hard

examples is ambiguous, as illustrated in Figure 5. In anoth-

er word, we cannot easily determine some pixels near the

Figure 5. Illustration of hard examples. It is hard to determine

some pixels near the boundary are hard examples or not.

boundary are hard or not. A simple way is to use some hy-

perparameters, which are empirical set from extensive vali-

dations, to control the degree of proximity.

In this paper, we provide an alternative method and

develop an adaptive contour loss for the saliency branch.

Specifically, we find two important properties in the pre-

dicted contour map: (1) for negative pixels, higher predict-

ed values mean that the network is hard to distinguish these

examples; (2) for positive pixels, higher values should be

attended. Based on above observations, we can conclude

that the predicted contour map inherently matches the de-

sired weight and use it as our adaptive weight. Thus, the

whole adaptive loss function can be obtained:

L
s(P s

, P
c
, G

s
, G

c) = −

1

n

n∑

k=1

(max(pck, g
c
k)×m+1)lbce(p

s
k, g

s
k)

(12)
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It is noteworthy that we compute the maximum value over

pcl and gcl to weight the saliency loss. In conclusion, the

total loss of our model is:

L(P s
, P

c
, G

s
, G

c) =

5∑

i=0

L
s(P s

i , P
c
i , G

s
i , G

c
i )+λ

5∑

j=1

L
c(P c

j , G
c
j)

(13)

where P c
0 is substituted by P c

1 and λ provides a balance

between contour and saliency losses.

4. Experiments

To validate the proposed method, we conduct a set of ex-

periments on 6 public benchmarks. The DUTS [31] dataset,

which contains 10553 images for training (DUTS-TR) and

5019 images for testing (DUTS-TE), is exploited for train-

ing and testing respectively. Meanwhile, others datasets,

like SOD [25], PASCAL-S [19], ECSSD [40], HKU-IS [17]

and DUT-O [41], are only employed as test sets due to their

relatively small scales, which contain 300, 850, 1000, 4447

and 5168 images respectively. VGG16 and ResNet50 are

employed as the backbone of the proposed network.

For training, we apply random flipping, random crop-

ping and multi-scale training as data augmentation strategy.

A GTX1080 Ti GPU is required to train our network with

batch size of 8. λ and m are sets to 1 and 4 respectively. S-

tochastic Gradient Descent (SGD) is used to train our model

for 25k iterations in total. The learning rate is set as 0.01 for

the first 20k iterations. After that, learning rate is decayed

by a factor of 0.1 for the next 5k iterations.

To quantitatively evaluate the performance, Fβ-measure

[30] and mean absolute error (MAE) are adopted in our ex-

periments. The Fβ-measure is a weighted combination of

precision and recall value for saliency maps, which can be

calculated by:

Fβ =
(1 + β2)× Precision×Recall

β2 × Precision+Recall
(14)

where β2 is set to 0.3 as recommended in [30]. Since dif-

ferent thresholds cause floating numbers of Fβ-measure, we

use the best score over all thresholds from 0 to 255, named

maximum Fβ-measure [24, 44]. In addition, MAE mea-

sures the pixel-wise average absolute difference between

predictions and ground truths:

MAE =
1

n

n∑

i=1

|xi − yi| (15)

where x and y mean prediction and ground truth, n indicates

the total number of pixels.

4.1. Main results

We compare our model with 16 existing saliency detec-

tion models, including 10 nearly real-time models, such as

RFCN [32], Amulet [45], UCF [46], NLDF [24], CKT [18],

BMP [44], PCA [22], PAGE [35], DSS [12], EGNet [48]

and 6 real-time models, such as RA [3], AFNet [8], BAS-

Net [26], CPD [37], PoolNet [21], SCRN [38]. Quantitative

results are shown in Tables 1 & 2.

Among the compared nearly real-time models, EGNet

achieves remarkable results on six test sets with a speed of

9 FPS. The proposed network achieves comparable scores

with 6× smaller model size and 5× faster speed. Among

the compared real-time models, PoolNet provides the best

results with a speed of 32 FPS, while our approach outper-

forms PoolNet in 4 datasets with faster processing speed.

Switching to ResNet, our ITSD obtains competitive results,

while still running at real-time speed.

Additionally, some visual examples are shown in Figure

6. Unlike other networks usually lose some parts of objects,

the integrity of salient objects is well preserved. Generally,

our network shows its robustness and effectiveness in pro-

cessing complicated images.

Furthermore, we compare FLOPs and the number of pa-

rameters with other popular methods in Table 2. Input sizes

are set according to their publicity code that provides the

performance in Table 1. With the least number of param-

eters and fewer computational cost, our network still pro-

vides comparable performance. It clearly demonstrates the

efficiency of our ITSD network.

4.2. Correlation analysis

We conduct controlled experiments to prove that the cor-

relation between saliency and contour cues can assist the

learning process of each other. First, similar with P s
0 and

S0, additional P c
0 and C0 are generated from the assemble

of C1 to C5 in our network. Next, four conditions of inter-

mediate supervision: (1) no supervision, (2) contour-only,

(3) saliency-only and (4) both of them, are tested using the

maximum Fβ-measure scores as shown in Table 3.

Compared with the network trained with no intermediate

supervision, adding saliency or contour cue can improve the

performance. More importantly, using both two cues can

provides further improvement in our experiments. These re-

sults clearly demonstrate that each prediction task can ben-

efit from the other supervised signal. Moreover, the combi-

nation of these two cues provides the best results.

4.3. Internal comparisons on ITSD modules

Compared with basic U-shape module, the main differ-

ences of the proposed network are the contour supervision

and the two-stream structure. Therefore, we train four net-

works to verify the effectiveness of these components by

gradually eliminating them. First, we train our ITSD with

the proposed FCF-a and FCF-b modules respectively. Sec-

ond, we remove the intermediate supervision of contour

branch from FCF-b, denoted as FCF-NoCS. Al last, a basic
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Table 1. Quantitative comparisons of different saliency models on six benchmark datasets in terms of maximum Fβ-measure and MAE,

which are marked as F ∗

β and mae. Red and blue text indicate the best and the second best performance respectively. FPS is tested using

public code. PAGE is trained on THUS10K [5]. In ResNet-based comparisons, BasNet uses ResNet34 while others use ResNet50.

Method FPS
SOD PASCAL-S ECSSD HKU-IS DUTS-TE DUT-O

F ∗

β mae F ∗

β mae F ∗

β mae F ∗

β mae F ∗

β mae F ∗

β mae

VGG-based

RFCN [32] 9 .807 .166 .850 .132 .898 .095 .898 .080 .783 .090 .738 .095

Amulet [45] 16 .798 .145 .837 .099 .915 .059 .897 .051 .778 .085 .743 .098

UCF [46] 23 .803 .169 .846 .128 .911 .078 .886 .074 .771 .117 .735 .132

NLDF [24] 12 .842 .125 .829 .103 .905 .063 .902 .048 .812 .066 .753 .080

DSS [12] 25 .837 .127 .828 .107 .908 .062 .900 .050 .813 .064 .760 .074

CKT [18] 23 .829 .119 .850 .086 .910 .054 .896 .048 .807 .062 .757 .071

BMP [44] 22 .851 .106 .859 .081 .928 .044 .920 .038 .850 .049 .774 .064

PAGE [35] 25 .796 .110 .835 .078 .931 .042 .930 .037 .838 .051 .791 .066

PCA [22] 5.6 .855 .108 .858 .081 .931 .047 .921 .042 .851 .054 .794 .068

CTLoss [4] 26 .861 .109 .876 .079 .933 .043 .927 .035 .872 .042 .792 .073

EGNet [48] 9 .869 .110 .863 .076 .941 .044 .929 .034 .880 .043 .826 .056

RA [3] 35 .844 .124 .834 .104 .918 .059 .913 .045 .826 .055 .786 .062

AFNet [8] 45 .855 .110 .867 .078 .935 .042 .923 .036 .862 .046 .797 .057

CPD [37] 66 .850 .114 .866 .074 .936 .040 .924 .033 .864 .043 .794 .057

PoolNet [21] 32 .859 .115 .857 .078 .936 .047 .928 .035 .876 .043 .817 .058

ITSD (Ours) 48 .869 .100 .871 .074 .939 .040 .927 .035 .877 .042 .813 .063

ResNet-based

BasNet [26] 70 .851 .114 .854 .076 .942 .037 .928 .032 .860 .047 .805 .056

CPD [37] 62 .852 .110 .864 .072 .939 .037 .925 .034 .865 .043 .797 .056

PoolNet [21] 18 .867 .100 .863 .075 .940 .042 .934 .032 .886 .040 .830 .055

EGNet [48] 7.8 .890 .097 .869 .074 .943 .041 .937 .031 .893 .039 .842 .052

SCRN [38] 32 .860 .111 .882 .064 .950 .038 .934 .034 .888 .040 .812 .056

ITSD (Ours) 43 .880 .095 .871 .071 .947 .035 .934 .031 .883 .041 .824 .061

(a) Image (b) GT (c) Ours (d) EgNet (e) Page (f) CPD (g) NLDF (h) CTLoss (i) UCF (j) Amulet (k) SRM

Figure 6. Example images of segmentation results.
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Table 2. The number of parameters and FLOPs comparisons of our

method with some state-of-the-art networks. All methods adopt

VGG as backbone network.

Method Input size FLOPs(G) Params(M)

EGNet [48] ∼380 × 320 291.90 108.07

PoolNet [21] 400 × 300 117.10 52.51

PAGE [35] 224 × 224 101.98 47.40

CPD [37] 352 × 352 59.46 29.23

ITSD (Ours) 288 × 288 57.47 17.08

Table 3. Sal and Con denote saliency and contour supervision re-

spectively, while slc and ctr indicate network predictions.

Supervised PASCAL-S DUTS-TE HKU-IS

Sal Con slc ctr slc ctr slc ctr

.852 .541 .850 .650 .915 .714

X .861 .551 .857 .677 .921 .730

X .869 .562 .868 .672 .923 .729

X X .871 .564 .877 .683 .927 .734

Figure 7. Predicted maps of intermediate layers. The first two

rows illustrate the original image, ground truth of contour and five

P c
i (from 1 to 5) respectively. Moreover, the last two rows show

ground truth of saliency and six P s
i (from 0 to 5) respectively.

U-shape network is constructed as the baseline by truncat-

ing the whole contour branch in FCF-b module. All results

are illustrated in Table 4.

Compared with the U-shape network, better perfor-

mance of FCF-NoCS demonstrates the importance of con-

tour branch. In addition, comparison between FCF-NoCS

and FCF-b validates the importance of contour supervision

for saliency network. For the proposed two modules, FCF-b

achieves better performance on all tested datasets.

In Figure 7, we visualize one example of intermediate

outputs from the proposed network. As one can see, the

generated contours and saliency maps show coarse-to-fine

predictions along with the decoding process. It clearly indi-

Table 4. Controlled experiments on the proposed network. U-

shape and FCF-NoCS are two controlled networks, while FCF-a

and FCF-b are two variants of the proposed module.

Module
ECSSD DUTS-TE HKU-IS

Fβ MAE Fβ MAE Fβ MAE

U-shape .919 .052 .842 .062 0.913 .048

FCF-NoCS .929 .043 .868 .045 0.921 .035

FCF-a .930 .041 .865 .046 0.919 .036

FCF-b .939 .040 .877 .042 0.927 .033

Table 5. Experiment results of the proposed network using differ-

ent objective functions.

Loss
ECSSD DUTS-TE HKU-IS

Fβ MAE Fβ MAE Fβ MAE

F-score .929 .043 .845 .050 0.915 .045

BCE .931 .040 .861 .046 0.921 .040

CTLoss .935 .040 .872 .045 0.925 .036

ACT .939 .039 .877 .042 0.927 .035

cates that our two-stream decoder can gradually refine the

contour and saliency predictions.

4.4. Ablation studies on objective function

Except for conventional BCE loss, other losses are pro-

posed to train the saliency models recently. To evaluate the

effectiveness of these losses, four different losses are em-

ployed in the saliency branch to train our model, including

BCE loss, F-score loss [49], contour loss (CTLoss) [4] and

the proposed ACT loss. Results are shown in Table 5.

F-score loss is struggling with small gradients when ac-

curacy is high, which causes the worst performance in our

experiments. Among the compared methods, contour loss

shows the best performance. Our proposed method, ACT

loss, outperforms CTLoss since it uses the predicted con-

tour map to weight pixels automatically. Furthermore, it is

noteworthy that most hyperparameters in the contour loss

are abandoned in our ACT loss, which largely reduces the

efforts for searching optimal parameters.

5. Conclusion

In this paper, we first observed that saliency and con-

tour maps were highly associated with each other, but had a

minor difference in foreground and background definition.

Based on our findings, we proposed an Interactive Two-

Stream Decoder (ITSD), which consists of two individual

branches for representing saliency and contour stream re-

spectively, and a novel Feature Correlation Fusion (FCF)

module for their correlation combination. Furthermore, we

found the predicted contour maps can be utilized as a weight

functon to automatically weight hard examples and thus

proposed a new adaptive contour loss (ACT) for training.

Extensive experiments well demonstrated the efficiency and

effectiveness of the proposed network.
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