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Abstract

Temporal camera relocalization estimates the pose with

respect to each video frame in sequence, as opposed to

one-shot relocalization which focuses on a still image.

Even though the time dependency has been taken into ac-

count, current temporal relocalization methods still gener-

ally underperform the state-of-the-art one-shot approaches

in terms of accuracy. In this work, we improve the tempo-

ral relocalization method by using a network architecture

that incorporates Kalman filtering (KFNet) for online cam-

era relocalization. In particular, KFNet extends the scene

coordinate regression problem to the time domain in or-

der to recursively establish 2D and 3D correspondences

for the pose determination. The network architecture de-

sign and the loss formulation are based on Kalman filtering

in the context of Bayesian learning. Extensive experiments

on multiple relocalization benchmarks demonstrate the high

accuracy of KFNet at the top of both one-shot and tempo-

ral relocalization approaches. Our codes are released at

https://github.com/zlthinker/KFNet.

1. Introduction

Camera relocalization serves as the subroutine of appli-

cations including SLAM [15], augmented reality [9] and

autonomous navigation [45]. It estimates the 6-DoF pose

of a query RGB image in a known scene coordinate system.

Current relocalization approaches mostly focus on one-shot

relocalization for a still image. They can be mainly catego-

rized into three classes [13, 50]: (1) the relative pose regres-

sion (RPR) methods which determine the relative pose w.r.t.

the database images [3, 29], (2) the absolute pose regres-

sion (APR) methods regressing the absolute pose through

PoseNet [25] and its variants [23, 24, 60] and (3) the

structure-based methods that establish 2D-3D correspon-

dences with Active Search [48, 49] or Scene Coordinate Re-

gression (SCoRe) [52] and then solve the pose by PnP algo-

rithms [18, 42]. Particularly, SCoRe is widely adopted re-

cently to learn per-pixel scene coordinates from dense train-

ing data for a scene, due to its ability to form dense and

accurate 2D-3D matches even in texture-less scenes [5, 6].

As extensively evaluated in [5, 6, 50], the structure-based

methods generally show better pose accuracy than the RPR

and APR methods, because they explicitly exploit the rules

of the projective geometry and the scene structures [50].

Apart from one-shot relocalization, temporal relocaliza-

tion with respect to video frames is also worthy of inves-

tigation. However, almost all the temporal relocalization

methods are based on PoseNet [25], which, in general, even

underperform the structure-based one-shot methods in ac-

curacy. This is mainly because their accuracies are funda-

mentally limited by the retrieval nature of PoseNet. As an-

alyzed in [50], PoseNet based methods are essentially anal-

ogous to approximate pose estimation via image retrieval,

and cannot go beyond the retrieval baseline in accuracy.

In this work, we are motivated by the high accuracy of

structure-based relocalization methods and resort to SCoRe

to estimate per-pixel scene coordinates for pose computa-

tion. Besides, we propose to extend SCoRe to the time do-

main in a recursive manner to enhance the temporal consis-

tency of 2D-3D matching, thus allowing for more accurate

online pose estimations for sequential images. Specifically,

a recurrent network named KFNet is proposed in the con-

text of Bayesian learning [37] by embedding SCoRe into the

Kalman filter within a deep learning framework. It is com-

posed of three subsystems below, as illustrated in Fig. 1.

• The measurement system features a network termed

SCoordNet to derive the maximum likelihood (ML) pre-

dictions of the scene coordinates for a single image.

• The process system uses OFlowNet that models the opti-

cal flow based transition process for image pixels across

time steps and yields the prior predictions of scene coor-

dinates. Additionally, the measurement and process sys-

tems provide uncertainty predictions [40, 23] to model

the noise dynamics over time.

• The filtering system fuses both predictions and leads to

the maximum a posteriori (MAP) estimations of the fi-

nal scene coordinates.
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Furthermore, we propose probabilistic losses for the three

subsystems based on the Bayesian formulation of KFNet,

to enable the training of either the subsystems or the full

framework. We summarize the contributions as follows.

• We are the first to extend the scene coordinate regres-

sion problem [52] to the time domain in a learnable way

for temporally-consistent 2D-3D matching.

• We integrate the traditional Kalman filter [22] into a re-

current CNN network (KFNet) that resolves pixel-level

state inference over time-series images.

• KFNet bridges the existing performance gap between

temporal and one-shot relocalization approaches, and

achieves top accuracy on multiple relocalization bench-

marks [52, 57, 25, 43].

• Lastly, for better practicality, we propose a statistical

assessment tool to enable KFNet to self-inspect the po-

tential outlier predictions on the fly.

2. Related Works

Camera relocalization. We categorize camera relocaliza-

tion algorithms into three classes: the relative pose regres-

sion (RPR) methods, the absolute pose regression (APR)

methods and the structure-based methods.

The RPR methods use a coarse-to-fine strategy which

first finds similar images in the database through image re-

trieval [55, 2] and then computes the relative poses w.r.t. the

retrieved images [3, 29, 46]. They have good generalization

to unseen scenes, but the retrieval process needs to match

the query image against all the database images, which can

be costly for time-critical applications.

The APR methods include PoseNet [25] and its vari-

ants [23, 24, 60] which learn to regress the absolute cam-

era poses from the input images through a CNN. They are

simple and efficient, but generally fall behind the structure-

based methods in terms of accuracy, as validated by [5, 6,

50]. Theoretically, [50] explains that PoseNet-based meth-

ods are more closely related to image retrieval than to accu-

rate pose estimation via 3D geometry.

The structure-based methods explicitly establish the cor-

respondences between 2D image pixels and 3D scene points

and then solve camera poses by PnP algorithms [18, 42, 30].

Traditionally, correspondences are searched by matching

the patch features against Structure from Motion (SfM)

tracks via Active Search [48, 49] and its variants [32, 10,

33, 47], which can be inefficient and fragile in texture-

less scenarios. Recently, the correspondence problem is

resolved by predicting the scene coordinates for pixels by

training random forests [52, 58, 36] or CNNs [5, 6, 31, 7]

with ground truth scene coordinates, which is referred to as

Scene Coordinate Regression (SCoRe).

Besides one-shot relocalization, some works have ex-

tended PoseNet to the time domain to address temporal re-
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Figure 1: The architecture of the proposed KFNet, which is de-

composed into the process, measurement and filtering systems.

localization. VidLoc [11] performs offline and batch re-

localization for fixed-length video-clips by BLSTM [51].

Coskun et al. refine the pose dynamics by embedding

LSTM units in the Kalman filters [12]. VLocNet [56] and

VLocNet++ [43] propose to learn pose regression and the

visual odometry jointly. LSG [63] combines LSTM with

visual odometry to further exploit the spatial-temporal con-

sistency. Since all the methods are extensions of PoseNet,

their accuracies are fundamentally limited by the retrieval

nature of PoseNet, following the analysis of [50].

Temporal processing. When processing time-series im-

age data, ConvLSTM [61] is a standard way of model-

ing the spatial correlations of local contexts through time

[59, 35, 28]. However, some works have pointed out that the

implicit convolutional modeling is less suited to discovering

the pixel associations between neighboring frames, espe-

cially when pixel-level accuracy is desired [21, 39]. There-

fore, in later works, the optical flow is highlighted as a more

explicit way of delineating the pixel correspondences across

sequential steps [41]. For example, [41, 20, 28, 53, 39] com-

monly predict the optical flow fields to guide the feature

map warping across time steps. Then, the warped features

are fused by weighting [65, 66] or pooling [38, 41] to aggre-

gate the temporal knowledge. In this work, we follow the

practice of flow-guided warping, but the distinction from

previous works is that we propose to fuse the predictions by

leveraging Kalman filter principles [37].

3. Bayesian Formulation

This section presents the Bayesian formulation of recur-

sive scene coordinate regression in the time domain for tem-

poral camera relocalization. Based on the formulation, the

proposed KFNet is built and the probabilistic losses are de-

fined in Sec. 4 ∼ 6. Notations used below have been sum-

marized in Table 1 for quick reference.

Given a stream of RGB images up to time t, i.e., It =
{I1, ..., It−1, It}, our aim is to predict the latent state for
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Module inputs outputs

The

process

system

θ̂t−1

Σt−1

It−1

It

Gt

Wt

θ̂
−

t = Gtθ̂t−1

Rt = GtΣt−1G
T
t +Wt

- transition matrix

- process noise covariance

- prior state mean

- prior state covariance

The

measurement

system

It

zt
Vt

- state observations

- measurement noise

covariance

The

filtering

system

θ̂
−

t

zt
Rt

Vt

et = zt − θ̂
−

t

Kt =
Rt

Vt+Rt

θ̂t = θ̂
−

t +Ktet
Σt = Rt(I−Kt)

- innovation

- Kalman gain

- posterior state mean

- posterior state covariance

Table 1: The summary of variables and notations used in the

Bayesian formulation of KFNet.

each frame, i.e., the scene coordinate map, which is then

used for pose computation. We denote the map as θt ∈
R

N×3, where N is the pixel number. By imposing the

Gaussian noise assumption on the states, the state θt condi-

tioned on It follows an unknown Gaussian distribution:

θ
+
t

def

= (θt|It) ∼ N (θ̂t,Σt), (1)

where θ̂t and Σt are the expectation and covariance to be

determined. Under the routine of Bayesian theorem, the

posterior probability of θt can be factorized as

P (θt|It) ∝ P (θt|It−1)P (It|θt, It−1), (2)

where It = It−1 ∪ {It}.

The first factor P (θt|It−1) of the right hand side (RHS)

of Eq. 2 indicates the prior belief about θt obtained from

time t−1 through a process system. Provided that no occlu-

sions or dynamic objects occur, the consecutive coordinate

maps can be approximately associated by a linear process

equation describing their pixel correspondences, wherein

θt = Gtθt−1 +wt, (3)

with Gt ∈ R
N×N being the sparse state transition matrix

given by the optical flow fields from time t − 1 to t, and

wt ∼ N (0,Wt), Wt ∈ S
N
++

1 being the process noise.

Given It−1, we already have the probability statement that

(θt−1|It−1) ∼ N (θ̂t−1,Σt−1). Then the prior estimation

of θt from time t− 1 can be expressed as

θ
−

t

def

= (θt|It−1) ∼ N (θ̂
−

t ,Rt), (4)

where θ̂
−

t = Gtθ̂t−1, Rt = GtΣt−1G
T
t +Wt.

The second factor P (It|θt, It−1) of the RHS of Eq. 2 de-

scribes the likelihood of image observations at time t made

through a measurement system. The system models how It
is derived from the latent states θt, formally It = h(θt).
However, the high nonlinearity of h(·) makes the follow-

ing computation intractable. Alternatively, we map It to

zt ∈ R
N×3 via a nonlinear function inspired by [12], so

1SN
++

denotes the set of N-dimensional positive definite matrices.

that the system can be approximately expressed by a linear

measurement equation:

zt = θt + vt, (5)

where vt ∼ N (0,Vt), Vt ∈ S
N
++ denotes the measure-

ment noise, and zt can be interpreted as the noisy observed

scene coordinates. In this way, the likelihood can be re-

written as P (zt|θt, It−1) by substituting zt for It.

Let et denote the residual of predicting zt from time t−
1; thus

et = zt − θ̂
−

t = zt −Gtθ̂t−1. (6)

Since Gt and θ̂t−1 are all known, observing zt is equiva-

lent to observing et. Hence, the likelihood P (zt|θt, It−1)
can be rewritten as P (et|θt, It−1). Substituting Eq. 5 into

Eq. 6, we have et = θt − θ̂
−

t + vt, so that the likelihood

can be described by

(et|θt, It−1) ∼ N (θt − θ̂
−

t ,Vt). (7)

Based on the theorems in multivariate statistics [1, 37],

combining the two distributions 4 & 7 gives the bivariate

normal distribution:

[(

θt

et

)∣

∣

∣

∣

It−1

]

∼ N

[(

θ̂
−

t

0

)

,

(

Rt Rt

Rt Rt +Vt

)

]

. (8)

Making et the conditioning variable, the filtering system

gives the posterior distribution that writes

θ
+
t

def

= (θt|It) = (θt|et, It−1) ∼ N (θ̂t,Σt)

∼ N (θ̂
−

t +Ktet,Rt(I−Kt)),
(9)

where Kt = Rt

Vt+Rt

is conceptually referred to as the

Kalman gain and et as the innovation2 [37, 19].

As shown in Fig. 1, the inference of the posterior scene

coordinates θ̂t and covariance Σt for image pixels proceeds

recursively as the time t evolves, which are then used for on-

line pose determination. Specifically, the pixels with vari-

ances greater than λ are first excluded as outliers. Then, a

RANSAC+P3P [18] solver is applied to compute the initial

camera pose from the 2D-3D correspondences, followed by

a nonlinear optimization for pose refinement.

4. The Measurement System

The measurement system is basically a generative model

explaining how the observations zt are generated from the

latent scene coordinates θt, as expressed in Eq. 5. Then, the

remaining problem is to learn the underlying mapping from

It to zt. This is similar to the SCoRe task [52, 5, 6], but dif-

fers in the constraint about zt imposed by Eq. 5. Below, the

2The derivation of Eqs. 8 & 9 is shown in the supplementary material.
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Figure 2: The visualization of uncertainties which model the mea-

surement noise and the process noise. (a) SCoordNet predicts

larger uncertainties from single images over the object boundaries

where larger errors occur. (b) OFlowNet gives larger uncertain-

ties from the consecutive images (overlaid) over the areas where

occlusions or dynamic objects appear.

architecture of SCoordNet is first introduced, which outputs

the scene coordinate predictions, along with the uncertain-

ties, to model the measurement noise vt. Then, we define

the probabilistic loss based on the likelihood P (zt|θt, It−1)
of the measurement system.

4.1. Architecture

SCoordNet shares the similar fully convolutional struc-

ture to [6], as shown in Fig. 1. However, it is far more

lightweight, with parameters fewer than one eighth of [6]. It

encompasses twelve 3×3 convolution layers, three of which

use a stride of 2 to downsize the input by a factor of 8. ReLU

follows each layer except the last one. To simplify compu-

tation and avoid the risk of over-parameterization, we pos-

tulate the isotropic covariance of the multivariate Gaussian

measurement noise, i.e., V(i) = v(i)
2
I3 for each pixel pi,

where I3 denotes the 3× 3 identity matrix. The output thus

has a channel of 4, comprising 3-d scene coordinates and a

1-d uncertainty measurement.

4.2. Loss

According to Eq. 5, the latent scene coordinates θ(i) of

pixel pi should follow the distribution N (z(i), v
2
(i)I3). Tak-

ing the negative logarithm of the probability density func-

tion (PDF) of θ(i), we define the loss based on the like-

lihood which gives rise to the maximum likelihood (ML)

estimation for each pixel in the form [23]:

Llikelihood =

N
∑

i=1

(

3 log v(i) +
‖z(i) − y(i)‖

2
2

2v(i)2

)

, (10)

with y(i) being the groundtruth label for θ(i). For numeri-

cal stability, we use logarithmic variance for the uncertainty

measurements in practice, i.e., s(i) = log v(i)
2.

Including uncertainty learning in the loss formulation al-

lows one to quantify the prediction errors stemming not just

from the intrinsic noise in the data but also from the de-

fined model [14]. For example, at the boundary with depth

discontinuity, a sub-pixel offset would cause an abrupt co-

ordinate shift which is hard to model. SCoordNet would

easily suffer from a significant magnitude of loss in such

cases. It is sensible to automatically downplay such errors

during training by weighting with the uncertainty measure-

ments. Fig. 2(a) illustrates the uncertainty predictions in

such cases.

5. The Process System

The process system models the transition process of

pixel states from time t− 1 to t, as described by the process

equation of Eq. 3. Herein, first, we propose a cost volume

based network, OFlowNet, to predict the optical flows and

the process noise covariance jointly for each pixel. Once the

optical flows are determined, Eq. 3 is equivalent to the flow-

guided warping from time t − 1 towards t, as commonly

used in [41, 20, 28, 53, 39]. Second, after the warping, the

prior distribution of the states, i.e., θ−

t ∼ N (θ̂
−

t ,Rt) of

Eq. 4, can be evaluated. We then define the probabilistic

loss based on the prior to train OFlowNet.

5.1. Architecture

OFlowNet is composed of two components: the cost vol-

ume constructor and the flow estimator.

The cost volume constructor first extracts features from

the two input images It−1 and It respectively through seven

3 × 3 convolutions, three of which have a stride of 2 . The

output feature maps Ft−1 and Ft have a spatial size of one-

eighth of the inputs and a channel number of c. Then, we

build up a cost volume Ci ∈ R
w×w×c
+ for each pixel pi of

the feature map Ft, so that

Ci(o) =

∣

∣

∣

∣

Ft(pi)

‖Ft(pi)‖2
−

Ft−1(pi + o)

‖Ft−1(pi + o)‖2

∣

∣

∣

∣

, (11)

where w is the size of the search window which cor-

responds to 8w pixels in the full-resolution image, and

o ∈ {−w/2, ..., w/2}2 is the spatial offset. We apply L2-

normalization to the feature maps along the channel dimen-

sion before differentiation, as in [62, 34].

The following flow estimator operates over the cost vol-

umes for flow inference. We use a U-Net with skip connec-

tions [44] as shown in Fig. 1, which first subsamples the cost

volume by a factor of 8 for an enlarged receptive field and

then upsamples it to the original resolution. The output is a

w × w × 1 unbounded confidence map for each pixel. Re-

lated works usually attain flows by hard assignment based

on the matching cost encapsulated by the cost volumes

[62, 54]. However, it would cause non-differentiability in

later steps where the optical flows are to be further used for

spatial warping. Thus, we pass the confidence map through

the differentiable spatial softmax operator [16] to compute

the optical flow as the expectation of the pixel offsets inside

the search window. Formally,

ô
def

= E(o) =
∑

o

softmax(fo) · o, (12)
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Figure 3: Sample optical flows predicted by OFlowNet over con-

secutive images (overlaid) of three different datasets [52, 57, 25].

where fo is the confidence at offset o. To fulfill the process

noise modeling, i.e., wt in Eq. 3, we append three fully

connected layers after the bottleneck of the U-Net to regress

the logarithmic variance, as shown in Fig. 1. Sample optical

flow predictions are visualized in Fig. 3.

5.2. Loss

Once the optical flows are computed, the state transition

matrix Gt of Eq. 3 can be evaluated. We then complete

the linear transition process of Eq. 3 by warping the scene

coordinate map and uncertainty map from time t−1 towards

t through bilinear warping [64]. Let θ̂
−

(i) and σ−

(i)

2
be the

warped scene coordinates and Gaussian variance, and w(i)
2

be the Gaussian variance of the process noise of pixel pi at

time t. Then, the prior coordinates of pi, denoted as θ
−

(i),

should follow the distribution

θ
−

(i) ∼ N (θ̂
−

(i), r(i)
2
I3), (13)

where r(i)
2 = σ−

(i)

2
+ w(i)

2. Taking the negative logarithm

of the PDF of θ−

(i), we get the loss of the process system as

Lprior =

N
∑

i=1



3 log r(i) +
‖θ̂

−

(i) − y(i)‖
2
2

2r(i)2



 . (14)

It is noteworthy that the loss definition uses the prior distri-

bution of θ−

(i) to provide the weak supervision for training

OFlowNet, with no recourse to the optical flow labeling.

One issue with the proposed process system is that it

assumes no occurrence of occlusions or dynamic objects

which are two outstanding challenges for tracking problems

[27, 67]. Our process system partially addresses the issue by

giving the uncertainty measurements of the process noise.

As shown in Fig. 2(b), OFlowNet generally produces much

larger uncertainty estimations for the pixels from occluded

areas and dynamic objects. This helps to give lower weights

to these pixels that have incorrect flow predictions in the

loss computation.

6. The Filtering System

The measurement and process systems in the previous

two sections have derived the likelihood and prior estima-

tions of the scene coordinates θt, respectively. The filtering

system aims to fuse both of them based on Eq. 9 to yield the

posterior estimation.
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Figure 4: The illustration of NIS testing for the filtering system.

The histogram draws the exemplar distribution of the Normal-

ized Innovation Squared (NIS) values of the Kalman filter. The

red curve denotes the PDF of the 3-DoF Chi-squared distribution

χ
2(3). NIS testing works by filtering out the inconsistent predic-

tions whose NIS values locate out of the 95% acceptance region

(red shaded) of χ2(3).

6.1. Loss

For a pixel pi at time t, N (z(i), v(i)
2
I3) and

N (θ̂
−

(i), r(i)
2
I3) are respectively the likelihood and prior

distributions of its scene coordinates. Putting the variables

in Eqs. 6 & 9, we evaluate the innovation and the Kalman

gain at pixel pi as

e(i) = z(i) − θ̂
−

(i), and k(i) =
r(i)

2

v(i)2 + r(i)2
. (15)

Imposing the linear Gaussian postulate of the Kalman filter,

the fused scene coordinates of pi with the least square error

follow the posterior distribution below [37] :

θ
+
(i) ∼ N (θ̂

+

(i), σ(i)
2
I3), (16)

where θ̂
+

(i) = θ̂
−

(i) + k(i)e(i) and σ(i)
2 = r(i)

2(1 − k(i)).
Hence, the Kalman filtering system is parameter-free, with

the loss defined based on the posterior distribution:

Lposterior =

N
∑

i=1



3 log σ(i) +
‖θ̂

+

(i) − y(i)‖
2
2

2σ(i)
2



 , (17)

which is then added to the full loss that allows the end-to-

end training of KFNet as below:

Lfull = τ1Llikelihood + τ2Lprior + τ3Lposterior. (18)

6.2. Consistency Examination

In practice, the filter could behave incorrectly due to the

outlier estimations caused by the erratic scene coordinate

regression or a failure of flow tracking. This would in-

duce accumulated state errors in the long run. Therefore,

we use the statistical assessment tool, Normalized Innova-

tion Squared (NIS) [4], to filter the inconsistent predictions

during inference.

Normally, the innovation variable e(i) ∈ R
3 follows the

Gaussian distribution N (0,S(i)) as shown by Eq. 8, where
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chess 0.08m, 3.25° 0.04m, 1.73° 0.04m, 1.96° 0.02m, 0.5° 0.019m, 0.63° 0.18m, - 0.33m, 6.9° 0.023m,1.44° 0.09m, 3.28° 0.018m, 0.65°

fire 0.27m, 11.7° 0.03m, 1,74° 0.03m, 1.53° 0.02m, 0.9° 0.023m, 0.91° 0.26m, - 0.41m, 15.7° 0.018m, 1.39° 0.26m, 10.92° 0.023m, 0.90°

heads 0.18m, 13.3° 0.05m, 1.98° 0.02m, 1.45° 0.01m, 0.8° 0.018m, 1.26° 0.21m, - 0.28m, 13.01° 0.016m, 0.99° 0.17m, 12.70° 0.014m, 0.82°

office 0.17m, 5.15° 0.04m, 1.62° 0.09m, 3.61° 0.03m, 0.7° 0.026m, 0.73° 0.36m, - 0.43m, 7.65° 0.024m, 1.14° 0.18m, 5.45° 0.025m, 0.69°

pumpkin 0.22m, 4.02° 0.04m, 1.64° 0.08m, 3.10° 0.04m, 1.1° 0.039m, 1.09° 0.31m, - 0.49m, 10.63° 0.024m, 1.45° 0.20m, 3.69° 0.037m, 1.02°

redkitchen 0.23m, 4.93° 0.04m, 1.63° 0.07m, 3.37° 0.04m, 1.1° 0.039m, 1.18° 0.26m, - 0.57m, 8.53° 0.025m, 2.27° 0.23m, 4.92° 0.038m, 1.16°

stairs 0.30m, 12.1° 0.04m, 1.51° 0.03m, 2.22° 0.09m, 2.6° 0.037m, 1.06° 0.14m, - 0.46m, 14.56° 0.021m,1.08° 0.23m, 11.3° 0.033m, 0.94°

Average 0.207m, 7.78° 0.040m, 1.69° 0.051m, 2.46° 0.036m, 1.10° 0.029m, 0.98° 0.246m, - 0.424m, 11.00° 0.022m, 1.39° 0.190m, 7.47° 0.027m, 0.88°

C
am

b
ri

d
g

e

GreatCourt - - - 0.40m, 0.2° 0.43m, 0.20° - - - - 0.42m, 0.21°

KingsCollege 1.07m, 1.89° - 0.42m, 0.55° 0.18m, 0.3° 0.16m, 0.29° - 2.01m, 5.35° - - 0.16m, 0.27°

OldHospital 1.94m, 3.91° - 0.44m, 1.01° 0.20m, 0.3° 0.18m, 0.29° - 2.35m, 5.05° - - 0.18m, 0.28°

ShopFacade 1.49m, 4.22° - 0.12m, 0.40° 0.06m, 0.3° 0.05m, 0.34° - 1.63m, 6.89° - - 0.05m, 0.31°

StMarysChurch 2.00m, 4.53° - 0.19m, 0.54° 0.13m, 0.4° 0.12m, 0.36° - 2.61m, 8.94° - - 0.12m, 0.35°

Street - - 0.85m, 0.83° - - - 3.05m, 5.62° - - -

Average 1 1.63m, 3.64° - 0.29m, 0.63° 0.14m, 0.33° 0.13m, 0.32° - 2.15m, 6.56° - - 0.13m, 0.30°

DeepLoc - - 0.010m, 0.04° - 0.083m, 0.45° - - 0.320m, 1.48° - 0.065m, 0.43°

1 The average does not include errors of GreatCourt and Street as some methods do not report results of the two scenes.

Table 2: The median translation and rotation errors of different relocalization methods. Best results are in bold.

One-shot Temporal

DSAC++[6] ESAC [7] SCoordNet KFNet

96.8% 97.8% 98.9% 99.2%

Table 3: The 5cm-5deg accuracy of one-shot and temporal relo-

calization methods on 12scenes [57].

S(i) = (v(i)
2 + r(i)

2)I3. Then, NIS = eT(i)S
−1
(i) e(i) is sup-

posed to follow the Chi-squared distribution with three de-

grees of freedom, denoted as χ2(3). It is thus reasonable to

see a pixel state as an outlier if its NIS value locates outside

the acceptance region of χ2(3). As illustrated in Fig. 4, we

use the critical value of 0.05 in the NIS test, which means

we have at least 95% statistical evidence to regard one pixel

state as negative. The uncertainties of the pixels failing the

test, e.g. σ(i), are reset to be infinitely large so that they will

have no effect in later steps.

7. Experiments

7.1. Experiment Settings

Datasets. Following previous works [25, 5, 6, 43], we use

two indoor datasets - 7scenes [52] and 12scenes [57], and

two outdoor datasets - DeepLoc [43] and Cambridge [25]

for evaluation. Each scene has been split into different

strides of sequences for training and testing.

Data processing. Images are downsized to 640 × 480 for

7scenes and 12scenes, 848 × 480 for DeepLoc and Cam-

bridge. The groundtruth scene coordinates of 7scenes and

12scenes are computed based on given camera poses and

depth maps, whereas those of DeepLoc and Cambridge are

rendered from surfaces reconstructed with training images.

Training. Our best practice chooses the parameter setting

as τ1 = 0.2, τ2 = 0.2, τ3 = 0.6. The ADAM optimizer

[26] is used with β1 = 0.9 and β2 = 0.999. We use an

initial learning rate of γ = 0.0001 and then drop it with ex-

ponential decay. The training procedure has 3 stages. First,

we train SCoordNet for each scene with the likelihood loss

Llikelihood (Eq. 10). The iteration number is set to be pro-

portional to the surface area of each scene and the learn-

ing rate drops from γ to γ/25. In particular, we use SCo-

ordNet as the one-shot version of the proposed approach.

Second, OFlowNet is trained using all the scenes for each

dataset with the prior loss Lprior (Eq. 14). It also experi-

ences the learning rate decaying from γ to γ/25. Each batch

is composed of two consecutive frames. The window size

of OFlowNet in the original images is set to 64, 128, 192

and 256 for the four datasets mentioned above, respectively,

due to the increasing ego-motion through them. Third, we

fine-tune all the parameters of KFNet jointly by optimizing

the full loss Lfull (Eq. 18) with a learning rate going from

γ/24 to γ/25. Each batch in the third stage contains four

consecutive frames.

7.2. Results

7.2.1 The Relocalization Accuracy

Following [5, 6, 11, 56], we use two accuracy metrics: (1)

the median rotation and translation error of poses (see Ta-

ble 2); (2) the 5cm-5deg accuracy (see Table 3), i.e., the

mean percentage of the poses with translation and rotation

errors less than 5 cm and 5°, respectively. The uncertainty

threshold λ (Sec. 3) is set to 5 cm for 7scenes and 12scenes

and 50 cm for DeepLoc and Cambridge.

One-shot relocalization. Our SCoordNet achieves the low-

est pose errors on 7scenes and Cambridge, and the highest

5cm-5deg accuracy on 12scenes among the one-shot meth-

ods, surpassing CamNet [13] and MapNet [8] which are the

state-of-the-art relative and absolute pose regression meth-

ods, respectively. Particularly, SCoordNet outperforms the

state-of-the-art structure-based methods DSAC++ [6] and

ESAC [7], yet with fewer parameters (24M vs. 210M vs.

28M, respectively). The advantage of SCoordNet should

be mainly attributed to the uncertainty modeling, as we will

analyze in the supplementary material. It also surpasses Ac-

tive Search (AS) [49] on 7scenes and Cambridge, but under-

performs AS on DeepLoc. We find that, in the experiments
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Figure 5: The point clouds predicted by different relocalization methods. Our SCoordNet and KFNet increasingly suppress the noise as

highlighted by the red boxes and produce much neater point clouds than the state-of-the-art DSAC++ [6]. The KFNet-filtered panel filters

out the points of KFNet of which the uncertainties are too large and gives rather clean and accurate mapping results.

7scenes 12scenes DeepLoc Cambridge

mean stddev mean stddev mean stddev mean stddev

DSAC++ [6] 28.8 33.1 28.8 47.1 - - 467.3 883.7

SCoordNet 16.8 23.3 9.8 20.0 883.0 1520.8 272.7 497.6

KFNet 15.3 21.7 7.3 13.7 200.79 398.8 241.5 441.7

Table 4: The mean and standard deviation of predicted scene co-

ordinate errors in centimeters.

of AS on DeepLoc [50], AS is tested on a SfM model built

with both training and test images. This may explain why

AS is surprisingly more accurate on DeepLoc than on other

datasets, since the 2D-3D matches between test images and

SfM tracks have been established and their geometry has

been optimized during the SfM reconstruction.

Temporal relocalization. Our KFNet improves over SCo-

ordNet on all the datasets as shown in Tables 2 & 3. The

improvement on Cambridge is marginal as the images are

over-sampled from videos sparsely. The too large mo-

tions between frames make it hard to model the temporal

correlations. KFNet obtains much lower pose errors than

other temporal methods, except that it has a larger transla-

tion error than VLocNet++ [43] on 7scenes. However, the

performance of VLocNet++ is inconsistent across different

datasets. On DeepLoc, the dataset collected by the authors

of VLocNet++, VLocNet++ has a much larger pose error

than KFNet, even though it also integrates semantic seg-

mentation into learning. The inconsistency is also observed

in [50], which shows that VLocNet++ cannot substaintially

exceed the accuracy of retrieval based methods [55, 2].

7.2.2 The Mapping Accuracy

Relocalization methods based on SCoRe [52, 6] can cre-

ate a mapping result for each view by predicting per-pixel

scene coordinates. Hence, relocalization and mapping can

be seen as dual problems, as one can be easily resolved once

the other is known. Here, we would like to evaluate the

(a) Images without/with motion blur (b) CDFs without motion blur (c) CDFs with motion blur

Figure 6: (a) Artificial motion blur images. (b) & (c) The cumula-

tive distribution functions (CDFs) of pose errors before and after

motion blur is applied.

mapping accuracy with the mean and the standard deviation

(stddev) of scene coordinate errors of the test images.

As shown in Table 4, the mapping accuracy is in

accordance with the relocalization accuracy reported in

Sec. 7.2.1. SCoordNet reduces the mean and stddev val-

ues greatly compared against DSAC++, and KFNet further

reduces the mean error over SCoordNet by 8.9%, 25.5%,

77.3% and 11.4% on the four datasets, respectively. The im-

provements are also reflected in the predicted point clouds,

as visualized in Fig. 5. SCoordNet and KFNet predict less

noisy scene points with better temporal consistency com-

pared with DSAC++. Additionally, we filter out the points

of KFNet with uncertainties greater than λ as displayed in

the KFNet-filtered panel of Fig. 5, which helps to give much

neater and more accurate 3D point clouds.

7.2.3 Motion Blur Experiments

Although, in terms of the mean scene coordinate error in

Table. 4, SCoordNet outperforms DSAC++ by over 41.6%
and KFNet further improves SCoordNet by a range from

8.9% to 77.3%, the improvements in terms of the median
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One-shot Temporal

SCoordNet ConvLSTM [61] TPooler [41] SWeight [65] KFNet

0.029m, 0.98° 0.040m, 1.12° 0.029m, 0.94° 0.029m, 0.95° 0.027m, 0.88°

Table 5: The median pose errors produced by different temporal

aggregation methods on 7scenes. Our KFNet achieves better pose

accuracy than other temporal aggregation strategies.

pose error in Table 2 are not as significant. The main reason

is that the RANSAC-based PnP solver diminishes the ben-

efits brought by the scene coordinate improvements, since

only a small subset of accurate scene coordinates selected

by RANSAC matters in the pose accuracy. Therefore, to

highlight the advantage of KFNet, we conduct more chal-

lenging experiments over motion blur images which are

quite common in real scenarios. For the test image se-

quences of 7scenes, we apply a motion blur filter with a

kernel size of 30 pixels for every 10 images as shown in

Fig. 6(a). In Fig. 6(b)&(c), we plot the cumulative distri-

bution functions of the pose errors before and after apply-

ing motion blur. Thanks to the uncertainty reasoning, SCo-

ordNet generally attains smaller pose errors than DSAC++

whether motion blur is present. While SCoordNet and

DSAC++ show a performance drop after motion blur is

applied, KFNet maintain the pose accuracy as shown in

Fig. 6(b)&(c), leading to a more notable margin between

KFNet and SCoordNet and demonstrating the benefit of the

temporal modelling used by KFNet.

7.3. Ablation studies

Evaluation of Temporal Aggregation. This section stud-

ies the efficacy of our Kalman filter based framework

in comparison with other popular temporal aggregation

strategies including ConvLSTM [61, 28], temporal pooler

(TPooler) [41] and similarity weighting (SWeight) [65, 66].

KFNet is more related to TPooler and SWeight which also

use the flow-guided warping yet within an n-frame neigh-

borhood. For equitable comparison, the same feature net-

work and probabilistic losses as KFNet are applied to all.

We use a kernel size of 8 for ConvLSTM to ensure a win-

dow size of 64 in images. The same OFlowNet structure and

a 3-frame neighborhood are used for TPooler and SWeight

for flow-guided warping.

Table 5 shows the comparative results on 7scenes. Con-

vLSTM largely underperforms SCoordNet and other aggre-

gation methods in pose accuracy, which manifests the ne-

cessity of explicitly determining the pixel associations be-

tween frames instead of implicit modeling. Although the

flow-guided warping is employed, TPooler and SWeight

only achieve marginal improvements over SCoordNet com-

pared with KFNet, which justifies the advantage of the

Kalman filtering system. Compared with TPooler and

SWeight, the Kalman filter behaves as a more disciplined

and non-heuristic approach to temporal aggregation that en-

sures an optimal solution of the linear Gaussian state-space

Pose translation error (cm)                       Scene coordinate error (cm)

Frame index Frame index

(a) (b) (c)
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lost tracking
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Blue: Wout NIS test

lost tracking   lost tracking   

Figure 7: (a) & (b) With NIS testing [4], the errors of poses and

scene coordinates quickly revert to normal after the lost tracking.

(c) The poses of a sample sequence show that, without NIS test-

ing, the lost tracking adversely affects the pose accuracy of the

subsequent frames.

model [17] defined in Sec. 3.

Evaluation of Consistency Examination Here, we ex-

plore the functionality of the consistency examination

which uses NIS testing [4] (see Sec. 6.2). Due to the infre-

quent occurrence of extreme outlier predictions among the

well-built relocalization datasets, we simulate the tracking

lost situations by trimming a sub-sequence off each testing

sequence of 7scenes and 12scenes. Let Ip and Iq denote

the last frame before and the first frame after the trimming.

The discontinuous motion from Ip to Iq would cause out-

lier scene coordinate predictions for Iq by KFNet. Fig. 7

plots the mean pose and scene coordinate errors of frames

around Iq and visualizes the poses of a sample trimmed se-

quence. With the NIS test, the errors revert to a normal

level promptly right after Iq , whereas without the NIS test,

the accuracy of poses after Iq is affected adversely. NIS

testing stops the propagation of the outlier predictions of Iq
into later steps by giving them infinitely large uncertainties,

so that Iq+1 will leave out the prior from Iq and reinitialize

itself with the predictions of the measurement system.

8. Conclusion

This work addresses the temporal camera relocalization

problem by proposing a recurrent network named KFNet.

It extends the scene coordinate regression problem to the

time domain for online pose determination. The archi-

tecture and the loss definition of KFNet are based on the

Kalman filter, which allows a disciplined manner of aggre-

gating the pixel-level predictions through time. The pro-

posed approach yields the top accuracy among the state-of-

the-art relocalization methods over multiple benchmarks.

Although KFNet is only validated on the camera relocaliza-

tion task, the immediate application alongside other tasks

like video processing [20, 28] and segmentation [59, 39] ,

object tracking [34, 66] would be anticipated.
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