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Abstract

Instance segmentation is a challenging task for both

modeling and annotation. Due to the high annotation cost,

modeling becomes more difficult because of the limited

amount of supervision. We aim to improve the accuracy

of the existing instance segmentation models by utilizing a

large amount of detection supervision. We propose Shape-

Prop, which learns to activate the salient regions within the

object detection and propagate the areas to the whole in-

stance through an iterative learnable message passing mod-

ule. ShapeProp can benefit from more bounding box su-

pervision to locate the instances more accurately and uti-

lize the feature activations from the larger number of in-

stances to achieve more accurate segmentation. We exten-

sively evaluate ShapeProp on three datasets (MS COCO,

PASCAL VOC, and BDD100k) with different supervision

setups based on both two-stage (Mask R-CNN) and single-

stage (RetinaMask) models. The results show our method

establishes new states of the art for semi-supervised in-

stance segmentation. 1

1. Introduction

Instance segmentation methods [13, 3, 25] have enjoyed

great success recently thanks to deep convolutional net-

works and availability of new datasets [5, 32]. Those meth-

ods can be applied in a broad range of applications such as

key point detection and 3D cuboid fitting. However, col-

lecting these fine annotations requires prohibitively expen-

sive human effort, preventing the existing frameworks from

learning on larger data. This difficulty limits our further

study in the instance segmentation problem.

One possible solution is to use the abundant cheaper

bounding box annotations to relieve the shortage of segmen-

tation supervision. Some works [15, 20] have explored how

to generalize to unseen categories with the weak supervi-

†Work was done while Yanzhao was a visiting scholar at UC Berkeley.
1Our source code is available at github.com/ucbdrive/ShapeProp
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Figure 1: ShapeProp jointly learns from the abundant

yet coarse-grained boxes and the fine-detailed yet limited

amount of masks to extract a shape representation, which

provide strong shape prior to mask head to improve seg-

mentation accuracy and generalization.

sion. However, the segmentation modules usually only get

pixel information from only fine segmentation supervision.

It is still not well understood how to exploit the new pixel-

level information from bounding boxes, even though more

box-level supervision can improve the object localization,

In this work, we aim to combine the weekly supervised

segmentation information in bounding boxes and full in-

stance segmentation supervision for semi-supervised learn-

ing of instance segmentation. The task is a generalization

of the “partially supervised instance segmentation” in pre-

vious literature [16, 20] which assumes the costly mask an-

notations are available for a subset of categories. We denote

this as category-wise semi-supervision and also consider a

realistic image-wise semi-supervision where only a subset

of images has masks. The category-wise and image-wise

semi-supervision focuses on inter- and intra-class general-

ization. Note that the considerably cheaper bounding box

annotations are available for all object instances.
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Semi-supervised instance segmentation is challenging to

existing instance segmentation frameworks. Current single-

stage (e.g., RetinaMask [10]) or two-stage (e.g., Mask R-

CNN family [13, 25]) instance segmentation frameworks

do not take full advantage of the existing supervision. They

typically use a detection head and a segmentation head to

learn from the box and mask supervision separately. So

the segmentation head does not explicitly benefit from the

abundant box annotations as each box is a coarse-grained

representation which does not specify object shape. Also,

the segmentation head requires high-level semantics to pre-

dict pixel-wise labels, making it difficult to adequately cap-

ture data distribution when only limited masks are available.

Our goal is to learn to locate and segment objects from

both box and segmentation annotations. We propose Shape-

Prop, a lightweight network module that can extend exist-

ing instance segmentation frameworks to utilize box-level

instance supervision for the semi-supervised instance seg-

mentation. ShapeProp exploits the shape prior information

hidden inside box and mask annotations to improve accu-

racy and generalization of existing instance segmentation

frameworks, as illustrated in Fig. 1. ShapeProp can learn

instance-specific saliency from the abundant box supervi-

sion and model the instance-specific latent relationships be-

tween pixels from the limited segmentation annotations.

ShapeProp extracts salient regions of the instance from

the box detection outputs. Then it propagates salient regions

into an intermediate shape representation, referred as Shape

Activation, which specifies fine-detailed instance shape ex-

tents, as shown in Fig. 2. Shape activation indicates the

potential object shapes and provides shape prior. We then

fuse it with the region features before making final instance

segmentation predictions.

Our approach does not use preprocessing steps such

as grouping masks in ShapeMask [20], and can be easily

integrated and jointly trained with existing instance seg-

mentation frameworks. In contrast to methods [15] based

on transfer learning, which only aims to improve inter-

class generalization, our approach improves both inter-

and intra-class generalization. Furthermore, our method is

lightweight and do not introduce heavy computational over-

head to the model inference speed.

Extensive experiments show that ShapeProp module

brings consistent and significant improvements to baselines,

achieving top performance on various benchmarks. For

instance, on semi-supervision setting, Mask R-CNN aug-

mented by ShapeProp improves the baseline by 10.8 AP

and outperform the state-of-the-art by 2.2 AP. Those results

show strong evidence that ShapeProp effectively improves

model’s segmentation quality and generalization ability.

Box Detection ShapeMask [21] ShapePropGrabcut [31]

Prior from Box Prior from Mask Box and Mask

Figure 2: Visualization of extracted shape representation.

Previous methods use either box or mask supervision to

extract shape prior, while our approach jointly learns from

both boxes and masks to extract shape representation.

2. Related Work

Instance segmentation. Instance segmentation is a fun-

damental task in the computer vision can be roughly catego-

rized into detection-based or grouping-based approaches.

The detection-based methods [11, 6, 12, 21, 4, 13] dom-

inates the state-of-the-art performance in commonly used

benchmarks, e.g., COCO [22]. They typically follow a

multi-task learning paradigm where a backbone network

first extracts spatial features and generates a set of candidate

regions, either with region proposal networks [30] or dense

anchor boxes [10]. Then a detection head and a segmenta-

tion head which composes several convolution -relu layers

predicted the accurate box and the segmentation mask in-

side the region cropped by the detected box. The grouping-

based approaches [19, 2, 7, 26, 24, 1, 18] view the instance

segmentation as a bottom-up grouping problem. Although

great progress has been achieved in the instance segmenta-

tion task, most of these works require strong supervision in

the form of hand-annotated instance masks for all objects,

which limits their application on large-scale datasets.

Weakly supervised instance segmentation. Methods

learning with weaker labels try to break this limitation by

learning with a weaker form of supervision. [17] leverages

the idea that given a bounding box for the target object, one

can obtain a pseudo mask label from a grouping-based seg-

mentation algorithm like GrabCut [31]. Pham et al. [28]

study open-set instance segmentation by using a boundary

detector followed by grouping. Zhou et al. [33, 34] tackle

weakly supervised instance segmentation by exploiting the

class peak response of classification networks. Although ef-

fective, these approaches do not take advantage of existing

instance mask labels to achieve better performance.

Learning with limited masks. As opposed to the

weakly-supervised setting [17, 33], some recent approaches

tackle the partially supervised setting where only box la-

bels (not mask labels) are available for a subset of cate-

gories at training time. The model is required to perform in-

stance segmentation on these categories at test time, which

requires strong generalization ability. MaskX R-CNN [15]
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Figure 3: Overall Framework. ShapeProp activates a saliency map for each box detection and propagate the saliency con-

ditioned on the appearance of the object to generate a well-generalized shape representation, i.e. Shape Activation, which

provide strong shape prior to improve segmentation accuracy and generalization.

tackles the problem by learning to predict weights of mask

segmentation branch from the box detection branch. This

transfer learning approach shows significant improvement

over class-agnostic training; however, performance gap to

fully supervised methods remains significant.

Moreover, it only addresses inter-class generalization

problems while ignoring intra-class generalization (i.e.

novel instances from seen categories). ShapeMask [20] is

based on a strong assumption that shape bases from exist-

ing mask annotations could serve as canonical shapes and

generalize to unseen categories. ShapeMask uses the lim-

ited mask annotations to extract prior knowledge to help

segmentation. Despite its effectiveness, this approach drew

class agnostic shape prior from the limited mask annota-

tions and neglect the abundant box annotations, which we

argue could provide informative instance-specific saliency.

In this paper, we tackle semi-supervised instance seg-

mentation problem, which includes both category-wise

semi-supervision setting (i.e., partially supervised setting),

and image-wise semi-supervision setting, i.e., only a small

subset of images have masks. Those two settings focus on

inter- and intra-class generalization, respectively. In other

words, our model generalizes to both objects from unseen

categories and novel objects from seen categories.

3. Method

In this section, we first revisit the detection based in-

stance segmentation frameworks as we aim to improve their

accuracy and generalization. We then introduce the pro-

posed ShapeProp approach, starting with the process of sta-

tistically learning instance-specific saliency via multiple in-

stance learning and followed by the design of propagating

saliency to a well-generalized shape representation, referred

to as Shape Activation. Finally, we discuss how to integrate

Shape Activation to the instance segmentation frameworks.

The overall architecture of ShapeProp is illustrated in Fig. 3.

3.1. Learning Saliency Propagation

Activating Saliency. Although a single box annotation

does not specify the label for each pixel, they entail infor-

mation on what an object looks like and provide one weak

label for all pixels within the bounding box. We can still

learn pixel-level label statistics from the weak supervision

after looking at a large number of examples. This is also

studied in the context of Multiple Instance Learning (MIL).

MIL [27] is a form of weakly supervised learning where

training instances are arranged in sets, called bags, and a

label is provided for the entire bag instead of an individual

instance. Note that in our context, we consider each box as

a bag of pixels.

We first construct positive and negative bags from the

box detections B = {b1, b2, ..., bN} outputted by the in-

stance segmentation framework where bi = (x̂, ŷ, ŵ, ĥ, ĉ)
is the i-th detection and N is the number of detected objects

in the image. (x̂, ŷ, ŵ, ĥ) is the predicted coordinates of the

bounding box and 0 ≤ ĉ < K is the predicted class label

from K predefined object categories, e.g., car, dog, and per-

son. Let Yi be the label of a bag Xi = {x1, x2, ..., xŵ∗ĥ
},

where a bag is defined as a set of pixels within the box de-

tection bi. Each instance (i.e., pixel) xj corresponds to a

binary label yj which indicates whether the pixel is in the

mask of object detected by bi. We follow the standard MIL

assumption that all negative bags contain only negative in-

stances, and positive bags contain at least one positive in-

stance:

Yi =

{

+ 1 if ∃ yj : yj = +1,

− 1 if ∀ yj : yj = −1.
(1)

For each category c, we use the box annotations Gc to

partition Bc into positive bags Pc = {p1, p2, ..., pu} and

negative bags N c = {n1, n2, ..., nv} based on the Intersec-

tion over Union (IoU) and a threshold t (e.g., t = 0.5):

Pc = {bi ∈ B if IoU (bi, g) > t, ∃ g ∈ Gc},

N c = {bi ∈ B if IoU (bi, g) ≤ t, ∀ g ∈ Gc}.
(2)
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We do this because positive sample must contain part of

the object (i.e., positive bag) as the IoU is high. The nega-

tive sample is misaligned with the object (low IoU) thus all

pixels are consider invalid (i.e., negative bag). Note that

this is different from previous works that utilize MIL to

discover class-specific responses in the image for seman-

tic segmentation [29]. We extract object-specific responses

for instance segmentation.

We build a weak learner F , which is a lightweight mod-

ule containing several conv-relu layers. For each sample pi,

F predicts a map M ∈ Rh×w based on the corresponding

region feature. In contrast to using pixel-level ground truth,

we learn F using bag-level labels from boxes:

L =
∑

c

(
∑

pi∈Pc

−σ(F (ω(pi), θ))+
∑

nj∈N c

+σ(F (ω(nj), θ))),

(3)

where L is the loss, θ is the learnable parameters in F ,

σ is a 2D aggregation operator, e.g., Avg2D, and ω is a re-

gion feature pooling operator, e.g., ROIAlign. The learning

of F accumulates several bags of instances to collect pixel-

level information statistically, and the predicted M high-

lights salient regions in the image specific to each detected

object and provides rich shape prior information to the sub-

sequent mask head, as shown in Fig. 4.

Propagating Saliency. Object-specific region responses

M obtained with MIL highlight only salient regions, we fur-

ther design a propagation step to make use of the existing

limited mask annotations and to recover full object extent

from the incomplete object region responses. The motiva-

tion is to exploit the relation between pixels to estimate ob-

ject shape from the salient regions obtained from boxes. In-

stead of considering it as a pixelwise classification problem,

we learn how to propagate messages between deep pixels in

the latent feature space. Learning to predict edges between

nodes (i.e., deep pixels) for propagation instead of labels of

nodes is more effective for the cases with only limited mask

annotations. The reason lies in that pixelwise classifica-

tion depends on high-level semantics and thus requires suf-

ficient supervision to capture the diverse data distribution.

Meanwhile, the relationship between pixels, i.e., whether

two pixels belong to the same object, can be more reliably

inferred with low-level semantics, e.g., similar color, and

smooth texture. Intuitively speaking, a model does not need

to recognize the semantic category of a banana but still can

segment its extent by grouping pixels with a similar color.

The saliency propagation is implemented as a latent

space message passing process. As illustrated in Fig. 5,

we first use conv blocks (i.e., conv-relu layers) to encode

the instance saliency map M ∈ RH×W to latent features

M̃ ∈ RC×H×W , where C is the channel dimension (e.g.,

16). The encoding extracts features from M while making

the subsequent message passing more robust to noise.

For each channel M̃i, we consider deep pixels as nodes

Posi t ive Bags Negat ive Bags

Box Detections

Conv  B l oc ks

Aggregation2D

Maximize Minimize

( F o r  “ C a r ” ) ( F o r  “ C a r ” )

GT Boxes

Pa r t i t i o n

Instance-specific

Saliency

Figure 4: Learning instance-specific saliency from abun-

dant yet coarse-graind box annotations. We partition box

detections as bags of receptive fields (RFs) with bag-level

labels (i.e., contain instance or not), and statistically learn a

weak learner for predicting probability for each RF, result-

ing a sailency map for each object.

and learn to propagate the message between spatially ad-

jacent nodes. Based on the appearance feature of b, we

use conv blocks to predict propagation weights between

nodes W ∈ R
C×(r×r)×(H×W ), where r is a window size

(e.g., 3). We then normalize and shuffle the learned prop-

agation weights W to construct location-specific kernels

Ki,u,v ∈ Rr×r, where i is the channel dimension and (u, v)
is the spatial location and the

∑

(p,q) K
p,q
i,u,v = 1. The prop-

agation is an iterative process. At each step, we use K to

update the latent features:

M̃
u,v
i (t+ 1) =

∑

(p,q)∈N

M̃
p,q
i (t) ·K

p−u+ r
2
,q−v+ r

2

i,u,v , (4)

where M̃
(u,v)
i is the feature value at the (u, v) location of i-

th channel, and N is the set of neighbor locations of (u, v).
We iterate max(H,W ) steps to guarantee that messages

can spread over all locations, and each node could absorb

information from all other nodes. This iterative process

does not introduce significant computation overhead as the

spatial size of the region feature is typically very small (e.g.,

14), and our efficient GPU implementation computes mes-

sage passing for all detections simultaneously.

Finally, we use the convolution layer to decode the up-

dated latent features back to a single channel map, referred

to as Shape Activation, which combines shape information

from both box and mask annotations and specify the extent

of the object. Shape Activation serves as an intermediate

shape representation that provides strong shape prior to sub-

sequent mask prediction (i.e., mask head). During training,

we use binary cross-entropy to compute the reconstruction

loss against the ground truth mask. For the semi-supervised

setting, we only calculate the loss in the small subset of

images that have mask annotations. Note that learning of

saliency propagation is in a class-agnostic manner that al-

lows it to accumulate common knowledge from all existing

10310



Normalize & Shuffle

t=0

t=1

t=max(𝐻,𝑊
)

t=2

Shape Activation

ROI Feature Propagation Weights

Conv

Conv

GT Mask

Reconstruction Loss

Reuse

Conv Blocks

Instance Saliency

(𝐶×𝑟!)×H×𝑊

Propagated
Features

𝐶×𝐻×W

𝑟 𝑟

Figure 5: Saliency Propagation. We learn to predict la-

tent relationship between pixels conditioned on instance ap-

perance and utilize iterative message passing to propagate

saliency into a intermediate shape representation, referred

to as Shape Activation.

masks and effectively generalize to novel categories.

3.2. Intergrating Shape Representation

We integrate the learned Shape Activation S into exist-

ing instance segmentation frameworks by concatenating it

with the input region features before feeding into the mask

head. The additional input channels provide strong prior in-

formation of objects’ possible shapes; thus can significantly

simplify the task of learning mask prediction, i.e., pixel-

level classification, and allows mask head to focus on cap-

turing fine-detailed information. Experimentally, we show

that the Shape Activation guided segmentation not only sig-

nificantly improves generalization ability (10.8% AP im-

provements on COCO’s partially supervised setting), but

also benefit segmentation quality even when mask annota-

tions are sufficient (1.4% AP75 improvements on COCO’s

fully supervised setting).

4. Experiments

We evaluate the proposed ShapeProp method on popular

instance segmentation benchmarks including COCO [22],

PASCAL-VOC [9] and BDD100K [32]. We report stan-

dard metrics, that is, mask AP, AP50, AP75, and AP, for

small/medium/large objects, following the evaluation pro-

tocol in previous works [13, 16, 20].

In Sec. 4.1, we test our method on the category-wise

semi-supervision setting (i.e., “partially supervised” setting

in previous literature [16, 20]). The significant improve-

ments over baselines (10.8% AP) and the new state-of-the-

art results indicate ShapeProp’s capability to learn from lim-

ited masks and generalize to unseen categories. In Sec.

4.2, we benchmark on BDD100K, where only a subset

of images have mask annotations. We augment both the

single-stage and two-stages instance segmentation frame-

works [10, 13] with ShapeProp and show consistent im-
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Figure 6: Generalization with less data. ShapeProp gener-

alizes well down to 1/100 of the training data and it consis-

tently improves the baseline.

provements over baselines. This indicates the effective-

ness of ShapeProp’s intra-class generalization. We further

show that our approach can improve strong baselines that

are trained using full mask annotations from the dataset. In

Sec. 4.3, statistical analyses show that ShapeProp can learn

high-quality shape representation. Finally, we perform ab-

lation studies to investigate our model design further.

4.1. Generalization to unseen categories

Experiment setup. The experiments are set up follow-

ing [15, 20]. We split the COCO17’s 80 categories into

VOC (20) vs. Non-VOC (60). The VOC categories are also

present in PASCAL VOC [8]. At training time, models have

access to the bounding boxes of all classes, but the masks

only come from either VOC or Non-VOC categories. The

performance upper bounds are set by the oracle models that

have access to masks from all categories. In this section, our

training set is COCO train2017, and the comparison with

other methods is done on val2017 Non-VOC/VOC.

We build our models by plugging the ShapeProp module

into the representative Mask R-CNN framework [13]. In or-

der to evaluate across categories, we use the class-agnostic

setting, which considers all object classes as the foreground

class. We implement the model with two backbones, i.e.,

ResNet50-FPN and ResNet101-FPN [14, 23]. We use the

same training parameters as the baseline.

Numerical results. It can be seen in table 1, Mask R-

CNN equipped with ShapeProp improves the baseline by

a significant margin (e.g., 34.4% vs 23.9% for non-voc →
voc and 30.4% vs 19.2% for voc → non-voc). Our model

with ResNet50-FPN backbone outperforms the state-of-the-

art ShapeMask [20] that is build on a stronger backbone

(ResNet101-FPN. Our ShapeProp module improves seg-

mentation by fully exploiting shape knowledge from the

box and mask annotations; thus, it can also benefit from

other advances in deep learning i.e., stronger backbone.

Switching to ResNet101-FPN backbone improves yields a

top result on these benchmarks (e.g., 2.2% AP higher than

state of the art ShapeMask [20]).
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non-voc → voc: test on B = {voc} voc → non-voc: test on B = {non-voc}

Backbone Method AP AP50 AP75 APS APM APL AP AP50 AP75 APS APM APL

Mask R-CNN trained w/ GrabCut [17] 19.5 46.2 14.2 4.7 15.9 32.0 19.5 39.2 17.0 6.5 20.9 34.3

R-50-FPN MaskX R-CNN [15] 28.9 52.2 28.6 12.1 29.0 40.6 23.7 43.1 23.5 12.4 27.6 32.9

Mask R-CNN (Baseline) [13] 23.9 42.9 23.5 11.6 24.3 33.7 19.2 36.4 18.4 11.5 23.3 24.4

Mask R-CNN w/ ShapeProp (Ours) 34.4 59.6 35.2 13.5 32.9 48.6 30.4 51.2 31.8 14.3 34.2 44.7

fully supervised (Oracle) [13] 37.5 63.1 38.9 15.1 36.0 53.1 33.0 53.7 35.0 15.1 37.0 49.9

Mask R-CNN trained w/ GrabCut [17] 19.6 46.1 14.3 5.1 16.0 32.4 19.7 39.7 17.0 6.4 21.2 35.8

MaskX R-CNN [16] 29.5 52.4 29.7 13.4 30.2 41.0 23.8 42.9 23.5 12.7 28.1 33.5

R-101-FPN ShapeMask [20] 33.3 56.9 34.3 17.1 38.1 45.4 30.2 49.3 31.5 16.1 38.2 28.4

Mask R-CNN (Baseline) [13] 24.7 43.5 24.9 11.4 25.7 35.1 18.5 34.8 18.1 11.3 23.4 21.7

Mask R-CNN w/ ShapeProp (Ours) 35.5 60.5 36.7 15.6 33.8 50.3 31.9 52.1 33.7 14.2 35.9 46.5

fully supervised (Oracle) [13] 38.5 64.4 40.4 18.9 39.4 51.4 34.3 54.7 36.3 18.6 39.1 47.9

Table 1: Performance on COCO2017’s category-wise semi-supervision setting which focuses on inter-class generalization.

At the top, non-voc→voc means “train on masks in non-voc, test on masks in voc”, and vice versa. Equipping ShapeProp

module to class-agnostic Mask R-CNN gives 10.8 AP improvements and beat ShapeMask by 2.2 AP, showing strong evidence

that ShapeProp can significantly improve existing models’ accuracy and generalization.

Generalization with less data. To further validate the

generalization ability of ShapeProp with less training data,

we train the ResNet50-FPN based models on full categories

using only 1/10, 1/50, 1/100 of the data. As can be seen in

Fig. 6, our approach generalizes well down to 1/100 of the

training data, and it consistently outperforms the baseline

(Mask R-CNN without ShapeProp).

Qualitative results. Fig. 7 gives qualitative examples

from the non-voc → voc setting. It can be seen in the sec-

ond row, the baseline method failed to segment the novel

category “bicycle” as no masks for this category is available

during training. However, adding ShapeProp to the baseline

significantly improves the segmentation quality. It can also

be seen in the bottom row that Mask R-CNN predicts a bro-

ken mask for the “cow” instance. In contrast, Mask R-CNN

with ShapeProp model segment it correctly.

4.2. Generalization to novel instances

Experiment setup. We further benchmark upon the

BDD100K dataset [32], which is the largest and most di-

verse driving video dataset. Due to the extensive human

efforts required for labeling detailed instance segmentation,

only a subset of BDD100K provides mask annotations. The

dataset fits naturally with our semi-supervised setting. We

fuse the annotations of BDD100K’s instance segmentation

and detection to build a data contains 67k images with box

annotations, among which 7k images have mask annota-

tions. We test models on BDD100K’s val. set (1k images).

We build our models by plugging the proposed Shape-

Prop module into two representative detection based in-

stance segmentation frameworks, i.e., Mask R-CNN (two-

stages method), and RetinaMask (single-stage method). We

compare with the joint learning version of Mask R-CNN. It

learns from all images and only compute the loss for seg-

mentation head when mask annotation is available. We also

compare with Grabcut Mask R-CNN [17] and Progressive

Mask R-CNN, which use Grabcut post-processing and the

pretrained annotator model to obtain pseudo masks from

box annotations. All models are based on the ResNet-50

FPN backbone and are trained via standard SGD optimiza-

tion with LR 0.01 and batch size 12.

Numerical results. As shown in Tab. 2, the mask APs

for both single-stage and two-stage baselines are signifi-

cantly improved when more box annotations are available,

i.e., Mask RCNN (24.5 vs 21.6) and RetinaMask (24.4 vs

20.0). However, the model trained with Grabcut pseudo

masks performs even worse than the baseline, indicating

the shape representation quality from Grabcut is not good

enough. It can be seen in Tab. 2, equipping the pro-

posed ShapeProp module bridges the learning of box and

mask and further improves the model’s segmentation ability

(26.2% vs 24.5%). This shows ShapeProp can effectively

exploit shape prior hidden inside the annotations to enhance

the quality of segmentation. Moreover, it can be seen in

Tab. 3, equipping ShapeProp also improves the strong base-

lines trained with fully supervised setting where all masks

are available during training. This indicates that fully ex-

ploiting annotations can improve segmentation quality even

when masks are sufficient.

Inference time. The proposed ShapeProp module is a

lightweight module built on top of the convolution blocks.

The message passing operation for propagating saliency is

efficiently implemented as matrix dot production. There-

fore, overall ShapeProp module does not introduce heavy

computation overhead (0.35 vs 0.39 s/img on 2080 Ti).

Qualitative results. In Fig. 8, we visualize examples

of box detection, instance saliency, shape activation, and

mask predictions from models with or without ShapeProp.

It can be seen from the left sample, multiple cars are oc-

cluded in the detected region, and the baseline model failed

to segment the correct one. In contrast, ShapeProp find the

object-specific salient parts and further predict propagation
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Ground Truth wo/ ShapeProp w/ ShapeProp Ground Truth wo/ ShapeProp w/ ShapeProp

Figure 7: Visualization of Mask R-CNN (w/ or wo/ ShapeProp)’s results on novel categories. Results demonstrate that

plugging ShapeProp module leads to significant better segmentation quality.

Training data (# annotations) Method AP AP50 AP75 APS APM APL Comment

BDD100k-Instseg

(7k w/ masks, 7k w/ boxes)

RetinaMask [10] 20.0 37.6 18.1 7.6 27.0 42.3 Single-stage baseline

Mask R-CNN [13] 21.6 40.5 20.5 9.3 28.8 45.4 Two-stage baseline

BDD100k

(7k w/ masks, 67k w/ boxes)

RetinaMask [10] 24.4 44.7 22.5 9.8 32.6 51.5 Joint training

RetinaMask w/ ShapeProp 26.1 46.8 24.9 10.7 34.7 56.3 ShapeProp augmented (Ours)

Mask R-CNN [13] 24.5 45.4 21.6 10.1 33.1 48.3 Joint training

Grabcut Mask R-CNN [17] 21.0 41.0 19.5 8.3 27.0 40.7 Grabcut limited mask

Progressive Mask R-CNN 24.8 45.4 23.0 10.0 33.0 52.7 Progressive learning

Mask R-CNN w/ ShapeProp 26.2 48.4 23.5 11.4 34.2 53.0 ShapeProp augmented (Ours)

Table 2: Performance on BDD100K’s image-wise semi-supervision setting that focuses on intra-class generalization. Shape-

Prop improves the accuracy and generalization of single-stage (RetinaMask) and two-stage (Mask R-CNN) framework.

B o x D e t e c t i o n ( C a r )

Mask Prediction

InstanceSaliency ShapeActivation

wo/ SP w/ SP

Box Detection

Mask Prediction

wo/ SP w/ SP

Box Detection(Car)

Unseen CaseOccluded Case
InstanceSaliency ShapeActivation

Figure 8: Visualization of samples in BDD100K datasets.

weights conditional on the visual appearance to propagate

salient regions into a high-quality shape activation. Based

on the shape activation’s strong shape prior, the mask pre-

diction of our model is significantly improved. The right

sample gave a case when detection failed, i.e., a background

region is mis-detected as a car. Despite this background re-

gion is unseen from the training data, our model gives a

more reasonable shape representation and mask prediction

while the baseline outputs a mask with broken pieces. Note

the model is designed to estimate the shape of the centered

salient “object” in the box. This further demonstrates the

strong generalization of our approach.

4.3. Analysis and ablation studies

Statistical Analysis. We analyze the quality of the

extracted shape prior with respect to object size, demon-

strating that our approach can effectively extract shape

prior from the box and mask annotations. Shape acti-

vation is assigned to GT masks and judged by measur-

ing the best overlap metric. To be considered a perfect
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Dataset Method AP AP50 AP75

VOC12 Mask R-CNN [13] 29.7 54.1 29.6

(1k images) ShapeProp (Ours) 30.6 53.2 32.0

BDD100K Mask R-CNN [13] 21.6 40.5 20.5

(7k images) ShapeProp (Ours) 22.7 42.2 21.8

COCO17 Mask R-CNN [13] 34.2 56.4 36.7

(120k images) ShapeProp (Ours) 35.7 56.9 38.2

Table 3: Comparison under fully supervised setting.

ShapeProp-augmented models consistently improve AP.

Setting AP AP50 AP75

baseline 21.6 40.5 20.5

baseline + More head params 21.4 40.3 19.5

baseline + ShapeProp (Channel-agnostic) 22.4 42.0 20.5

baseline + ShapeProp 22.7 42.2 21.8

baseline + More boxes 24.5 45.4 21.6

baseline + More boxes + ShapeProp 26.2 48.4 23.5

Table 4: Ablation studies of model design on BDD100K.

shape activation that completely coincide with a GT mask,

the IoU between the predicted shape activation M and

GT masks T must be close to 100% as computed using

the metric maxθ,Ti∈T
area(fb(M,θ)∩Ti)
area(fb(M,θ)∪Ti)

, where the function

fb(M, θ) = M ≥ θ produces the best matching binary

instance masks based on the probabilistic shape activation

over a set of threshold values θ ∈ (0, 1). Note that this met-

ric is robust to the absolute value range of prediction and is

suitable for evaluating probabilistic activation maps.

We visualize the density of the best overlap for instance-

specific saliency and the shape activation obtained by mes-

sage passing to see whether the activation can cover object

instances of different sizes. Fig. 9 (left) shows that saliency

samples clustered in the area where the best overlap value

is around 60% and failed to cover large objects. In contrast,

in Fig. 9 (right), most of the data points have relatively high

best overlap IoUs and perform very well on both small and

large objects. It can be seen that the message-passing design

in our ShapeProp significantly improves the quality of the

extracted shape prior. The underlying reason is that multi-

ple instance learning typically captures the salient regions

of the instance; however, it failed to recover the full extent.

The message passing utilizes the limited number of ground

truth masks to learn how to refine the saliency map and re-

cover such extent in a class agnostic and well-generalized

manner, thus considerably improve the quality.

Ablation Study. We perform ablation studies on the

BDD100K dataset to validate some specific designs of our

method, Tab. 4. The baseline model is a Mask R-CNN with

a ResNet50-FPN backbone. The first to sixth rows corre-

spond to models trained on the instseg split of BDD100K,

which contains 7k images for training, and all instances in

the training data have both box and mask annotations. The

last two rows are trained with the overall BDD100K data,
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Figure 9: Shape activation accuracy. Message passing pro-

cess propagates saliency to better cover object extent.

including its official detection and instseg split, which has

67k images in total among it; only 7k images have masks.

The setting of the second row increases the number of chan-

nels used in Mask R-CNN’s mask head to make the num-

ber of learnable parameters be the same as the ShapeProp-

augmented counterpart. The AP of this setting is even

slightly worse than the baseline, which validates that the

gain of ShapeProp doesn’t come from the increasing of

model parameters. Comparing the fifth to the third rows, the

better AP indicates that predicting propagation weights for

each channel of the latent space instead of sharing the same

weights for all channels can lead to performance improve-

ments. The sixth row, which uses additional bounding box

annotations from the BDD100K detection split has 2.9% AP

improvements (24.5% vs 21.6%). Meanwhile, the last row,

which is augmented by the ShapeProp module, has 3.5%

AP gains (26.2 % vs 22.7%) over the baseline and 4.6% AP

improvements over the plain baseline of the first row. This

clearly shows that the ShapeProp module can better utilize

the hidden shape prior to the additional box annotations to

benefit the segmentation quality.

5. Conclusions

We developed a lightweight network module, Shape-

Prop, which can be plugged into existing instance segmen-

tation frameworks to tackle the challenging semi-supervised

instance segmentation task. ShapeProp extracts a well-

generalized shape representation from the joint learning of

the abundant yet coarse-grind box supervision and the fine-

detailed yet limited amount of mask annotations. Such

shape representation hypothesis possible object shape and

specify detailed instance boundaries that provide strong

shape prior to the subsequent mask prediction, which allows

the learning of strong instance segmentation model based

on limited mask annotations. We extensively test Shape-

Prop on popular benchmarks, including COCO, PASCAL

VOC, and BDD100K. The results indicate that ShapeProp-

augmented frameworks consistently outperform baseline by

a significant margin, establishing states-of-the-art for semi-

supervised instance segmentation.
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