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Abstract

Few-shot learning has attracted intensive research at-

tention in recent years. Many methods have been proposed

to generalize a model learned from provided base classes

to novel classes, but no previous work studies how to se-

lect base classes, or even whether different base classes

will result in different generalization performance of the

learned model. In this paper, we utilize a simple yet effec-

tive measure, the Similarity Ratio, as an indicator for the

generalization performance of a few-shot model. We then

formulate the base class selection problem as a submodular

optimization problem over Similarity Ratio. We further pro-

vide theoretical analysis on the optimization lower bound

of different optimization methods, which could be used to

identify the most appropriate algorithm for different experi-

mental settings. The extensive experiments on ImageNet [4],

Caltech256 [8] and CUB-200-2011 [27] demonstrate that

our proposed method is effective in selecting a better base

dataset.

1. Introduction

Few-shot Learning [6, 13] is a branch of Transfer Learn-

ing, its basic setting is to train a base model on the base

dataset consisting of base classes with ample labeled sam-

ples, then adapt the model to a novel support set consisting

of novel classes with few samples, and finally evaluate the

model on the novel testing set consisting of the same novel

classes as the novel support set.

Traditionally, many works focus on how to learn meta-

knowledge from a fixed base dataset. The generation process

of the base datasets generally depends on random selection or

human experience, which is not necessarily perfect for few-

shot learning. Due to the fact that the fine-tuning mechanism

on the novel support set is not as effective as learning with

large-scaled training samples on novel classes [25], the base

dataset plays a critical role for the performance of few shot

learning. Till now, however, we have little knowledge on

* Co-corresponding authors.

how to measure the quality of a base dataset, and not to

mention how to optimize the its selection process.

The targeting problem described above is somewhat re-

lated to Curriculum Learning [1, 24] and data selection in

transfer learning [19–21]. Different from Curriculum Learn-

ing aiming to speed up learning of provided classes, we

focus on learning to select base classes in a transfer learn-

ing manner, where the selected base classes are used for

classification on novel classes. With respect to the data se-

lection methods in transfer learning, first, our problem is

a class-based selection instead of sample-based selection

problem, which significantly decreases the search space for

selection. Second, we consider the problem in a few-shot

learning scenario, where there is no validation dataset on

novel classes, and modern methods with feedback mecha-

nism on validation performance (e.g. Bayesian Optimization

in [21], Reinforcement Learning in [19]) are not applicable.

Here we consider a realistic and practical setting that M
base classes are to be selected from N candidate classes, and

each candidate class contains only a small number of labeled

samples before selection. Once the M classes are selected,

one could expand the samples of these selected classes to a

sufficient size by manually labeling, which are further used

to construct the base dataset and train the base model. The

selection process could be conducted either in an one-time

or incremental manner.

To solve the problem, we confront two challenges. First,

the problem is a discrete optimization problem. The com-

plexity of naive enumeration method is O(NM ), which is

intractable in real cases. Second, there is no touchable way

to optimize the classification performance of novel classes

directly, hence we need to find a proxy indicator that is both

easy to optimize and highly correlated with the classification

performance on novel classes.

In this paper, we find a simple yet effective indicator

Similarity Ratio, first proposed by our previous work [30].

For a candidate class, the Similarity Ratio considers both its

similarities with novel classes and diversity in base classes.

We demonstrate that this indicator is highly and positively

correlated with the performance of few-shot learning on the
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novel testing set. We theoretically prove that this indicator

satisfies submodular property, which pledges us to obtain a

sub-optimal solution in polynomial time complexity. Thus,

the base class selection problem could be surrogated by

optimizing a variant of Similarity Ratio. We carry out ex-

tensive experiments on three different cases: the Pre-trained

Selection, the Cold Start Selection, and the General Selec-

tion on ImageNet, Caltech256, and CUB-200-2011 datasets.

Results show that our method could significantly improve

the performance of few-shot learning in both general im-

age classification and fine-grained image classification. The

performance improvement margin is rather stable regard-

less of the distribution transfer from the support set to the

query set, change of few-shot model, or change of few-shot

experimental settings.

2. Related Work

Few-shot Learning The concept of One-shot Learning is

proposed by [6], and a more general concept is Few-shot

Learning. Three mainstreams of approaches are identified

in the literature. The first group is based on a meta-learning

manner, including Matching Network [25], MAML [7], Pro-

totypical Network [22], Relation Network [23], SNAIL [14]

etc, which learn an end-to-end task-related model on the

base dataset that could generalize across all tasks. The sec-

ond group of methods is learning to learn image classifiers

for unseen categories via some transfer mechanism while

keeping the representation space unchanged. The advan-

tage of these methods is to avoid drastically re-training the

model and more friendly to extremely large base datasets

and model, e.g. classification on ImageNet. Common meth-

ods are MRN [29], CLEAR [11], Weight Imprinting [18],

VAGER [30] etc. The third group of methods is to apply

data generation. The core idea is to use a pre-defined form

of generation function to expand the training data of unseen

categories. Typical work includes [9] and [28].

Data Selection The underlying assumption of data selec-

tion is that not all training data is helpful to the learning

process; some training data may even perform negative ef-

fects. Thus, it’s important to distinguish good data points

from bad data points to improve both the convergence speed

and the performance of the model. Roughly there are two

branches of work: one is to assume training data and testing

data are sampled from the same distribution, a common way

to deal with this problem is to reweight the training sam-

ples [5, 12, 24], which is out of the scope and will not be

covered in this paper. The other branch is data selection in

a transfer learning manner. Mainstream approaches include

that [20] proposes a method based on heuristically defined

distance metric to find most related data points in the source

domain to the target domain; [21] views the effect of data

selection process to final performance of the classification

on target domain as a black box model and uses Bayesian

Optimization to iteratively adjust the selection through per-

formance on validation dataset and further [19] substitutes

Bayesian Optimization to Reinforcement Learning, which

is more suitable to introduce deep model to encourage more

flexibility in designing selection algorithms.

3. Preliminary Study

3.1. Similarity Ratio

[30] first proposes a concept called Similarity Ratio (SR)

defined for each novel class as:

SR =
Average Top-K Similarity with Base Classes

Average Similarity with Base Classes
. (1)

Here the similarity of two classes is determined by a specific

metric on the representation space, e.g. the cosine distance

of two class centroids. Among all base classes, we sort the

similarity of each base class with the corresponding novel

class in a descent order. The numerator is calculated by aver-

aging the similarity of the top-K similar base classes and the

denominator is calculated by averaging the similarity of all

base classes. To improve SR, the numerator indicates there

should be some similar base classes with the corresponding

novel class and the denominator indicates the base classes

should be diversified conditioned on each novel class. [30]

further points out that the few-shot performance is positively

correlated with this indicator.

3.2. The Relationship Between SR and Few­shot
Learning Performance

In this part, we will show more evidence from a statistical

perspective of the relationship between SR and few-shot

learning performance.

Specifically, a preliminary experiment is conducted as

follows: we randomly choose 500 classes from ImageNet

dataset, and further split them into 400 base classes and

100 novel classes. For each few-shot classification setting,

we randomly select 100 base classes over 400 as the base

dataset, and using all 100 novel classes to perform a 100-

way 5-shot classification. A ResNet-18 [10] is trained on the

base dataset, and we extract the high-level image features

(512-dimensional features after conv5_x layer) for novel

support set and novel testing set. We calculate the average

feature for each novel class in the novel support set as the

class centroid and directly use 1-nearest neighbor based

on the cosine distance metric defined on the representation

space to obtain the Top-1 accuracy for each novel class

of the testing set. The base dataset selection, training and

evaluating process is repeated for 100 times and for each

novel class, we run the regression model:

Acc = β1 · x1 + β2 · x2 + α+ ǫ (2)
{

x1 = Average Top-K Similarity with Base Classes

x2 = Average Similarity with Base Classes
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where Acc represents for the Top-1 accuracy for the corre-

sponding novel class, α represents for the residual term and

ǫ represents for noise. The similarity of two classes in this

regression model is calculated by the cosine distance of two

centroids defined on the representation space of ResNet-18

trained by all 400 candidate base classes. Hence, totally we

could obtain 100 regression models, each for a novel class,

and each model is learned under 100 data points related to

100 different choices of base dataset.

With a different choice of K, the regression model may

show different properties. We conclude our findings from

Figure 1, 2, 3.

We calculate the average of β1 and β2 for all novel classes,

denoted as β̄1 and β̄2. β̄1 is constantly positive in all choices

of K, demonstrating the positive effect of Average Top-

K Similarity to accuracy. Figure 1 shows the change of

coefficient β̄2/β̄1 with K. The result shows that K = 5 is a

demarcation point in this specific setting. The positive effect

of Average Similarity (i.e. x2) will become negative after

K = 5. The reason is that when K is small, the positive

classes are insufficient, there is need to add more positive

classes to improve the performance, and with the increase

of K, the positive classes tend to saturate and there is an

increasing need of negative classes to enhance diversity. In

later main experiments, we set K to be a hyper-parameter.

Figure 2 is a snapshot for the two settings with K = 3 and

K = 10, which further proves the viewpoint above. More-

over, Figure 2 gives more information about the distribution

of β1 and β2.

Figure 3 shows that the two components of the SR are

relatively good proxy of the performance for few-shot learn-

ing when K is a small number (i.e. The average R2 reaches

above 0.3 when K ≤ 10). When K = 1 the two components

of SR explain about 45% of the dependent variable.
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Figure 1. The coefficient β̄2/β̄1 changed with K.

Based on our findings, an optimization process could be

designed to select core base classes.
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Figure 2. We plot the coefficients β1, β2 of each novel class after

sorting increasingly. The red bar represents for the 95% confidence

interval and the blue dot shows the exact coefficients. Top: result

for Regression with K = 3, β̄1 = 0.99, β̄2 = 0.29; Bottom: result

for Regression with K = 10, β̄1 = 1.52, β̄2 = −0.39.
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Figure 3. R2 with the change of K for 100 regression models, the

red bar represents for the interval from 25-quantile to 75-quantile,

and the blue dot represents for the average R2.

4. Algorithm

4.1. A Brief Introduction to Submodularity

Definition 1. Given a finite set V = {1, 2, · · · , n}, a set

function f : 2V → R is submodular if for every A,B ∈ V :

f(A ∩B) + f(A ∪B) ≤ f(A) + f(B).

A better way to understand submodularity property is that

of diminishing returns: denote f(u|A) as f(A ∪ u)− f(A),
then we have f(u|A) ≥ f(u|B) for every A ⊆ B ⊆ V and

u /∈ B. These two definitions are proved to be equivalent

[15]. It has been proved that maximizing a submodular

objective function f(·) is an NP-hard problem. However,

with polynominal time complexity, several algorithms have

been proposed to obtain a sub-optimal solution.

A function is monotone non-decreasing if ∀A ⊆
B, f(A) ≤ f(B). f(·) is called normalized if f(∅) = 0.

In this paper we mainly introduce a submodular opti-

mization setting with cardinality constraint. The problem

is formulated as: maxS⊆V,|S|=kf(S), where f(·) is a sub-
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modular function. [15] shows that a simple greedy algorithm

could be used to maximize a normalized monotone non-

decreasing submodular fuction with cardinality constraints,

with a worst-case approximation factor of 1− 1/e ≈ 0.632.

[2] shows that a normalized submodular function (may

not be monotone non-decreasing) with an exact cardinal-

ity constraint |S| = k could reach an approximation of

max{ 1−k/en
e − ǫ, (1 + n

2
√

(n−k)k
)−1 − o(1)} with a com-

bination of random greedy algorithm and continuous double

greedy algorithm, where k is the exact number of chosen

elements and n is the total number of elements. The pro-

posed algorithm guarantees a 0.356-approximation, which is

smaller than 0.632.

4.2. Formulation

Let Bu represent for collection of unselected base classes,

Bs for selected base classes and N for novel classes. The

selection process is to select a subset U with m elements

from Bu and the base dataset is composed of U and Bs.

For each class l, we denote cl as certain class feature (e.g.

its centroid of high-level feature), and for each class set A,

we denote cA = [cl1 , cl2 , · · · cl|A|
], l1, l2 · · · l|A| ∈ A as a

collection of class features.

Next, we define an operator max-k-sum as follows:

Mk(y) := max
|K|=k

∑

i∈K

yi =

k
∑

j=1

y[j],

where y is a numerical vector, y[1], · · · , y[n] are the yi’s
listed in nonincreasing order. Based on our findings that SR

is highly and positively correlated to the performance on

novel classes in Section 3, the base class selection problem

could be formulated as an optimization process on SR as a

proxy. Concretely we have:

max
U⊂Bu

|U|=m

1

|N |
∑

n∈N

1

K
·MK(f(cn, {cBs

, cU}))

− λ

|N | ·
∑

n∈N

1

|Bs|+m

∑

u∈Bs∪U

f(cn, cu),

(3)

where f(ca, {cb1, · · · , cbn}) = [f(ca, cb1), · · · , f(ca, cbn)]
is a similarity function (e.g. Cosine Distance). The opti-

mization function is the same form of Equation 2, where

the first term is the numerator of SR and the second term

is the denominator). λ is seen as a hyper-parameter, whose

meaning is equivalent to −β̄2/β̄1 in Section 3.2. K is also a

hyper-parameter. For simplicity we may assume λ ≥ 0, as

when λ < 0 the two terms of optimization function 3 has

a strong positive correlation, experiment results show there

is not much improvement compared with directly setting

λ = 0. |U | = m is the cardinality constraint that exact m
base classes are needed to be selected.

The next corollary shows that Problem 3 is equivalent to

a submodular optimization.

Corollary 4.1. Considering optimization problem 3, when

λ = 0, Problem 3 is equivalent to a submodular mono-

tone non-decreasing optimization with exact cardinality con-

straint and when λ > 0, Problem 3 is equivalent to a sub-

modular optimization with exact cardinality constraint.

4.3. Optimization

4.3.1 Case 1: λ = 0

The case λ = 0 could be seen as a standard submodular

monotone non-decreasing optimization, hence we could di-

rectly use a greedy method on the value of target function,

as Algorithm 2 shows. However, for this specific target

function, a trivial setting with m ≥ K · |N | needs further

consideration. For this setting, a greedy algorithm on novel

class (Algorithm 1) could be proved to reach an optimal

solution, while Algorithm 2 could just reach sub-optimal.

Thus, the two different greedy algorithms are proposed to

deal with the trivial and non-trivial case separately. For our

description of the algorithms below, f(·, ·) denotes for the

similarity function and h(·) denotes for the optimization

function of Problem 3 with λ = 0.

Algorithm 1 Greedy Algorithm on Novel Class (f,m)

1: Let U0 ← ∅, S ← N
2: for i = 1 to m do

3: Let u ∈ Bu\Ui−1, n ∈ S be the samples maximizing

f(cu, cn).
4: Let Ui ← Ui−1 + u, S ← S − n.

5: if S = ∅ then

6: S ← N .

7: end if

8: end for

9: return Um

Algorithm 2 Greedy Algorithm on Target Function (h, m)

1: Let U0 ← ∅
2: for i = 1 to m do

3: Let ui ∈ Bu\Ui−1 maximizing h(ui|Ui−1).
4: Let Ui ← Ui−1 + ui.

5: end for

6: return Um

We further give Thm. 1, 2 to show the optimization bound

of the two algorithms. For this specific problem, the bounds

are much tighter than the generic version in [15].

Theorem 1. For Bs = ∅ and λ = 0, when m ≥ K · |N |,
using Algorithm 1 to solve for optimization problem 3, the

solution will be optimal.
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Theorem 2. For Bs = ∅ and λ = 0, using Algorithm 2 to

solve for optimization problem 3, let h(·) be the optimization

function, and let Q be

Q = Eu∼Uniform(B),v∼Uniform(N)(f(cu, cv))

representing for the average similarity between base classes

and novel classes, we have h(U) ≥ (1− 1/e) · h(OPT ) +
1/e · Q, where h(OPT ) is the global optimal value of the

optimization problem.

4.3.2 Case 2: λ > 0

The case λ > 0 could be seen as a non-monotone submodu-

lar optimization, with the technique in [2], we combine both

Random Greedy Algorithm (Algorithm 3) and Continuous

Double Greedy Algorithm (Algorithm 4) for better optimiza-

tion. The Random Greedy Algorithm is an extension of the

standard Greedy Algorithm (Algorithm 2), which is fit for

settings with extremely low m. Details of the algorithm are

given in Algorithm 3.

Algorithm 3 Random Greedy Algorithm (h, m)

1: Let U0 ← ∅
2: for i = 1 to m do

3: Let Mi ⊂ Bu\Ui−1 be a subset of size m maximizing
∑

u∈Mi
h(u|Ui−1).

4: Let ui be a uniformly random sample from Mi.

5: Let Ui ← Ui−1 + ui.

6: end for

7: return Um

For much larger m, we will introduce the Continuous

Double Greedy Algorithm. The core idea is to convert the

discrete optimization of Problem 3 to a continuous version.

Let F (x) be the multilinear extension of the optimization

function h(·) as:

F (x) =
∑

S⊆Bu

h(S)
∏

u∈S

xu

∏

u/∈S

(1− xu) (4)

where x ∈ [0, 1]|Bu|. Given a vector x, F (x) represents for

the expectation of function h given a random subset of Bu

with every element u ∈ Bu i.i.d. sampled with probability

xu . For two vectors x and y, define x ∨ y and x ∧ y to

be coordinate-wise maximum and minimum separately, i.e.

(x ∨ y)u = max(xu, yu) and (x ∧ y)u = min(xu, yu). An

important property for multilinear form function F is:

∂F (x)

∂xu
= F (x ∨ u)− F (x ∧ (Bu − u)) (5)

For simplicity, in this part, notation for a subset could also be

represented as a 0-1 vector where the corresponding elements

belonging to the subset are 1 and otherwise 0, consistent

with [2]. In the double continuous greedy algorithm, we

don’t need to calculate the exact value for F (x), the only

difficulty is to calculate F (x∨u)−F (x∧(Bu−u)). Theorem

3 gives a dynamic programming for fast calculation.

Theorem 3. Let S ⊆ Bu be a random set, with each element
v in Bu i.i.d. sampled with probability (x∧ (Bu−u))v . For
each novel class n ∈ N , sort the similarity function f(cn, cb)
for each base class b ∈ B = Bu ∪ Bs in descent order,
denoting as qn,[1], qn,[2], · · · qn,[|B|], also, sort the similarity

function for every base class in S ∪ Bs in descent order,
denoting as sn,[1], sn,[2], · · · sn,[|S|+|Bs|], then we have:

F (x ∨ u)− F (x ∧ (Bu − u))

=
1

|N |·K

∑

n∈N

|B|
∑

i=1

P (sn,[K]=qn,[i])max(f(cn, cu)−qn,[i], 0)

− λ ·
1

|N | ·m

∑

n∈N

f(cn, cu)

(6)

The probability term P (sn,[K] = qn,[i]) for n ∈ N is

defined over all random subsets S, where sn,[K] could be

seen as a random variable. This probability term could be
solved using dynamic programming in O(K · |B| · |N |) time
complexity by the following recursion equations:















P (sn,[j] ≥ qn,[i]) = (1− x[i]) · P (sn,[j] ≥ qn,[i−1])

+ x[i] · P (sn,[j−1] ≥ qn,[i−1]) for [i] ∈ Bu

P (sn,[j] ≥ qn,[i]) = P (sn,[j−1] ≥ qn,[i−1]) for [i] ∈ Bs

P (sn,[j]=qn,[i])=P (sn,[j] ≥ qn,[i])− P (sn,[j] ≥ qn,[i−1])

(7)

where j runs for 1 · · ·K and i runs for 1 · · · |B|. 1

Algorithm 4 shows the complete process of the Contin-

uous Double Greedy Algorithm. The algorithm first uses a

gradient-based method to optimize the surrogate multilinear

extension of the submodular target function and returns a

sub-optimal continuous vector x, which represents for the

probability each element is selected. Then, certain round-

ing technique such as Pipage Rounding [3, 26] is used to

transform the resulting fractional solution into an integral

solution. 2

A similar optimization bound analysis of Algorithm 3

and Algorithm 4 is given in Theorem 4.

Theorem 4. For Bs = ∅ and λ > 0, using a combination of
Algorithm 3 and 4 to solve for optimization problem 3 with
λ > 0, h and Q are defined same as Theorem 2, we have

E(h(U)) ≥ max (
1−m/er

e
· h(OPT ) + C1 ·Q,

(1 +
r

2
√

(r −m)m
)−1 · h(OPT ) + C2 ·Q)

For 0 < λ < 1
e−1 , we have C1 = 1

e +(1− 1
e )

m
r − (1− 1

e ) ·
λ > 0 and C2 = (1−λ)r

2
√

(r−m)m+r
− ǫ ≥ 1

2 (1− λ) > 0,where

r = |Bu|. The first term is the lower bound for Algorithm 3

and the second term for Algorithm 4.

1Details are shown in Appendix 2.2 and 2.3.
2See Appendix 2.4.
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Algorithm 4 Continuous Double Greedy Algorithm (F , m)

1: Initialize: x0 ← ∅, y0 ← Bu

2: for time step t ∈ [1, T ] do

3: for every u ∈ Bu do

4: Let au← ∂F (xt−1)
∂xu

, bu← ∂F (yt−1)
∂yu

by Eq. 6, 7.

5: Let a′u(l)←max(au− l, 0),b′u(l)←max(bu+ l, 0)

6: Let dxu

dt (l, t−1)← a′
u

a′
u
+b′

u

, dyu

dt (l, t−1)←− b′
u

a′
u
+b′

u

.

7: end for

8: Find l∗ satisfying
∑

u∈Bu

dxu

dt (l∗, t− 1) = m.

9: Do a step of Gradient Ascent for x and Gradient

Descent for y: xt
u = xt−1

u + 1
T · dxu

dt (l∗, t − 1),

ytu = yt−1
u − 1

T ·
dyu

dt (l
∗, t− 1).

10: end for

11: Process certain rounding technique using xT to get U .

12: return U

Theorem 4 indicates that if neglecting the term with Q,

when m < 0.08r or m > 0.92r, we should use Algorithm 3

and otherwise Algorithm 4 by comparing two bounds.

As a conclusion of this section, we list the applicability

of different algorithms for this specific problem in Table 1.

5. Experiments

5.1. Experimental Settings

Basically, we design three different settings to show the

superiority of our proposed algorithm:

Pre-trained Selection A pre-trained model is given, and

the base classes selection could be conducted with the help

of the pre-trained model. Generally we could use the pre-

trained model to extract image representations. The setting

also supposes that we know about the novel support set. In

this paper, we evaluate the generalized performance only via

the base model trained on the selected base classes, while

in practice we could also use these selected base classes to

further fine-tune the given pre-trained model.

Cold Start Selection No pre-trained model is given, hence

the base classes selection is conducted in an incremental

manner. For each turn, the selection of the incremental base

classes is based on the trained base model from the previous

turn. The novel support set is also given. Note that the

setting is somewhat like a curriculum learning [1].

General Selection The novel support set is not known be-

forehand (i.e. Select a general base dataset that performs

well on any composition of novel classes). In this paper for

simplicity, we also suppose a pre-trained model is given as

in the Pre-trained Selection setting.

In our experiments, we use two datasets for validating

general classification: ImageNet and Caltech256, and one

for fine-grained classification: CUB-200-2011. For Ima-

geNet, we use the other 500 classes in addition to those used

in the preliminary experiment in Section 3, which are further

split into 400 candidate base classes and 100 novel classes.

For all three tasks, the base dataset is selected from these

400 candidate base classes, and further evaluate the gener-

alization performance on the 100 novel ImageNet classes,

Caltech256 and CUB-200-2011.

For all experiments, we train a standard ResNet-18 [10]

backbone as the base model on the selected base classes. For

few-shot learning task on novel classes, we use two different

heads: one is the cosine similarity on the representation

space (512-dimensional features after conv5_x layer), which

is a simplified version of Matching Network [25] without

meta training step, representing the branch of metric-based

approaches in few-shot learning. The other is the softmax

regression on the representation space, which is a simple

method from the branch of learning-based approaches. 3 We

use different heads to show our proposed selection method

is model-agnostic.

As for the details of the experiment, we use an active

learning manner as mentioned in Section 1. Each candidate

base class only contains 50 images before selected. We uti-

lize these images to calculate class representation. When

a base class is selected, the number of training images for

this class could be expanded to a relatively abundant num-

ber (For this experiment all training images of this class in

ImageNet are used, which locates at the interval from about

800 to 1,300). We allow for a slight difference in the number

of images per class to simulate a practical scenario. For a

p-way k-shot setting, we randomly select p novel classes and

then choose k samples per novel class as the novel support

set; another 100, 50, 40 samples disjoint with the support

set per novel class as the novel testing set for ImageNet,

Caltech and CUB-200-2011. The flow of the experiment

is to run selection algorithms, expand the selected classes,

train a base model on the expanded base dataset and evaluate

performance on testing set. The process is repeated for 10

times with different randomization, and we report the aver-

age Top-1 accuracy for each experiment setting. For settings

containing pre-trained model, in this paper we use ResNet-18

trained on full training images from randomly selected 100

classes extracted from the candidate base classes in Section

3, which is disjoint with the base and novel classes used in

this section. We also emphasize that when comparing with

different methods within the same setting, the same novel

support set and novel testing set are used for each turn of the

experiment for a fair comparison.

We consider three baselines in our experiments: the first

is the Random Selection, which draws the base classes uni-

formly, which is a rather simple baseline but common in

the real scenario, the second is using the Domain Similarity

metric which is generally used in [17, 20, 21]. The idea is

to maximize a pre-defined domain similarity between rep-

3The result of softmax regression head is shown in 4.
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Table 1. Conclusion of Applicability of Different Algorithms

Parameter Algorithm Applicability Complexity

λ = 0 Greedy on Novel Class m > γ ·K · |N |, with γ slightly larger than 1 O(|B| · log|B| · |N |)
λ = 0 Greedy on Target Function m < γ ·K · |N |, with γ slightly larger than 1 O(m · (|B|+ |N | · logK))
λ > 0 Random Greedy m < 0.08 · |Bu| or m > 0.92 · |Bu| O(m · (|B| · logm+ |N | · logK))
λ > 0 Continuous Double Greedy 0.08 · |Bu| < m < 0.92 · |Bu| O(T ·K · |B|2 · |N |)

resentation for each selected element in the source domain

and the representation for the target domain. The method

is first proposed for sample selection, and in this paper we

extend to the class selection by viewing the centroid of fea-

tures for a class as a sample and viewing the centroid of

the novel support set as representation for the target domain.

The baseline will be used in Pre-trained Selection and Cold

Start Selection. The third is the K-medoids algorithm [16],

which is a clustering algorithm as a baseline of the General

Selection setting. For all baselines and our algorithm, cosine

similarity on representation space is used for calculating the

similarity of two representations.

5.2. Results

5.2.1 Pre-trained Selection

Table 2, 3, 4 show the results of the Pre-trained Selection.

When setting K = 1, the algorithm reaches the best perfor-

mance in all cases. For the ImageNet dataset in Table 2, we

show that Algorithm 1 and Algorithm 2 are fit for different

cases, depending on the number of selected classes, as Table

1 describes. For m = 100 and m = 20 case, our algorithm

obtains a superior accuracy of about 4% and 2% separately

compared with random selection, which is a relatively huge

promotion in few-shot image classification. Besides, the

promotion is rather stable concerning the shot number. The

Domain Similarity algorithm performs worse because of the

cluster effect, where the selected base classes are concen-

trated around the centroid of the target domain, in contrast

with the idea of enhancing diversity we show in Section

3. For Caltech256 as novel classes in Table 3, a transfer

distribution on dataset is introduced. It shows that in such

case, the improved margin compared to random selection is

much larger, reaching about 10% when m = 100. This is be-

cause our algorithm enjoys the double advantages of transfer

effect and class selection effect; the former also promotes

the Domain Similarity algorithm. For the CUB-200-2011

dataset in Table 4, we further show that our algorithm im-

proves the margin much more significantly in a fine-grained

manner, reaching about 11.2% for 5-shot setting and 13.6%

for 20-shot setting.

5.2.2 Cold Start Selection

The Cold Start Selection is more difficult than the Pre-trained

Selection in that there is no pre-trained model at the early

stage, leading to an unknown or imprecise image represen-

tation space. Hence the representation space needs to be

learned incrementally. For each turn, the selection of the

incremental base classes is based on the trained base model

from the previous turn. Noticing that in this incremental

learning manner both the complexity and the effectiveness

of selection should be considered. To limit the complexity

we increasingly select the same number of classes in each

turn as the total number of selected base classes in the previ-

ous turn (i.e. doubling the number of selected classes in each

turn). This double-increasing mechanism could guarantee a

linear time complexity of m in training the base model. For

example, in Table 5 a 6-12-25-50-100 mechanism represents

for selecting 6 classes randomly in Turn 1, and continue

selecting another 6 classes based on the model trained by

classes from Turn 1 to form a selection of 12 classes in Turn

2 and so on. As the representation space is not so stable as

the Pre-trained Selection, a larger K with K = 3, λ = 0 is

much better. Table 5 shows the result of the algorithms. Our

proposed method exhibits a 2.8% promotion compared to

random selection. We also highlight that the upper bound

of the algorithm is limited by the Pre-trained selection (with

a pre-trained model on 100 classes with K = 3), which is

42.89%. By using the double-increasing mechanism, the

performance is just slightly lower than this upper bound in

linear time complexity.

We also show some ablation studies by changing the

selection of K and the selection mechanism. As for the se-

lection mechanism, comparing 6-12-25-50-100 and 50-100,

we draw a conclusion that the incremental learning of the

representation space is much more effective, and compared

to 10-20-40-80-100 it shows that the selection in the early

stage of Cold Start Selection is more important than the later

stage.

5.2.3 General Selection

General Selection is the most difficult setting in this paper,

as we do not know the novel classes previously. The goal

is to select a base dataset that could perform well on any

composition of novel classes. In dealing with this problem,

we make a slight change to our optimization framework that

we take all candidate base classes as the novel classes.

The implicit assumption is that the candidate base classes

represent for a subsample of the global world categories. In

this setting, we should choose a much larger K and λ for this

setting, especially for fine-grained classification, to enhance

representativeness and diversity for each selected class.
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Table 2. ImageNet: Pre-trained Selection, 100-way novel classes

Algorithm m=100, 5-shot m=100, 20-shot m=20, 5-shot m=20, 20-shot

Random 39.39%± 0.82% 49.47%± 0.67% 23.89%± 0.56% 33.06%± 0.47%
DomSim 38.00%± 0.36% 48.80%± 0.79% 23.15%± 0.43% 31.81%± 0.58%

Alg. 1, K = 1, λ = 0 43.42%± 0.78% 53.79%± 0.37% 25.71%± 0.43% 34.67%± 0.36%
Alg. 2, K = 1, λ = 0 43.20%± 0.76% 53.61%± 0.27% 26.13%± 0.44% 34.97%± 0.45%
Alg. 2, K = 3, λ = 0 42.89%± 0.43% 53.13%± 0.27% 25.10%± 0.48% 34.52%± 0.51%

Table 3. Caltech256: Pre-trained Selection, 100-way

Algorithm m=100, 5-shot m=100, 20-shot

Random 45.31%± 1.32% 54.97%± 1.23%
DomSim 49.55%± 1.28% 58.84%± 1.01%

Alg. 1, K = 1, λ = 0 55.41%± 1.25% 64.46%± 0.99%
Alg. 2, K = 3, λ = 0 54.94%± 1.14% 63.58%± 0.98%

Table 4. CUB-200-2011: Pre-trained Selection, 100-way

Algorithm m=100, 5-shot m=100, 20-shot

Random 18.46%± 1.19% 26.14%± 1.44%
DomSim 28.11%± 0.44% 38.26%± 0.45%

Alg. 1, K = 1, λ = 0 29.65%± 0.82% 39.77%± 0.41%
Alg. 2, K = 3, λ = 0 28.04%± 1.82% 37.22%± 0.69%

Table 5. ImageNet: Cold Start Selection, 100-way

Algorithm Mechanism Top-1 Accuracy

Random - 39.39%± 0.82%
DomSim 6-12-25-50-100 39.30%± 0.40%

Alg. 1, K = 1, λ = 0 6-12-25-50-100 40.96%± 0.50%
Alg. 2, K = 1, λ = 0 6-12-25-50-100 41.75%± 0.59%
Alg. 2, K = 3, λ = 0 6-12-25-50-100 42.17%± 0.67%
Alg. 2, K = 5, λ = 0 6-12-25-50-100 41.33%± 0.36%
Alg. 2, K = 3, λ = 0 10-20-40-80-100 41.61%± 0.76%
Alg. 2, K = 3, λ = 0 50-100 40.88%± 0.66%

Pre-trained (Upperbound) [100]-100 42.89%± 0.43%

Results of ImageNet and Caltech256 (Table 6, 7) show

that our algorithms perform much better when the number

of selected classes is larger. Specifically, in m = 100 case

we promote 0.9% and 4.5% in two datasets separately com-

pared with random selection, however in m = 20 case the

promotion is not so obvious, only 0.3% and 0.9%, which

shows that a larger base dataset may contain more general

image information. As for the result of CUB-200-2011 (Ta-

ble 8), our proposed algorithm performs much better due

to the effect of diversity, reaching an increase of 6.4% in

m = 100 case. Besides, the result also shows that the per-

formance reaches the best with a positive λ in fine-grained

classification, illustrating the necessity of diversity (Accord-

ing to Table 1, we choose Algorithm 3 for m = 20 and

Algorithm 4 for m = 100). The results also show that the

baseline K-Medoids is rather unstable in different cases. It

may reach the state-of-the-art in some cases but may perform

even worse than random in other cases.

Table 6. ImageNet: General Selection, 100-way

Algorithm m=20, 20-shot m=100, 20-shot

Random 33.06%± 0.47% 49.47%± 0.67%
K-Medoids 33.50%± 0.28% 49.17%± 0.38%

Alg. 2, K = 3, λ = 0 33.38%± 0.25% 50.00%± 0.38%
Alg. 2, K = 5, λ = 0 33.32%± 0.30% 50.35%± 0.29%

Alg. 2, K = 10, λ = 0 33.01%± 0.38% 50.21%± 0.26%
Alg. 3/4, K = 5, λ = 0.2 32.82%± 0.35% 49.19%± 0.34%

Table 7. Caltech256: General Selection, 100-way

Algorithm m=20, 20-shot m=100, 20-shot

Random 40.26%± 0.90% 54.97%± 1.23%
K-Medoids 40.16%± 0.83% 59.27%± 1.01%

Alg. 2, K = 3, λ = 0 40.72%± 0.92% 59.23%± 0.94%
Alg. 2, K = 5, λ = 0 40.98%± 0.84% 58.68%± 0.94%
Alg. 2, K = 10, λ = 0 41.18%± 0.88% 59.52%± 0.91%

Alg. 3/4, K = 5, λ = 0.2 40.31%± 1.24% 57.79%± 0.94%

Table 8. CUB-200-2011: General Selection, 100-way

Algorithm m=20, 20-shot m=100, 20-shot

Random 15.25%± 0.91% 26.14%± 1.44%
K-Medoids 14.96%± 0.47% 24.38%± 0.59%

Alg. 2, K = 3, λ = 0 14.74%± 0.48% 27.08%± 0.52%
Alg. 2, K = 5, λ = 0 16.06%± 0.59% 28.33%± 0.57%
Alg. 2, K = 10, λ = 0 16.21%± 0.33% 27.63%± 0.66%

Alg. 3/4, K = 5, λ = 0.2 16.61%± 0.36% 32.50%± 0.58%
Alg. 3/4, K = 5, λ = 0.5 17.09%± 0.33% 31.01%± 0.58%

6. Conclusions

This paper focuses on how to construct a high-quality

base dataset with limited number of classes from a wide

broad of candidates. We propose the Similarity Ratio as a

proxy of the performance of few-shot learning and further

formulate the base class selection problem as an optimization

process over Similarity Ratio. Further experiments in differ-

ent scenarios show that the proposed algorithm is superior

to random selection and some typical baselines in selecting

a better base dataset, which shows that, besides advanced

few-shot algorithms, a reasonable selection of base dataset

is also highly desired in few-shot learning.
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