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Abstract

Visual attention not only improves the performance of

image captioners, but also serves as a visual interpretation

to qualitatively measure the caption rationality and model

transparency. Specifically, we expect that a captioner can

fix its attentive gaze on the correct objects while generat-

ing the corresponding words. This ability is also known as

grounded image captioning. However, the grounding ac-

curacy of existing captioners is far from satisfactory. To

improve the grounding accuracy while retaining the cap-

tioning quality, it is expensive to collect the word-region

alignment as strong supervision. To this end, we propose a

Part-of-Speech (POS) enhanced image-text matching model

(SCAN [24]): POS-SCAN, as the effective knowledge dis-

tillation for more grounded image captioning. The benefits

are two-fold: 1) given a sentence and an image, POS-SCAN

can ground the objects more accurately than SCAN; 2)

POS-SCAN serves as a word-region alignment regulariza-

tion for the captioner’s visual attention module. By show-

ing benchmark experimental results, we demonstrate that

conventional image captioners equipped with POS-SCAN

can significantly improve the grounding accuracy without

strong supervision. Last but not the least, we explore the in-

dispensable Self-Critical Sequence Training (SCST) [46] in

the context of grounded image captioning and show that the

image-text matching score can serve as a reward for more

grounded captioning 1.

1. Introduction

Image captioning is one of the primary goals of computer

vision which aims to automatically generate free-form de-

scriptions for images [23, 53]. The caption quality has been

dramatically improved in recent years, partly driven by the

development of attention-based deep neural networks [56],

∗Corresponding Author.
1https://github.com/YuanEZhou/Grounded-Image-Captioning

(a)                           (b)                            (c)                            (d)                       (e)

(a) :POS-SCAN Visualization on Ground Truth  Sentence

a woman wearing a pink shirt and red apron stands in her restaurant holding food.

(b) :Up-Down Visualization on Ground Truth Sentence

a woman wearing a pink shirt and red apron stands in her restaurant holding food.

(d) :Up-Down Visualization on Generated Sentence Before Distilling POS-SCAN  

(e) Up-Down Visualization on Generated Sentence After Distilling POS-SCAN

a woman in a pink shirt is preparing food.

a woman in a red shirt and a yellow hat is cooking in a restaurant.

(c) :SCAN Visualization on Ground Truth Sentence

a woman wearing a pink shirt and red apron stands in her restaurant holding food.

Figure 1. Visualizations of five different word-region alignment

results, where all the models are trained without any word-region

alignment ground-truth. Words and the corresponding attended re-

gion with maximum weight are marked with the same color. POS-

SCAN (cf. Section 3.1) is a revised image-text matching model,

Up-Down (cf. Section 3.2) is a state-of-the-art image captioning

model. Best viewed in color.

which allow the captioning models to dynamically align im-

age regions to caption words. Conventionally, many previ-

ous works are used to qualitatively show the attention visu-

alizations, which aim to indicate that the learned model can

fix its gaze on the correct regions while captioning. How-

ever, some quantitative analyses [28, 38] show that although
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the models can achieve impressive caption quality, they still

suffer from poor attention grounding. This may lead to

undesired behaviors such as object hallucinations [47] and

gender discrimination [14], which harm the rationality and

explainability of the neural image captioning models.

There are some efforts for more grounded image cap-

tioners. Most of them supervise the learning process by

the attention module [28, 65, 36]. However, they require

fine-grained region-word alignment annotations, which are

expensive to collect. Therefore, in this paper, we want to su-

pervise the visual attention without region-word alignment

annotations. To this end, we propose a novel knowledge

distillation [15, 34, 63] approach to regularize the visual

attention in captioner, by treating an image-text matching

model as a weak supervision of grounding [19, 48]. By

“weak”, we mean that the image-text model training only

relies on the image-text alignment but not the expensive

word-region alignment. The key motivation of our knowl-

edge distillation is that compared to the caption generation

task, the image-text matching task [9, 24] is a more well-

posed one, because 1) the latter doesn’t have to take the sen-

tence grammar and fluency into account, and 2) the training

loss for the latter’s metric (accuracy on matched or not) is

more objective and faithful to the task; while for the for-

mer’s, such as the word-level cross-entropy and sentence-

level CIDEr [52], still has a well-known gap with human

judgment.

As shown in Figure 1 (a) and (b), the attention of the

matching model (a) (the POS-SCAN introduced later) is

more focused and reliable, e.g., it aligns shirt and restau-

rant to the correct regions, while the captioning model (b)

doesn’t. Therefore, it is reasonable to supervise the visual

attention module of a captioning model by using an image-

text matching model. In this way, the image-text match-

ing model serves as an independent “teacher” that doesn’t

couple with the “student” captioning model. Note that the

“independence” can avoid the model collapse of the teacher

and student who are trained from the same task [38, 41].

Specifically, we use a state-of-the-art image-text match-

ing model termed SCAN [24], which will be detailed in

Section 3.1. The reason why we choose SCAN is that it

can serve as a weakly-supervised visual grounding model

with local region-word alignment (though it is a by-product

in the original paper [24]). Note that our approach can be

integrated with any matching model with a local alignment

module like SCAN. Though SCAN shows good perfor-

mance in image-text matching, we surprisingly find that the

original SCAN model has no better grounding performance

than a popular baseline: Up-Down captioning model [3]. As

qualitatively shown in Figure 1, its alignment (c) is no better

than the captioning model (b). We also quantitatively report

their attention accuracy in Table 1: the attention accuracy

of SCAN is 17.63%, while that of Up-Down is 19.83%.

A plausible reason is that some non-noun words that hurt

grounding are however beneficial to fit the matching model.

For example, grounding non-visual function words (“a”,

“the”), prepositions (“on”, “of”, “with”), and visual rela-

tionship verbs (“ride”, “jump”, “play”) are inherently chal-

lenging even with word-region strong supervision [44], not

to mention for the weakly-supervised setting. Therefore,

a high matching score based on all the words is possibly

attributed to the bias of certain word collocations, which

are widely observed in a large spectrum of vision-language

tasks [58, 59, 51].

In this paper, we propose a simple but effective method

to remedy the above problem. Specifically, we only keep

the noun words when computing the matching score with

the help of a Part-of-Speech (POS) tagger. After this,

the grounding performance of the re-trained POS enhanced

SCAN (POS-SCAN) model meets the requirement of the

downstream task. Note that the reason why we call it POS-

SCAN but not merely noun-SCAN is: we can seamlessly

incorporate other POS if its visual grounding ability ma-

tures in the future. During inference, the matching model

can be fully removed and there is no extra computing over-

head. Without any region-word alignment annotations, our

method can achieve better performance in terms of both

caption quality and attention accuracy on the challenging

Flickr30k Entities dataset [44].

Last but not the least, we explore the indispensable

Self-Critical Sequence Training (SCST) [46] in the con-

text of grounded image captioning. We find that although

a captioning model obtains higher scores using the standard

SCST metrics (e.g., CIDEr [52]), it achieves worse ground-

ing performance. Fortunately, when we incorporate SCAN

as the reward, the captioning model is encouraged to gen-

erate captions that are more faithful to the image while re-

taining the standard metric scores. However, when we use

POS-SCAN as the reward, we empirically discover signifi-

cantly worse results in terms of standard metrics, but better

grounding results. By knowing that POS-SCAN is a bet-

ter grounding model than SCAN, we are indeed facing a

dilemma: captioning vs. grounding, whose metrics should

be unified in the future. We hope that our study can offer a

promising direction towards more grounded image caption-

ing.

2. Related Work

Image Captioning. Earlier approaches for image cap-

tioning are rule-/template-based [23, 40, 26]. Recently,

attention-based neural encoder-decoder models prevail [53,

56, 35, 6, 60, 29, 58, 59]. Attention mechanisms have been

operated on uniform spatial grids [56, 35], semantic meta-

data [61, 57, 12], and object-level regions [3, 18, 60, 64].

Although attention mechanisms are generally shown to im-

prove caption quality, some quantitative analyses [28, 38]
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show that the “correctness” of the attention is far from

satisfactory. This makes models less trustworthy and less

interpretable. There are some efforts for more grounded

image captioning. Lu et al. [36] proposed a slot-and-fill

framework for image captioning that can produce natural

language explicitly grounded in entities. In [28, 65], at-

tention module is explicitly supervised. However, such

methods require fine-grained region-word alignment anno-

tations, which are expensive to collect. Although Ma et

al. [38] proposed a cyclical training paradigm that requires

no alignment annotations, their method has difficulty in pro-

viding sufficient attention supervision. This is because

their localizer and decoder are learned jointly and coupled

loosely in the attention module, easily resulting in modal

collapse [41].

Image-Text Matching. The image-text matching meth-

ods can be roughly categorized into global alignment based

and local alignment based. Global alignment based meth-

ods [10, 21, 54, 9, 55] map the holistic image and the

full sentence into a joint semantic space. A representa-

tive global image-text matching model VSE++ [9] has been

adopted in [37, 33] to improve the discriminability of gen-

erated captions. In contrast, local alignment based meth-

ods [19, 42, 24] typically infer the global image-text simi-

larity by aligning visual objects to textual words and make

image-text matching more fine-grained and interpretable. In

this work, we adopt the classic local image-text matching

model SCAN [24] to serve as a reinforced reward and the

proposed POS-SCAN to serve as an attention supervision.

Visual Grounding. Visual grounding is the general task

of locating the components of description in an image. In

terms of the learning fashion, methods can be roughly di-

vided into three categories: supervised, unsupervised and

weakly supervised. Many works [39, 32, 5, 17, 62, 30] be-

long to the first category which requires expensive ground

truth annotations. Some works [48, 4] attempt to learn

by reconstruction without supervision. There are also

works [19, 31, 7] which use weak supervision from image-

caption pairs to perform visual grounding. Datta et al. [7]

recently proposed a weakly supervised grounding model,

which can also be adopted in our framework. We leave this

as our future work.

Knowledge Distillation. Since Hinton et al. [15]

proposed to distill the knowledge from an ensemble of

models into a single model, there are a lot of follow-

up works, including exploring different forms of knowl-

edge [49, 25], cross-modality distillation [13, 1], cross-task

distillation [34, 63]. Here, we only mention some represen-

tative similar works, a comprehensive survey is beyond the

scope of this paper. Liu et al. [34] proposed to boost multi-

label classification by distilling knowledge from a weakly-

supervised detection task. Yuan et al. [63] proposed to

transfer knowledge from image captioning and classifica-

tion model to text-to-image synthesis model. In this work,

we aim to boost the attention accuracy of the image caption-

ing model (student with hard task) by distilling knowl-

edge from the image-text matching model (teacher with

easy task).

3. Approach

Our model comprises of two main components: a neural

image caption generator and an image-text matching model,

as shown in Figure 2. We will first describe the two com-

ponents used in our experiments, then elaborate on how we

combine the two components in a collaborative framework

to generate more grounded captions. We denote the input

image as I , which is represented by a set of regions fea-

ture [f1, · · · , fk] ∈ R
k×d extracted by a detector [45]. The

corresponding ground truth and generated sentence T with

n words are represented as (y∗1 , · · · , y
∗
n) and (y1, · · · , yn),

respectively.

3.1. ImageText Matching Model

In this work, we extend the classic image-text matching

model SCAN [24] to serve as a fine-grained rewarder and

the POS enhanced SCAN to serve as an attention guider.

SCAN is a matching model that discovers the full latent

alignment using both image regions and words in a sentence

as context then infers image-text similarity. Here, we only

focus on the adopted text-image formulation. Specifically,

given an image I and a sentence T , it first transforms each

region feature fi to appropriate dimension by:

vi = Wvfi + bv, vi ∈ R
d1 , (1)

and employs a bi-directional GRU [50] to embed the words:

xt = Wey
∗
t ,
−→
ht =

−−−→
GRU(xt),

←−
ht =

←−−−
GRU(xt), (2)

where We is an embedding matrix. The final word feature

et is the average of the forward hidden state
−→
ht and back-

ward hidden state
←−
ht:

et =
(
−→
ht +

←−
ht)

2
, t ∈ [1, n]. (3)

Then the cosine similarity matrix for all possible pairs is

computed as follows:

sit =
v
T
i et

‖vi‖ ‖et‖
, i ∈ [1, k], t ∈ [1, n]. (4)

Here, sit denotes the similarity between the i-th region and

the t-th word is normalized as sit = [sit]/
√

∑n

t=1
[sit]2+ ,

where [x]+ ≡ max(x, 0). After that, the attended image

vector avt with respect to the t-th word is given by:

a
v
t =

k
∑

i=1

αitvi, αit =
exp(τsit)

∑k

i=1
exp(τsit)

. (5)
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Figure 2. The pipeline of the proposed framework. During training, the attention weights of captioning module β are supervised with

the ones of pre-trained matching model α via a local alignment loss (e.g. KL-div) at the visually-groundable words. Additionally, the

image-text matching similarity score can serve as a fine-grained reward at the self critical sequence training stage. During testing, the

matching model can be fully removed and the captioning model can generate more descriptive and grounded (regions and words are well

aligned) captions. Where h
1

t is the hidden state of attention LSTM.

Where τ is the inverse temperature of the softmax function

and αit is the attention weight. Finally, the global similarity

score S(I, T ) between image I and sentence T is computed

by summarizing the local similarity scores R(et,a
v
t ):

S(I, T ) =

∑n

t=1
R(et,a

v
t )

n
, R(et,a

v
t ) =

e
T
t a

v
t

‖et‖ ‖avt ‖
.

(6)

The model is optimized by a triplet loss with hard negative

mining [9] in a mini-batch:

lhard(I, T ) = [m− S(I, T ) + S(I, T̂h)]+

+[m− S(I, T ) + S(Îh, T )]+, (7)

where m is the margin, Îh = argmaxp 6=IS(p, T ) and T̂h =
argmaxc 6=TS(I, c) .

In the experiment, we find that the original SCAN model

even has lower grounding performance than the adopted

caption generator. The cause may be the influence of too

many non-visual words. So we propose to enhance SCAN

model with Part-of-Speech (POS) tags when it serves as an

attention guider. We call it POS-SCAN. The Equation (6)

is rewritten as:

Spos(I, T ) =

∑n

t=1
✶y∗

t =ynounR(et,a
v
t )

∑n

t=1
✶y∗

j
=ynoun

, (8)

where ✶y∗

t =ynoun is the indicator function which equals to 1
if the POS of word y∗t is noun and 0 otherwise. The S(I, T )
in Equation (7) is also replaced with Spos(I, T ). By doing

so, the grounding performance of the POS-SCAN model

meets the requirement of the downstream task.

3.2. Caption Generator

For the caption generator, we adopt the state-of-the-

art Up-Down [3] model. It is mainly composed of two

LSTM [16] layers where the first one is the attention LSTM

and the second one is the language LSTM. Each layer is

indicated with the corresponding subscript in the equations

below. Specifically, it first transforms each region feature fi
as:

v
′

i = W
′

vfi + b
′

v, v
′

i ∈ R
d2 . (9)

Then at time step t, the attention LSTM takes previous out-

put of the language LSTM h
2
t−1, mean-pooled image fea-

ture v = 1

k

∑

i v
′

i and previous word embedding e
′

t−1 =

W
′

eyt−1 as input and output a hidden state h
1
t :

h
1
t = LSTM1([h

2
t−1;v; e

′

t−1],h
1
t−1), (10)

where [; ] denotes concatenation and W
′

e is the word em-

bedding matrix. Given h
1
t , the attended image feature is

calculated as:

v̂t =

k
∑

i=1

βi,tv
′

i, βt = softmax(zt), (11)

zi,t = w
T
a tanh(Wvav

′

i +Whah
1
t ). (12)

Finally, the language LSTM takes the attended image

feature v̂t and h
1
t as input and gives the conditional dis-

tribution over possible output word as:

h
2
t = LSTM2([v̂t;h

1
t ],h

2
t−1), (13)

p(yt|y1:t−1) = softmax(Woh
2
t + bo), (14)

where Wo and bo are learned weights and biases, y1:t−1

refers to (y1, · · · , yt−1).

3.3. Learning to Generate More Grounded Cap
tions

The SCAN model and POS-SCAN are first pre-trained

on image-caption dataset and remain fixed. They serve as
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the attention guider and fine-grained rewarder during the

SCST [46] fine-tuning of the caption generator. The train-

ing process is divided into two stages.

In the first stage, given the target ground truth sentence

(y∗1 , · · · , y
∗
n), the captioning model with parameters θ is

usually trained by minimizing standard cross-entropy loss.

However, its attention module is not forced to correctly

associate the generated words with the attended regions.

To generate more grounded captions without region-word

alignment annotations, we additionally regularize the atten-

tion weights βt of captioning model with attention weights

αt distilled from POS-SCAN model via KL-divergence.

The combined loss function is as follows:

l1(θ) =

n
∑

t=1

{− log(pθ(y
∗
t |y

∗
1:t−1))

+ λ1✶y∗

t =ynounKL(βt‖αt)}. (15)

If ground truth region-word alignment annotations are avail-

able, the combined loss function can be written as follows:

l
′

1(θ) =
n
∑

t=1

{− log(pθ(y
∗
t |y

∗
1:t−1))

+ λ
′

1✶y∗

t =ynoun

k
∑

i=1

−γti log βti}, (16)

where γt = [γt1, · · · , γtk] is the indicators of posi-

tive/negative regions and γti = 1 when the i-th region has

over 0.5 IoU with the ground truth box and otherwise 0.

The second term of l
′

1(θ) can also be KL-divergence and

negative log likelihood loss.

In the second stage, the captioning model is further

trained by REINFORCE algorithm. Specifically, it seeks

to minimize the negative expected reward r:

l2(θ) = −Ey1:n∼pθ
[r(y1:n)]. (17)

Following the approach described in self-critical sequence

training (SCST) [46], the gradient of this loss can be ap-

proximated as:

∇θl2(θ) ≈ −(r(y
s
1:n)− r(ŷ1:n))∇θlog pθ(y

s
1:n), (18)

where ys1:n is a sampled caption and r(ŷ1:n) defines the

baseline reward obtained by greedily decoding the current

model. Compared to [46, 37, 33], the main difference lies in

the definition of the reward function r and the goal. In [46],

only language metric CIDEr [52] is used as the reward func-

tion. In [37, 33], a weight sum of CIDEr score and global

image-text matching similarity score is used as the reward

function for discriminative captions. To make full use of

the local image-text matching model, we further treat the

fine-grained local image-text matching score S(I, T ) as a

reward. Our final reward function is the combination:

r(y1:n) = CIDEr(y1:n) + λ2S(I, y1:n), (19)

which has the potential to encourage captioning model to

generate more grounded captions.

4. Experiments

4.1. Datasets and Evaluation Metrics

Since the main goal of our experiments is to evaluate the

effectiveness of the proposed weakly-supervised method

in improving the grounding performance of the caption-

ing model, it’s convenient to use the Flickr30k Entities

dataset [44]. The dataset contains 275k bounding boxes

from 31k images associated with natural language phrases.

Each image is annotated with 5 crowdsourced captions.

Following [36], phrase labels for boxes are converted to a

single-word object labels. We used splits from Karpathy et

al. [19], which includes 29k images for training, 1k images

for validation, and another 1k for test. We also reported part

results on MS-COCO dataset [27].

To evaluate the caption quality, we used the standard

evaluation script2, which reports the widely used auto-

matic evaluation metrics, BLEU [43], METEOR [8] and

CIDEr [52] and SPICE [2].

To evaluate region-word alignment quality, we followed

the metrics defined in [65]. It can compute alignment qual-

ity on both ground truth and generated sentences. In the

first case, we fed the ground truth sentence into the model

and compared the region with the highest attention weight

against the ground truth box at each annotated object word.

An object word is correctly localized if the Intersection-

over-Union (IoU) is over 0.5. In the second case, F1all and

F1loc metrics are computed after performing standard lan-

guage generation inference. In F1all, a region prediction

is considered correct if the object word is correctly predi-

cated and also correctly localized. In F1loc, only correctly-

predicated object words are considered. For more details,

please refer to the appendix in [65].

4.2. Implementation Details

We mainly adopted the widely used Faster R-CNN [45]

model pre-trained by Anderson et al. [3] on Visual

Genomes [22] as image feature extractor. For each image,

we extracted 36 regions which are represented as a sequence

of feature vectors with 2, 048 dimensions and bounding

box coordinates with 4 dimensions. To make a fair com-

parison with a recent similar work [38], we additionally

conducted experiments using visual features extracted by

Zhou et al. [65]. If no special instruction, we used the for-

mer image features.

For the local image-text matching model, the word em-

bedding size was set to 300, the GRU hidden state size and

joint embedding size d1 were set to 1, 024. The margin m

2https://github.com/tylin/coco-caption
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Model Attention Acc.

SCAN*[24] 17.63%

Up-Down+XE*[3] 19.83%

POS-SCAN 28.58%

Up-Down+XE+0.1NLL(GT) 37.17%

Up-Down+XE+0.1KL(POS-SCAN) 29.39%

Table 1. Attention accuracy on Flickr30k Entities val set. It is

measured on annotated object words of ground truth sentences. *

indicates such results are our remeasurement. +XE denotes cross

entropy loss. NLL denotes negative log likelihood and KL denotes

KL divergence. GT denotes grounding supervision comes from

the ground truth. 0.1 is the balance weight.
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Figure 3. The effect of the λ1 on the Flickr30k entities val set.

From the Figure, we can observe that both the captioning evalu-

ation (e.g. CIDEr and SPICE) and attention evaluation (e.g. F1all
and F1loc) of the captioning model can be improved when appro-

priate region-word alignments supervision is enforced.

and temperature τ were respectively set to 0.2 and 9. Fol-

lowing the training strategy in [24], we retrained both the

SCAN and POS-SCAN model.

For the captioning model, we conducted experiments

based on the widely used open-source codebase3. The word

embedding size was set to 512. The image feature embed-

ding size d2 and LSTM hidden state size were all set to 512
(1, 024 for MS-COCO). We built a dictionary by dropping

the words that occur less than 5 times and end up with a

vocabulary of 7, 000 (9, 487 for MS-COCO). We truncated

captions longer than 16 words. We optimized our model

with Adam [20] for 30 epochs in the first training stage.

The learning rate was initialized to be 5e-4 and decayed by

a factor 0.8 every three epochs. In the second stage, we

continued to train the model for another 80 epochs with an

initial learning rate of 5e-5. During inference, we disabled

the beam search for the convenience of region-word align-

ment evaluation on Flickr30k Entities and set it to 3 on MS-

COCO.

3https://github.com/ruotianluo/self-critical.

pytorch

4.3. Quantitative Analysis

We will validate the effectiveness of the proposed

method by answering five questions as follows.

Q1: Does the image-text matching model has higher

region-word alignment accuracy than image caption-

ing model? Our method is based on the intuition that the

region-word alignments of the image-text matching model

should be more reliable than the ones of the image caption-

ing model. We validated it by feeding the ground truth sen-

tences on validation set into the model and computing the

attention accuracy, with results reported in Table 1. To our

surprise, the original SCAN model even has lower attention

accuracy 17.63% than the adopted caption generator Up-

Down 19.83%. The cause may be the influence of too many

non-visual words. We remedied this by resorting to POS

to remove non-visual words when computing the matching

score at the cost of image-text matching accuracy. After

this, the attention accuracy of POS-SCAN model 28.58%
meets the requirements of the downstream task.

Q2: Can we improve the grounding performance of

the captioning model by distilling the image-text match-

ing model? Although POS-SCAN has higher attention ac-

curacy than Up-Down model, it is not clear to what ex-

tent can POS-SCAN transfer the grounding ability to Up-

Down model. To check this, we trained four Up-Down

models, which respectively corresponds to without attention

supervision, with ground truth attention supervision (upper

bound) and weakly supervision distilled from SCAN and

POS-SCAN model in the XE Pre-Train stage. The effect of

λ1 on caption evaluation and attention evaluation is shown

in Figure 3. In the following experiment, we set λ1 = 0.1
if not otherwise specified. By comparing the 1st row in

each section of Table 2, we can observe that the model with

POS-SCAN supervision significantly improves the atten-

tion evaluation performance without any region-word align-

ment annotations, while the model with original SCAN su-

pervision can’t achieve this as expected.

Q3: Can the captioning model maintain the ground-

ing performance after self-critical sequence train-

ing(SCST)? It is well known that SCST [46] is an effec-

tive training strategy to improve caption quality in practice.

However, how the grounding performance (attention accu-

racy, with slightly abused) of captioning model changes re-

mains unknown. To uncover this, captioning models were

further optimized by SCST with CIDEr as reward. By com-

paring the 1st and 2nd row in each section of Table 2, we

find that the caption quality is significantly improved while

the grounding performance is degrading in most cases. The

reason is that CIDEr metric encourages the n-gram consis-

tency but not the visual semantic alignment, leading to the

conflicting grounding and captioning performances.

Q4: Is it useful to incorporate the fine-grained image-

text similarity score as reward? By comparing the 2nd
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XE Pre-Train SCST Fine-Tune Caption Eval. Attention Eval.

GT SCAN POS-SCAN CIDEr SCAN POS-SCAN B@1 B@4 M C S F1all F1loc
Using Ground Truth Attention Supervision

X ✗ ✗ ✗ ✗ ✗ 70.1 27.4 21.8 58.9 15.4 8.33 23.09

X ✗ ✗ X ✗ ✗ 73.4 29.6 22.4 67.5 16.0 7.53 18.40

X ✗ ✗ X X ✗ 72.3 28.5 22.6 67.0 16.5 8.35 20.75

X ✗ ✗ X ✗ X 72.3 27.6 22.4 64.4 16.1 8.01 19.48

No Attention Supervision

✗ ✗ ✗ ✗ ✗ ✗ 69.6 26.9 21.6 57.1 15.0 5.11 14.67

✗ ✗ ✗ X ✗ ✗ 73.1 29.1 22.2 67.1 15.9 4.19 10.71

✗ ✗ ✗ X X ✗ 73.1 28.8 22.3 67.5 16.1 4.59 12.81

✗ ✗ ✗ X ✗ X 72.1 27.7 22.5 64.9 16.3 5.37 13.88

Attention Supervision Distilled from SCAN

✗ X ✗ ✗ ✗ ✗ 70.0 27.7 22.0 58.8 15.5 4.49 13.49

✗ X ✗ X ✗ ✗ 73.2 29.3 22.5 67.4 16.0 4.72 13.47

✗ X ✗ X X ✗ 73.2 28.6 22.4 67.8 16.3 4.77 12.25

✗ X ✗ X ✗ X 73.3 28.4 22.5 67.5 16.1 5.34 14.79

Attention Supervision Distilled from POS-SCAN

✗ ✗ X ✗ ✗ ✗ 70.4 27.5 21.8 58.0 15.3 6.47 17.96

✗ ✗ X X ✗ ✗ 73.7 29.9 22.3 67.5 16.0 6.62 16.97

✗ ✗ X X X ✗ 73.9 29.4 22.8 68.2 16.7 7.30 18.44

✗ ✗ X X ✗ X 72.6 28.0 22.6 64.3 16.0 7.63 18.33

Table 2. Ablation studies on the Flickr30k Entities val set. The baseline captioning model is Up-Down [3]. XE denotes cross entropy. In

the XE Pre-Train stage: GT denotes using ground truth attention supervision; SCAN (POS-SCAN) denotes attention supervision distilled

from SCAN (POS-SCAN). In the SCST [46] fine-tune stage: CIDEr denotes using CIDEr as reward function; SCAN (POS-SCAN) denotes

using the image-text matching score of SCAN (POS-SCAN) model as reward.

Caption Evaluation Att. Eval.
B@1 B@4 M C S F1all F1loc

SR-PL[33] 72.9 29.3 21.8 65.0 15.8 - -
Gu et al. [11] 73.8 30.7 21.6 61.8 15.0 - -
NBT[36] 69.0 27.1 21.7 57.5 15.6 - -
Unsup.† [65] 69.2 26.9 22.1 60.1 16.1 3.88 11.7
GVD(Sup.)†[65] 69.9 27.3 22.5 62.3 16.5 7.55 22.2
Cyclical† [38] 68.9 26.6 22.3 60.9 16.3 4.85 13.4
Ours† 71.4 28.0 22.6 66.2 17.0 6.53 15.79
Ours‡ 73.4 30.1 22.6 69.3 16.8 7.17 17.49

Table 3. Performance comparison with the state-of-the-art meth-

ods on the Flickr30k Entities test set. † denotes using visual fea-

ture from [65] and ‡ denotes using the widely adopted bottom-up

visual feature from [3]. Sup. denotes model trained with ground

truth grounding annotations. The supervised method is used as

upper bound and its numbers are not bolded.

and 3rd row in each section of Table 2, we can find that by

further incorporating the SCAN as reward function, mod-

els obtain consistently improvement on the SPICE metric,

which captures more semantic propositional content com-

pared with other conventional metrics. Moreover, we find

that such reward can improve the grounding performance in

most cases when compared to using only CIDEr as reward.

By further comparing the 3rd and 4th row in each section of

Table 2, we can find that SCAN reward function is a good

trade-off between the caption quality and the grounding per-

Up-Down B@1 B@4 M C S

XE Pre-Train*[3] 77.2 36.2 27.0 113.5 20.3

+SCST(CIDEr)*[3] 79.8 36.3 27.7 120.1 21.4

XE Pre-Train 76.2 36.4 27.7 113.1 20.5

+SCST(CIDEr) 80.0 37.8 28.1 125.2 21.6

XE Pre-Train+POS-SCAN 76.6 36.5 27.9 114.9 20.8

+SCST(CIDEr) 80.1 37.8 28.3 125.9 22.0

+SCST(SCAN) 80.2 38.0 28.5 126.1 22.2

Table 4. Performance on the MS-COCO Karpathy test set. ∗
denotes results reported in the original paper. Omitted balance

weights equal to 1. SCST(x) means using x as reward function in

SCST [46] fine-tune stage.

formance when compared to POS-SCAN reward function.

Q5: How does our final model perform compared

to other state-of-the-art models? We compared our final

model with other state-of-the-art models on the test set, as

shown in Table 3. For a fair comparison with the most simi-

lar work [38], we also run our final model using their visual

feature (with λ1 = 0.2). Our model achieves better perfor-

mance on both caption evaluation and attention evaluation

without any ground truth attention supervision. We also re-

port part results on MS-COCO in Table 4.
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a dog runs through a field.

a brown and white dog is running 

through a field.

(‘dog’,7)
(‘field’,4)

(‘brown’,1)
(‘dog’,1)

(‘field’,35)

two men are working on a roof.

two men are working on a roof.

(‘men’,2)
(‘roof’,30)

(‘men’,14)
(‘roof’,7)

two men are fishing on a lake.

two men are fishing in a lake.

(‘men’,4)
(‘lake’,26)

(‘men’,12)
(‘lake’,2)

two dogs are playing in a tree.

(‘dog’,6)
(‘tree’,27)

(‘dog’,12)

(area’,30)

two dogs are playing in a wooded

area.

a man in a striped shirt is sitting at 

a table with a hammer.

a man in a striped shirt is sitting at 

a table with a drink.

(‘man’,14)
(‘shirt’,29)
(‘table’,9)

(‘hammer’,9)

(‘man’,0)
(‘shirt’,19)
(‘table’,3)
(‘drink’,9)

a man in a red hat and red apron

is cooking a fire.

a man in a white apron is cooking 

in a kitchen.

(‘apron’,11)

(‘man’,34)
(‘hat’,11)

(‘fire’,32)

(‘man’,1)
(‘apron’,4)

(‘kitchen’,5)

(‘man’,7)
(‘shirt’,21)

(‘frisbee’,23)
(‘field’,15)

a man in a red shirt is playing with 

a frisbee in a field.

a man in a red shirt is sitting on 

the grass with a soccer ball.

(‘man’,3)
(‘shirt’,2)

(‘grass’,33)
(‘soccer’,23)

(‘ball’,23)

(‘group’,33)
(‘people’,13)

(‘front’,22)
(‘table’,1)

a group of people are standing in 

front of a table with a UNK.

a man in a blue shirt is standing 

in front of a group of people.

(‘man’,3)
(‘shirt’,20)
(‘front’,1)

(‘group’,1)
(‘people’,9)

Figure 4. Generated captions and internal region-word alignments of models without and with POS-SCAN attention supervision in the XE

Pre-Train stage. In each unit, caption surrounded by red box is from the former and green one is from the latter. Word and corresponding

attended region with maximum weight are marked with the same color. We also visualize the attention weight distributions of some

visually-groundable words on top of captions. Darker color indicates bigger weights. For space reasons, we only show a part of regions.

a man wearing a hat and a hat and a hat.

(‘man’,2)
(‘hat’,0)
(‘hat’,0)
(‘hat’,0)

two girls in white karate uniforms are practicing martial arts.

(‘girls’,9)
(‘karate’,9)

(‘uniforms’,9)
(‘arts’,9)

a man in a white shirt is taking a picture of a man in a white.

(‘picture’,9)

(‘man’,0)
(‘shirt’,1)

(‘man’,22)

a baseball player is sliding into the air while the catcher watches.

(‘baseball’,2)
(‘player’,2)

(‘air’,28)
(‘catcher’,2)
(‘watches’,2)

Figure 5. Some representative failure cases generated by the cap-

tioning model.

4.4. Qualitative Result

To illustrate the advantages of our proposed method, we

present some qualitative examples in Figure 4. We can ob-

serve that our proposed method can help to generate more

grounded captions (e.g. it aligns the “men” to the correct

region in the 2nd image). We also present some represen-

tative failure cases of the neural-based captioning model in

Figure 5. Errors include pattern repetition (e.g. the 1st im-

age), mis-recognition (e.g. the 2nd and 3rd image ) and mis-

association because of complex context (e.g. the 4th image).

5. Conclusions

In this work, we demonstrated that it is feasible to gener-

ate more grounded captions without grounding annotations

by distilling the image-text matching model: the proposed

POS-SCAN. This enhances the interpretability and trans-

parency of existing captioning models. Additionally, by in-

corporating the SCAN image-text matching score as the re-

ward, we found a practical trade-off between the caption

quality and the grounding performance. In the future, it

may be an interesting direction to design a learnable image-

text matching metric — other than the problematic n-gram

based metrics — to encourage more grounded image cap-

tioning for better model explainability.
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Karl Stratos, and Hal Daumé III. Midge: Generating im-

age descriptions from computer vision detections. In EACL,

2012. 2

[41] Rafael Müller, Simon Kornblith, and Geoffrey E Hinton.

When does label smoothing help? In NeurIPS, 2019. 2,

3

[42] Zhenxing Niu, Mo Zhou, Le Wang, Xinbo Gao, and Gang

Hua. Hierarchical multimodal lstm for dense visual-semantic

embedding. In ICCV, 2017. 3

[43] Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing

Zhu. Bleu: a method for automatic evaluation of machine

translation. In ACL, 2002. 5

[44] Bryan A Plummer, Liwei Wang, Chris M Cervantes,

Juan C Caicedo, Julia Hockenmaier, and Svetlana Lazeb-

nik. Flickr30k entities: Collecting region-to-phrase corre-

spondences for richer image-to-sentence models. In ICCV,

2015. 2, 5

[45] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun.

Faster r-cnn: Towards real-time object detection with region

proposal networks. In NeurIPS, 2015. 3, 5

[46] Steven J. Rennie, Etienne Marcheret, Youssef Mroueh, Jerret

Ross, and Vaibhava Goel. Self-critical sequence training for

image captioning. In CVPR, July 2017. 1, 2, 5, 6, 7

[47] Anna Rohrbach, Lisa Anne Hendricks, Kaylee Burns, Trevor

Darrell, and Kate Saenko. Object hallucination in image cap-

tioning. In EMNLP, 2018. 2

[48] Anna Rohrbach, Marcus Rohrbach, Ronghang Hu, Trevor

Darrell, and Bernt Schiele. Grounding of textual phrases in

images by reconstruction. In ECCV, 2016. 2, 3

[49] Adriana Romero, Nicolas Ballas, Samira Ebrahimi Kahou,

Antoine Chassang, Carlo Gatta, and Yoshua Bengio. Fitnets:

Hints for thin deep nets. arXiv preprint arXiv:1412.6550,

2014. 3

[50] Mike Schuster and Kuldip K Paliwal. Bidirectional recurrent

neural networks. IEEE Transactions on Signal Processing,

45(11):2673–2681, 1997. 3

[51] Kaihua Tang, Yulei Niu, Jianqiang Huang, Jiaxin Shi, and

Hanwang Zhang. Unbiased scene graph generation from bi-

ased training. arXiv preprint arXiv:2002.11949, 2020. 2

[52] Ramakrishna Vedantam, C Lawrence Zitnick, and Devi

Parikh. Cider: Consensus-based image description evalua-

tion. In CVPR, 2015. 2, 5

[53] Oriol Vinyals, Alexander Toshev, Samy Bengio, and Du-

mitru Erhan. Show and tell: A neural image caption gen-

erator. In CVPR, 2015. 1, 2

[54] Liwei Wang, Yin Li, and Svetlana Lazebnik. Learning

deep structure-preserving image-text embeddings. In CVPR,

2016. 3

[55] Tan Wang, Xing Xu, Yang Yang, Alan Hanjalic, Heng Tao

Shen, and Jingkuan Song. Matching images and text with

multi-modal tensor fusion and re-ranking. In ACM MM,

2019. 3

[56] Kelvin Xu, Jimmy Ba, Ryan Kiros, Kyunghyun Cho, Aaron

Courville, Ruslan Salakhudinov, Rich Zemel, and Yoshua

Bengio. Show, attend and tell: Neural image caption gen-

eration with visual attention. In ICML, 2015. 1, 2

[57] Xu Yang, Kaihua Tang, Hanwang Zhang, and Jianfei Cai.

Auto-encoding scene graphs for image captioning. In CVPR,

2019. 2

[58] Xu Yang, Hanwang Zhang, and Jianfei Cai. Learning to col-

locate neural modules for image captioning. In ICCV, 2019.

2

[59] Xu Yang, Hanwang Zhang, and Jianfei Cai. Deconfounded

image captioning: A causal retrospect. arXiv preprint

arXiv:2003.03923, 2020. 2

[60] Ting Yao, Yingwei Pan, Yehao Li, and Tao Mei. Exploring

visual relationship for image captioning. In ECCV, 2018. 2

[61] Quanzeng You, Hailin Jin, Zhaowen Wang, Chen Fang, and

Jiebo Luo. Image captioning with semantic attention. In

CVPR, 2016. 2

[62] Licheng Yu, Zhe Lin, Xiaohui Shen, Jimei Yang, Xin Lu,

Mohit Bansal, and Tamara L Berg. Mattnet: Modular at-

tention network for referring expression comprehension. In

CVPR, 2018. 3

[63] Mingkuan Yuan and Yuxin Peng. Ckd: Cross-task knowl-

edge distillation for text-to-image synthesis. IEEE TMM,

2019. 2, 3

[64] Zheng-Jun Zha, Daqing Liu, Hanwang Zhang, Yongdong

Zhang, and Feng Wu. Context-aware visual policy network

for fine-grained image captioning. IEEE TPAMI, 2019. 2

[65] Luowei Zhou, Yannis Kalantidis, Xinlei Chen, Jason J

Corso, and Marcus Rohrbach. Grounded video description.

In CVPR, 2019. 2, 3, 5, 7

4786


