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Abstract

Human motion segmentation based on transfer subspace

learning is a rising interest in action-related tasks. Al-

though progress has been made, there are still several issues

within the existing methods. First, existing methods trans-

fer knowledge from source data to target tasks by learn-

ing domain-invariant features, but they ignore to preserve

domain-specific knowledge. Second, the transfer subspace

learning is employed in either low-level or high-level fea-

ture spaces, but few methods consider fusing multi-level fea-

ture representations for subspace learning. To this end, we

propose a novel multi-mutual consistency induced transfer

subspace learning framework for human motion segmenta-

tion. Specifically, our model factorizes the source and tar-

get data into distinct multi-layer feature spaces and reduces

the distribution gap between them through a multi-mutual

consistency learning strategy. In this way, the domain-

specific knowledge and domain-invariant properties can be

explored in different layers simultaneously. Our model also

conducts the transfer subspace learning on different layers

to capture multi-level structural information. Further, to

preserve the temporal correlations, we project the learned

representations into a block-like space. The proposed model

is efficiently optimized by using the Augmented Lagrange

Multiplier (ALM) algorithm. Experimental results on four

human motion datasets demonstrate the effectiveness of our

method over other state-of-the-art approaches.

1. Introduction

Human motion segmentation aims to partition visual

data sequences that depict human actions and activities into

a set of preferably non-overlapping and internally coherent

temporal segments. It is an important preprocessing step

before further motion and action related analytical tasks

∗Corresponding author: Jianbing Shen (shenjianbingcg@gmail.com).

[26, 38, 48, 59]. Human motion information is a key fac-

tor for temporal segmentation. However, due to the com-

plexity of temporal correlations and the high-dimensional

structure of visual representations, capturing such discrim-

inative temporal information remains as a challenging task

[23]. Therefore, several approaches have been developed

to address this problem, including model-based [49], tem-

poral proximity-based [23], representation-based [22, 25],

and subspace clustering-based approaches [12, 25]. Among

them, the subspace clustering-based methods have attracted

notable attention and obtained promising results.

Subspace clustering is a powerful technique for parti-

tioning data into multiple groups, which holds the assump-

tion that data points are drawn from multiple subspaces cor-

responding to different classes [4, 24, 33]. Several represen-

tative subspace clustering methods [8, 16, 29, 32] have been

developed to learn distinct and low-dimensional data repre-

sentations, in which the learned representations are then fed

into conventional clustering algorithms. However, it is often

difficult for these unsupervised subspace learning methods

to attain reasonable performance without prior knowledge.

Fortunately, labeled data from related tasks are often easy

to obtain. Thus, transfer learning is an ideal option for bor-

rowing knowledge from relevant source data to improve the

target tasks [5, 52]. In human motion segmentation, recent

transfer subspace learning-based approaches [46, 47] have

reported improved performance.

Although transfer subspace learning has achieved satis-

factory results in human motion segmentation, there still

exist several issues as follows. First, the transfer subspace

learning based motion segmentation imposes the data dis-

tributions of two domains to be similar. To this end, one

popular strategy is to project both the source and target

data into a common feature space. This strategy explores

domain-invariant properties but ignores the potentially use-

ful domain-specific knowledge. However, both of these two

aspects play essential roles, and it is challenging to balance
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them for improved performance. Second, existing subspace

clustering-based methods tend to reconstruct data points by

using either the original or high-level features (e.g., outputs

of deep networks), with few conducting transfer subspace

learning in multi-level feature spaces to capture low-level

and high-level information simultaneously.

To address the above problems, we propose a novel

method that incorporates transfer learning and multi-level

subspace clustering into a unified framework to enhance

human motion segmentation (as shown in Fig. 1). First,

we factorize the original features of the source and the tar-

get data into implicit multi-layer feature spaces, in which a

multi-mutual consistency learning strategy is used to reduce

the distribution difference between the two domains. Sec-

ond, we carry out the transfer subspace learning in different

layers to fuse multi-level structural information effectively.

Third, we project the learned representations into a block-

like space to preserve the temporal correlations. Finally, we

show that our model can be efficiently optimized using the

Augmented Lagrange Multiplier (ALM) algorithm.

The main contributions are summarized as follows: We

present a novel human motion segmentation algorithm,

which integrates transfer learning and multi-level subspace

learning into a unified framework. Our motion segmenta-

tion model explores domain-invariant properties by using a

multi-mutual consistency learning strategy while preserving

domain-specific knowledge. We conduct multi-level trans-

fer subspace learning in different layers to simultaneously

capture low- and high-level information. Extensive exper-

iments on four public datasets demonstrate the superiority

of our model over the state-of-the-art methods.

2. Related Work

Subspace clustering builds on the assumption that data

points are drawn from multiple subspaces corresponding

to different clusters. Recently, self-representation based

subspace clustering, where each data point is expressed

with a linear combination of other data points, has cap-

tured increasing attention [60, 53, 61]. For example, Sparse

Subspace Clustering (SSC) [8] searches the sparsest rep-

resentation among the infinitely many possible representa-

tions based on ℓ1-norm. Low-Rank Representation Cluster-

ing (LRR) [29] attempts to reveal cluster structure with a

low-rank representation. SMooth Representation clustering

(SMR) [16] analyzes the grouping effect of representation-

based methods. There are also several deep learning-based

subspace clustering approaches [19, 37, 53, 55, 57]. How-

ever, these methods cannot be directly applied in human

motion segmentation since they ignore the temporal corre-

lations between successive frames.

Temporal data clustering aims for segmenting data se-

quences into a set of non-overlapping parts. It has a wide

range of applications, from facial analytics, speech segmen-
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Figure 1: Overview of the proposed multi-mutual consistency induced

transfer subspace learning framework for human motion segmentation.

Our model first factorizes the source and target data into multi-layer im-

plicit feature spaces, in which a multi-mutual consistency learning strategy

is presented to reduce the distribution difference between the two domains.

Then, it carries out a multi-level Transfer Subspace Learning (TSL) in dif-

ferent layers to capture multi-level structural information. After that, it

fuses multi-level representations to construct an affinity matrix, and obtains

the final segmentation results by using the Normalized Cuts algorithm.

tation to human action recognition. For this purpose, semi-

Markov K-means clustering [39] attempts to exploit repet-

itive patterns. Zhou et al. [56] use a K-means kernel asso-

ciated with a dynamic temporal alignment approach. Tem-

poral Subspace Clustering (TSC) [25] learns a non-negative

dictionary and data representation under the constraint of a

temporal Laplacian regularization term. Transfer Subspace

Segmentation (TSS) [46] adopts auxiliary data and trans-

fers segmentation knowledge from source to target data.

Low-rank Transfer Subspace (LTS) [47] employs a novel

sequential graph to preserve temporal information residing

in both the source and target data. These temporal clus-

tering methods are all formulated as unsupervised learning

scenarios, some of which adopt a self-representation strat-

egy to achieve the motion segmentation task.

Transfer learning intends for leveraging on the prior

knowledge from related source data to improve the results

of target tasks. So far, plenty of transfer learning mod-

els have been proposed, such as domain-invariant feature

learning [13, 34, 42] and classifier parameter adaptation

[2, 27, 54]. Among these, domain-invariant feature learn-

ing [13] attempts to learn a common feature space where

both the domain shift and distribution difference can be mit-

igated. Several works explore the alignment of two different
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domains, for instance, subspace learning [41, 50] and dic-

tionary learning [11, 62]. In the same vein, deep learning

inspired techniques have been used to integrate knowledge

transfer and learned features into one unified framework

[7, 10, 31, 45]. However, most of these methods incorporate

domain alignment strategies in their top layers, ignoring the

low-level structural information.

3. The Proposed Method

3.1. Formulation

As aforementioned, three main challenges remain for

human motion segmentation using transfer subspace learn-

ing, namely: (i) how to reduce the distribution difference

while preserving domain-specific knowledge; (ii) how to

capture multi-level information to enhance the performance

of transfer subspace learning; and (iii) how to effectively

capture the temporal correlations among motion data.

To address these challenges, we formulate our model

with three strategies: 1) multi-mutual consistency learning,

2) multi-level subspace learning, and 3) temporal correla-

tion preservation.

1) Multi-mutual consistency learning. Deep structure

learning has demonstrated its effectiveness in many real-

world applications [20, 35, 36, 51]. To capture multi-level

structural information, we use a multi-layer decomposition

process based on the deep Non-negative Matrix Factoriza-

tion (NMF) model as

X ≈ D
(1)

H
(1)

≈ D
(1)

D
(2)

H
(2)

...

≈ D
(1)

D
(2) · · ·D(l) · · ·D(L)

H
(L),

(1)

where D(l) ≥ 0 and H(l) ≥ 0 (l = 1, . . . , L) denote the

basis matrix and the feature representation matrix at the l-

th layer, respectively, and L is the number of layers. It is

worth noting that the feature representations in each layer

capture different levels of information and knowledge from

the original data.

To mitigate the difference in distribution between the

source and target data, and at the same time, preserve the

knowledge from different domains, we establish our multi-

mutual consistency learning model as

L1(Xs,Xt;D
(l)
s ,D

(l)
t ,H(l)

s ,H
(l)
t )

= ‖Xs −D
(1)
s D

(2)
s . . .D(L)

s H
(L)
s ‖

2
F

+ ‖Xt −D
(1)
t D

(2)
t . . .D

(L)
t H

(L)
t ‖

2
F

+ α
∑L

l=1
Fcon(D

(l)
s ,D

(l)
t ),

(2)

where Xs ∈ R
d×ns and Xt ∈ R

d×nt denote the source and

target data, respectively. d is the feature dimension, and

ns and nt are the number of the source and target data, re-

spectively. α > 0 is a trade-off parameter. The first two

terms are used to explore the multi-level structures in both

the source and target data. The third term Fcon(·, ·) aims to

decrease the distribution difference between two domains

by penalizing the divergence of two basis matrices in dif-

ferent layers. In contrast, most existing methods directly

project the source and target data into a common space us-

ing a domain-invariant projection matrix, resulting in a loss

of domain-specific knowledge. Finally, although there are

various strategies for constraining the consistency between

D
(l)
s and D

(l)
t , in this study, we utilize a simple but effective

strategy, i.e., Fcon(D
(l)
s ,D

(l)
t ) = ‖D

(l)
s −D

(l)
t ‖

2
F .

2) Multi-level transfer subspace learning. Existing

subspace clustering or subspace clustering-based motion

segmentation methods often reconstruct data points using

either the shallow representations (e.g., original features) or

high-level representations (e.g., features from the last layer

of deep networks). Although the high-level representations

have shown promising performance in clustering tasks, they

omit a certain amount of useful information. Thus, we pro-

pose a multi-level subspace learning strategy to effectively

exploit the structural information in different feature spaces,

which we formulate as:

L2(H
(l)
s ,H

(l)
t ;Z(l)) =

∑L

l=1
‖[H(l)

s ,H
(l)
t ]−H

(l)
s Z

(l)‖2,1,

s.t. Z
(l) ≥ 0,1⊤

Z
(l) = 1

⊤, ∀l = 1, 2, . . . , L,

(3)

where 1 denotes a column vector with all elements being

one. The non-negative constraint Z(l) ≥ 0 enhances the

discriminative ability of the learned representations. The

constraint 1⊤Z(l) = 1⊤ makes the sum of each coefficient

vector to be one, therefore suppressing the representation

coefficients from different subspaces. It is worth noting

that, in Eq. (3), the feature representation of the source data

(i.e., H
(l)
s ) is regarded as a dictionary, which is then used

to reconstruct the feature representations of both the source

and target data. This enables knowledge from the source

data to be transferred to the target task. Additionally, ‖·‖2,1
denotes the ℓ2,1-norm, which encourages the columns of a

matrix to be zero [29], i.e., ‖E‖2,1 =
∑N

j=1

√
∑M

i=1[Eij ]2,

where E ∈ R
M×N . By using the ℓ2,1-norm, an underly-

ing assumption is that any corruptions are sample-specific,

i.e., some data vectors may be corrupted while the others

are clean. Remarks: Our model learns multiple transfer-

able subspaces within a layer-wise framework, which can

capture multi-level structural information and provide more

substantial knowledge to improve motion segmentation per-

formance.

3) Temporal correlation preservation. Temporal and

structural information is crucial for accurate clustering

since human motion data are consecutive and sequential.
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Thus, it is essential to preserve the temporal information

in the learned representation Z. To achieve this, a pop-

ular strategy is to regulate the i-th cofficient’s neighbors

[zi−τ/2, · · · , zi−1, zi+1, · · · , zi+τ/2] to be close to zi, where

τ is the length of relevant frames. Here, we first build a

weight matrix S [25, 46], where we define each element as

follows:

sij =







1, if |i− j| ≤ τ, l(xi) = l(xj), for source data;

1, if |i− j| ≤ τ, for target data;

0, otherwise,

(4)

where l(xi) denotes the action label of the i-th sample xi in

the source data. We observe that the weight matrix has a

block-like structure. To preserve the temporal correlations,

we project the representation Z into a block-like space,

which we formulate as follows:

L3(S,Z
(l);W(l)) =

∑L

l=1
(‖S−W

(l)
Z

(l)‖2F + γ‖W(l)‖∗),
(5)

where γ is a trade-off parameter, and ‖ · ‖∗ is the matrix

nuclear-norm [29]. Since there exist temporal correlations

in the learned representation, we introduce the low-rank

regularization on the projection matrix W(l) by using the

nuclear norm [29].

Overall formulation: Finally, we integrate the above

three components (Eqs. (2)(3)(5)) into a single unified ob-

jective function as follows:

minL1(Xs,Xt;D
(l)
s ,D

(l)
t ,H(l)

s ,H
(l)
t )

︸ ︷︷ ︸

Multi-mutual consistency learning

+

λL2(H
(l)
s ,H

(l)
t ;Z(l))

︸ ︷︷ ︸

Multi-level transfer subspace learning

+ βL3(S,Z
(l);W(l))

︸ ︷︷ ︸

Temporal correlation preservation

=min
Ω
‖Xs −D

(1)
s D

(2)
s . . .D(L)

s H
(L)
s ‖

2
F

+ ‖Xt −D
(1)
t D

(2)
t . . .D

(L)
t H

(L)
t ‖

2
F

+ α
∑L

l=1
‖D(l)

s −D
(l)
t ‖

2
F

+ λ
∑L

l=1
‖[H(l)

s ,H
(l)
t ]−H

(l)
s Z

(l)‖2,1

+ β
∑L

l=1
‖S−W

(l)
Z

(l)‖2F + γ
∑L

l=1
‖W(l)‖∗,

s.t. Z
(l) ≥ 0,1⊤

Z
(l) = 1

⊤, ∀l = 1, 2, . . . , L,

(6)

where Ω = {D
(l)
s ≥ 0,D

(l)
t ≥ 0,H

(l)
s ≥ 0,H

(l)z
t ≥

0,Z(l),W(l)} (l = 1, 2, . . . , L) is the variable set to be op-

timized, and α, λ, β, and γ are trade-off parameters.

3.2. Clustering

By using Eq. (6), we can obtain the learned multi-level

representations Z(l)(l = 1, 2, . . . , L), and then the corre-

sponding target representations Z
(l)
t ∈ R

ns×nt can be ex-

tracted from Z(l) = [Z
(l)
s ,Z

(l)
t ]. To exploit the intrinsic re-

lationships among within-cluster samples in human motion

data, we utilize the strategy from [25] and introduce another

similarity measurement to construct an affinity matrix A.

Each element of A can be defined as the distance between

any pair of the learned target representations, which is:

a(i, j) =
1

L

∑L

l=1

z
(l)
t,i

⊤
z
(l)
t,j

‖z
(l)
t,i‖2‖z

(l)
t,j‖2

, (7)

where z
(l)
t,i and z

(l)
t,j denote the i-th and j-th columns of z

(l)
t ,

respectively. Then, the Normalized Cut [43] algorithm is

applied to the learned affinity matrix A to produce the tem-

poral segmentation results.

3.3. Optimization

The objective function in Eq. (6) is not jointly convex

with respect to all variables. Thus, we utilize the ALM [28]

algorithm to efficiently solve it. To adopt the ALM strategy

to our problem, we introduce one auxiliary variable J(l) to

replace W(l) in the nuclear term of our objective function.

Then, we solve the previous optimization function by mini-

mizing the following ALM problem:

L(Ω) = ‖Xs −D
(1)
s D

(2)
s . . .D(L)

s H
(L)
s ‖

2
F

+ ‖Xt −D
(1)
t D

(2)
t . . .D

(L)
t H

(L)
t ‖

2
F

+ α
∑L

l=1
‖D(l)

s −D
(l)
t ‖

2
F + λ

∑L

l=1
‖E(l)‖2,1

+ β
∑L

l=1
‖S−W

(l)
Z

(l)‖2F + γ
∑L

l=1
‖J(l)‖∗

+
∑L

l=1
Φ
(

Λ
(l)
1 , [H(l)

s ,H
(l)
t ]−H

(l)
s Z

(l) −E
(l)
)

+Φ
(

Λ
(l)
2 ,W(l) − J

(l)
)

,

s.t. Z(l) ≥ 0,1⊤
Z

(l) = 1
⊤, ∀l = 1, 2, . . . , L,

(8)

where Φ(Λ,Q) = µ
2
‖Q‖2F + 〈Λ,Q〉, with 〈·, ·〉 denoting the

matrix inner product. µ is a positive penalty scalar, and Λ
(l)
1

and Λ
(l)
2 (l = 1, 2, . . . , L) are Lagrangian multipliers. We

describe the optimization steps for each subproblem below.

Ds-subproblem: The optimization problem associated

with Ds can be written as

min
Ds≥0

‖Xs −D
(1)
s D

(2)
s . . .D(L)

s H
(L)
s ‖

2
F

+ α
∑L

l=1
‖D(l)

s −D
(l)
t ‖

2
F , ∀l = 1, 2, . . . , L.

(9)

By taking the derivative of Eq. (9) w.r.t. D
(l)
s and using

the Karush-Kuhn-Tucker (KKT) condition [1], we obtain

the following updating rule:

D
(l)
s ← D

(l)
s ⊙

Θ
(l−1)
s

⊤
XsH

(L)
s

⊤
Ω

(l+1)
s

⊤
+ αD

(l)
t

Θ
(l−1)
s

⊤
Θ

(l−1)
s D

(l)
s Ω

(l+1)
s H

(L)
s H

(L)
s

⊤
Ω

(l+1)
s

⊤
+ αD

(l)
s

,

(10)
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where Θ
(l−1)
s = D

(1)
s D

(2)
s · · ·D

(l−1)
s , and Ω

(l+1)
s =

D
(l+1)
s D

(l+2)
s · · ·D

(L)
s .

Similarly, we have the updating rule for D
(l)
t as follows

D
(l)
t ← D

(l)
t ⊙

Θ
(l−1)
t

⊤
XtH

(L)
t

⊤
Ω

(l+1)
t

⊤
+ αD

(l)
s

Θ
(l−1)
t

⊤
Θ

(l−1)
t D

(l)
t Ω

(l+1)
t H

(L)
t H

(L)
t

⊤
Ω

(l+1)
t

⊤
+ αD

(l)
t

.

(11)

Hs-subproblem: The optimization problem associated

with H
(l)
s can be written as

min
Hs≥0

‖Xs −D
(1)
s D

(2)
s . . .D(l)

s H
(l)
s ‖

2
F

+Φ
(

Λ
(l)
1 , [H(l)

s ,H
(l)
t ]−H

(l)
s Z

(l) −E
(l)
)

.
(12)

By taking the derivative of Eq. (12) w.r.t. H
(l)
s and using the

KKT condition [1], we then obtain the following updating

rule:

H
(l)
s ← H

(l)
s ⊙

2Θ
(l)
s

⊤
Xs + µ(E

(l)
s −Λ

(l)
1,s/µ)(I− Z

(l)
s )⊤

2Θ
(l)
s

⊤
Θ

(l)
s H

(l)
s + µH

(l)
s (I− Z

(l)
s )(I− Z

(l)
s )⊤

.

(13)

where E(l) = [E
(l)
s ,E

(l)
t ], Z(l) = [Z

(l)
s ,Z

(l)
t ], and Λ

(l)
1 =

[Λ
(l)
1,s,Λ

(l)
1,t]. E

(l)
s , Z

(l)
s and Λ

(l)
1,s denote the corresponding

parts to H
(l)
s , and I is an identity matrix.

Similarly, we have the updating rule for H
(l)
t as follows:

H
(l)
t ← H

(l)
t ⊙

2Θ
(l)
t

⊤
Xt + µ(H

(l)
s Z

(l)
t +E

(l)
t −

Λ
(l)
1,t

µ
)

2Θ
(l)
t

⊤
Θ

(l)
t H

(l)
t + µH

(l)
t

.

(14)

W-subproblem: W(l) can be optimized by solving

min
W(l)

β‖S−W
(l)
Z

(l)‖2F +Φ(Λ
(l)
2 ,W(l) − J

(l)). (15)

Taking the derivative of the above objective with respect

to W(l), we obtain the closed-form solution

W
(l) =

(

SZ
(l)⊤ +

µJ(l) −Λ
(l)
2

2β

)(

Z
(l)
Z

(l)⊤ +
µI

2β

)−1

.

(16)

J-subproblem: The optimization problem associated

with J(l) can be written as

min
J(l)

γ

µ
‖J(l)‖∗ +

1

2
‖J(l) − (W(l) +Λ

(l)
2 /µ)‖2F . (17)

The above problem can be solved via using a singular

value thresholding operator [3].

Z-subproblem: Dropping the unrelated terms with re-

spect to Z(l) yields

min
Z(l)

β‖S−W
(l)
Z

(l)‖2F

+Φ(Λ
(l)
1 , [H(l)

s ,H
(l)
t ]−H

(l)
s Z

(l) −E
(l)),

s.t. Z
(l) ≥ 0,1⊤

Z
(l) = 1

⊤.

(18)

Algorithm 1: Solving problem (6) via ALM.

1 Input: Source data: Xs and target data Xt, parameters α, λ, β,

and γ.

2 Initialize: Λ
(l)
1 = 0, Λ

(l)
2 = 0, ε = 10−4, ρ = 1.5,

µ = 10−4, maxµ = 106.

3 Output: Z(l), l = 1, 2, . . . , L.

4 while not converged do

5 for l=1,2,. . . ,L do

6 Update D
(l)
s , D

(l)
t , H

(l)
s , H

(l)
t , W(l), J(l), Z(l),

E(l), Λ
(l)
1 , and Λ

(l)
2 using Eqs. (10), (11), (13), (14),

(16), (17), (18), (19), and (20), respectively.

7 end

8 Update the parameter µ via µ = min(ρµ,maxµ);
9 Check the convergence conditions:

10 ‖[H
(l)
s ,H

(l)
t ]−H

(l)
s Z(l) −E(l)‖∞ < ε

11 and ‖W(l) − J(l)‖∞ < ε.

12 end

By taking the derivative of (18) w.r.t Z(l) and setting it to

zero, we can obtain its closed-form solution. After that, we

apply an efficient iterative algorithm [18] to obtain the final

solution of Z(l).

E-subproblem: The error term E(l) can be updated by

solving the following problem:

min
E(l)

λ

µ
‖E(l)‖2,1 +

1

2
‖E(l) −G‖2F , (19)

where G = [H
(l)
s ,H

(l)
t ]−H

(l)
s Z(l)+Λ

(l)
1 /µ. This subproblem

can be efficiently solved by using the algorithm in [30].

Multipliers updating: The multipliers Λ
(l)
1 and Λ

(l)
2 can

be updated by using the following equation:
{

Λ
(l)
1 := Λ

(l)
1 + µ([H(l)

s ,H
(l)
t ]−H

(l)
s Z

(l) −E
(l)),

Λ
(l)
2 := Λ

(l)
2 + µ(W(l) − J

(l)).
(20)

Note that we pretrain each of the layers to obtain ini-

tial approximations for D
(l)
s , D

(l)
t , H

(l)
s , and H

(l)
t . This pre-

training process can reduce the training time of our model,

and its effectiveness has also been proven in deep auto-

encoder networks [15]. Taking the source data as an ex-

ample, we decompose Xs ≈ D
(1)
s H

(1)
s and then decompose

H
(1)
s ≈ D

(2)
s H

(2)
s until all layers are initialized. Then, we

repeat the updating steps until convergence. The details for

solving Eq. (6) via the ALM algorithm are summarized in

Algorithm 1.

3.4. Complexity Analysis

The major computational burden of Algorithm 1 lies in

two stages, i.e., pretraining and model updating, so we ana-

lyze them separately. The computational complexity for the

pretraining step is of orderO(Ltp(n
2
sp+nsp

2+n2
tp+ntp

2)),

where tp is the number of iterations, and p is the maximal

layer size out of all layers. In the model updating stage, the

updates for D
(l)
s , D

(l)
t , H

(l)
s , H

(l)
t , and J(l) are the most time-

consuming parts, leading to a computational complexity of
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order O(Ltu(n
2
sp+ nsp

2 + n2
tp+ ntp

2 + p3 + n3)), where tu
is the number of iterations in this step, and n = ns + nt.

Finally, considering ns, nt > p for the current task, the

overall computational complexity of the proposed model is

O(L((tp + tu)(n
2
sp+ nsp

2 + n2
tp+ ntp

2) + tun
3)).

4. Experimental Results

4.1. Human Motion Datasets

We conduct the comparison experiments on four typi-

cal human motion datasets (see Fig. 2 for some example

frames) as follows: • Keck Gesture Dataset (Keck) [21]

consists of 14 different actions based on military signals

with a frame size of 640 × 480. In this dataset, subjects

perform 14 gestures and actions. The videos were obtained

by using a fixed camera with the subjects standing in front

of a static and simple background. • Multi-Modal Action

Detection Dataset (MAD) [17] consists of actions captured

in multiple modalities by using a Microsoft Kinect V2 sys-

tem in RGB, depth and skeleton formats. Specifically, the

RGB frames are with the size of 240 × 320, and 3D depth

images are with the size of 240×320. Besides, each subject

performs 35 actions in two different indoor environments.

• Weizmann Dataset (Weiz) [14] consists of 90 video se-

quences, which include 10 actions (running, walking, skip-

ping, bending, etc.) performed by nine subjects in an out-

door environment. All videos have the size of 180 × 144
with 50 fps. • UT-Interaction Dataset (UT) [40] consists

of 20 videos, each of which includes six classes of human-

human interactions (e.g., punching, kicking, pushing, hug-

ging, pointing, and handshaking). All video sequences are

around 60 seconds long.

4.2. Experimental Setup

Dataset settings. Following the dataset preprocessing in

[47], we utilize the extracted HOG features [6] with a 324-

dimensional feature vector for each frame. To make seg-

mentation results comparable across different datasets, all

input videos are modified to be a sequence of 10 actions us-

ing the same settings as in [47]. In model evaluations, we

randomly select five sequences as the source data and then

report the average performance.

Compared methods. We compare the proposed model

with the following state-of-the-art methods: (1) Spectral

Clustering (SC) [33]. The features of target samples are fed

into the standard spectral clustering algorithm [33] to obtain

the clustering results. (2) K-medoids (KMD) selects target

samples as centers and clusters them using a generalization

of the Manhattan Norm to measure the distance between

points. (3) Low-Rank Representation (LRR) [29] incor-

porates a low-rank constraint on the representation coeffi-

cients. (4) Ordered Subspace Clustering (OSC) [44] takes

a temporal constraint and forces representations of the tem-

(a) Keck (b) MAD

(c) Weiz (d) UT

Figure 2: Sampling frames of four human motion datasets.

poral data to be similar. (5) Sparse Subspace Clustering

(SSC) [8] assumes that there exists a dictionary that can

represent all data points by using a sparse combination. It

also applies a sparse constraint to the representation coef-

ficients. (6) Least Square Regression (LSR) [32] utilizes

the Frobenius norm to encourage a grouping effect which

tends to cluster highly correlated data together. (7) Tem-

poral Subspace Clustering (TSC) [25] presents a temporal

Laplacian regularization and a jointly learned dictionary to

learn distinctive codes for human motion data. (8) Transfer

Subspace Segmentation (TSS) [46] utilizes auxiliary data

and transfers segmentation knowledge from a source to tar-

get dataset. (9) Low-rank Transfer Subspace (LTS) [47]

presents a novel sequential graph to preserve temporal in-

formation residing in both the source and target data.

Evaluation metrics and parameters settings. To compre-

hensively compare our proposed method with other state-

of-the-art methods, we utilize two popular metrics to evalu-

ate the segmentation quality, i.e., Normalized Mutual Infor-

mation (NMI) and Accuracy (ACC). Note that, higher val-

ues indicate better performance for the two metrics. We first

tune λ in the range of {10−5, 10−4, . . . , 102} by fixing the

other parameters, obtaining a better performance when λ =
0.1. Thus, we empirically set λ to be 0.1, and tune the pa-

rameters α, β, and γ in the range of {10−5, 10−4, . . . , 102}.

Furthermore, the number of layers for our model is set as 4,

and the correlated frame distance τ is set to 11.

4.3. Performance Comparison

In all comparison experiments, we set one sequence as

the source and another one as the target. As we use four

datasets for our evaluations, we report the segmentation re-

sults when testing on one dataset at one time, using the re-

maining three as the source domains. Besides, since SC,

KMD, LRR, OSC, SSC, and LSR are not designed to utilize

source information, we only employ target videos as input

for these methods. For the TSC, TSS, and LRT methods,

we input both source and target videos for segmentation.

The comparison segmentation results are shown in Table 1,

where bold indicates the best performance. Compared with

SC, KMD, LRR, OSC, SSC, and LRR, our method trans-

fers useful information from source data to learn distinc-

tive representations of the target data, resulting in improv-

ing the segmentation performance. Compared with trans-
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Table 1: Clustering comparison results in terms of NMI and ACC on four human motion datasets. Names in brackets indicate the source datasets. M, K,

W, and U denote MAD, Keck, Weizmann, and UT-interaction, respectively. The best clustering results are denoted in bold when using the same source data.

(a) Results on Keck dataset

Method NMI ↑ ACC ↑

SC 0.4744 0.3886

KMD 0.4702 0.3970

LRR 0.4862 0.4297

OSC 0.5931 0.4393

SSC 0.3858 0.3137

LSR 0.4548 0.4894

TSC(M) 0.6935 0.4653

TSS(M) 0.8049 0.5395

LTS(M) 0.8226 0.5509

Ours(M) 0.8270 0.6010

TSC(W) 0.6862 0.4548

TSS(W) 0.7928 0.5485

LTS(W) 0.7983 0.5649

Ours(W) 0.8196 0.5915

TSC (U) 0.6797 0.4421

TSS(U) 0.7937 0.4951

LTS(U) 0.7947 0.5519

Ours(U) 0.8120 0.6105

(b) Results on MAD dataset

Method NMI ↑ ACC ↑

SC 0.4369 0.3639

KMD 0.3914 0.3226

LRR 0.2249 0.2397

OSC 0.5589 0.4327

SSC 0.4758 0.3817

LSR 0.3667 0.3979

TSC(K) 0.7691 0.5473

TSS(K) 0.8286 0.5792

LTS(K) 0.8244 0.5874

Ours(K) 0.8099 0.6125

TSC(W) 0.8202 0.5736

TSS(W) 0.8202 0.5736

LTS(W) 0.8213 0.5906

Ours(W) 0.8307 0.6158

TSC (U) 0.7691 0.5315

TSS(U) 0.8108 0.5479

LTS(U) 0.8211 0.5980

Ours(U) 0.8314 0.6163

(c) Results on Weizman dataset

Method NMI ↑ ACC ↑

SC 0.5435 0.4127

KMD 0.5289 0.4441

LRR 0.4382 0.3638

OSC 0.7047 0.5216

SSC 0.6009 0.4576

LSR 0.5093 0.5091

TSC(K) 0.7971 0.5931

TSS(K) 0.8326 0.6030

LTS(K) 0.8599 0.6391

Ours(K) 0.8371 0.6436

TSC(M) 0.8032 0.5961

TSS(M) 0.8509 0.6208

LTS(M) 0.8579 0.6156

Ours(M) 0.8232 0.6348

TSC (U) 0.7796 0.5402

TSS(U) 0.8124 0.5865

LTS(U) 0.8267 0.6122

Ours(U) 0.8351 0.6371

(d) Results on UT dataset

Method NMI ↑ ACC ↑

SC 0.4894 0.4477

KMD 0.5108 0.5122

LRR 0.4051 0.4162

OSC 0.6877 0.5846

SSC 0.4998 0.4389

LSR 0.4322 0.5183

TSC(K) 0.7216 0.5213

TSS(K) 0.7746 0.5371

LTS(K) 0.7961 0.6127

Ours(K) 0.8121 0.6148

TSC(M) 0.7442 0.5288

TSS(M) 0.7783 0.5335

LTS(M) 0.8128 0.6299

Ours(M) 0.8239 0.6433

TSC (W) 0.7136 0.5111

TSS(W) 0.7878 0.5944

LTS(W) 0.8035 0.6296

Ours(W) 0.8198 0.6463
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Figure 3: Visualization of clustering results on a sample video of the

Keck dataset. The ten colors denote ten different temporal clusters.

fer clustering-based segmentation methods (including TSC,

TSS, and TSS), our method also obtains much better per-

formance. This is because our approach simultaneously

explores domain-invariant features and preserves domain-

specific knowledge. These two aspects are equally impor-

tant for transfer learning. Additionally, our method fuses

multi-level representations to construct the affinity matrix

for motion segmentation, which effectively preserves the

structural information from different layers.

In Fig. 3, we visualize the clustering results rendered

by our method as well as other comparison methods on

a sample video of the Keck dataset. Different colors in-

dicate different action clusters. As can be seen, the LRR

and SSC methods generate multiple fragments and cannot

achieve meaningful and accurate segmentation. This is be-

cause they do not consider the temporal information. Com-

pared with LRR and SSC, TSC performs better but it still

generates some unexpected fragments. LTS and TSS obtain

relative better performance in most cases, but they occa-

sionally generate fragments in segmentation results. Over-

all, our method obtains continuous segments and achieves

much better segmentation results than other methods.

4.4. Model Study

Parameter sensitivity. In our approach, three key regu-

larization parameters, i.e., α, β and γ, need to be manually

tuned. To investigate the effects of the three parameters on

the model output, we fix the value of one parameter and

change the other two parameters. The experimental results

on the Keck dataset are shown in Fig. 4 (a)(b)(c). From

the results, it can be observed that our proposed method ob-

tains much better NMI performance when α ∈ [0.001, 1],
β ∈ [0.001, 0.1], and γ ∈ [0.01, 1]. Moreover, the experi-

mental results also indicate that every term in our model is

useful for improving the segmentation results.

Convergence analysis. We compute the relative errors

(i.e., ‖[H
(l)
s ,H

(l)
t ]−H

(l)
s Z(l)−E(l)‖∞ and ‖W(l)−J(l)‖∞) to

demonstrate the convergence of our optimization algorithm.

We report the mean values of different layers in the two

terms, and the convergence curves on the Keck dataset are
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Figure 4: Parameter sensitivity and convergence analysis on Keck dataset. (a) Sensitivity analysis for parameters β and γ, (b) Sensitivity analysis for

parameters α and β, (c) Sensitivity analysis for parameters α and γ, and (d) Convergence curves.
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Figure 6: Performance comparison (NMI) when using representations

from different layers or multi-layer fusion.

presented in Fig. 4 (d). Note that, for a better presentation,

the errors are normalized into the range [0, 1]. As can be

observed, our model converges within about 50 iterations.

Source data analysis. To evaluate the effectiveness of

the source information for the segmentation task, we first

test the source action video (UT as an example) that con-

tains different numbers of actions, and the results on the

Keck dataset are shown in Fig. 5 (a). As can be observed,

the performance increases when the number of actions in-

creases. This indicates that the diversity of the source data

is crucial for improving the performance. More actions in

the source data can transfer much useful knowledge to en-

sure that our model learns the distinctive representation of

the target data. Besides, we utilize the frames with different

ratios (i.e., 0.1, 0.2, · · · , 1) of each action, while keeping

the number of actions to be consistent. We evaluate the per-

formance on the Keck dataset, as shown in Fig. 5 (b). The

results indicate that the performance of our model increases

when the ratio of frames increases.

Ablation study. To validate the effectiveness of fusing

the multi-level subspace representations from different fea-

ture spaces, we show the results of our method on the Keck

dataset when using the representations from the first layer,

the last layer and the fused multi-layers in Fig. 6. It can be

observed that our fusion strategy obtains much better per-

formance than conducting subspace learning only on the

representation from the first layer or the last layer. This indi-

cates the effectiveness of our model which fuses the multi-

level subspace representations for transfer learning.

5. Conclusion

We have proposed a multi-mutual consistency induced

transfer subspace learning framework for human motion

segmentation. Our model first factorizes the original fea-

tures of the source and target data into implicit multi-layer

feature spaces, in which we use a mutual consistency learn-

ing strategy to reduce the distribution difference between

the two domains. Then, we carry out the transfer sub-

space learning in multi-level feature spaces to effectively

exploit different-level structural information. Furthermore,

we present a temporal correlation preservation term to im-

prove the effectiveness of learned representations. We ob-

tain the final representation by fusing multiple subspace

representations from different layers. Experimental results

on benchmark datasets show that our method can signifi-

cantly outperform the state-of-the-art methods. In the fu-

ture, we can apply our multi-level feature representations

to other related tasks, such as multi-modal learning [58],

multi-source object detection [9], etc.
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