
Pattern-Structure Diffusion for Multi-Task Learning

Ling Zhou, Zhen Cui∗, Chunyan Xu, Zhenyu Zhang, Chaoqun Wang, Tong Zhang, Jian Yang

PCA Lab, Key Lab of Intelligent Perception and Systems for High-Dimensional

Information of Ministry of Education, School of Computer Science and Engineering,

Nanjing University of Science and Technology

Abstract

Inspired by the observation that pattern structures high-

frequently recur within intra-task also across tasks, we pro-

pose a pattern-structure diffusion (PSD) framework to mine

and propagate task-specific and task-across pattern struc-

tures in the task-level space for joint depth estimation, seg-

mentation and surface normal prediction. To represen-

t local pattern structures, we model them as small-scale

graphlets1, and propagate them in two different ways, i.e.,

intra-task and inter-task PSD. For the former, to overcome

the limit of the locality of pattern structures, we use the

high-order recursive aggregation on neighbors to multi-

plicatively increase the spread scope, so that long-distance

patterns are propagated in the intra-task space. In the inter-

task PSD, we mutually transfer the counterpart structures

corresponding to the same spatial position into the task it-

self based on the matching degree of paired pattern struc-

tures therein. Finally, the intra-task and inter-task pattern

structures are jointly diffused among the task-level patterns,

and encapsulated into an end-to-end PSD network to boost

the performance of multi-task learning. Extensive experi-

ments on two widely-used benchmarks demonstrate that our

proposed PSD is more effective and also achieves the state-

of-the-art or competitive results.

1. Introduction

Dense pixel prediction tasks, e.g., depth estimation, seg-

mentation and surface normal prediction, are fundamental

yet challenging in computer vision due to the important ap-

plications to intelligent robotic [42], automatic drive [6],

etc. Currently, numerous deep learning based methods have

obtained great success in each of three tasks. However, the

single-task models focus more on the learning of robust re-

gression, but rarely consider the interactions between tasks.

As the pixel-level tasks in scene understanding, actually,

these three tasks have some common characteristics that can
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1Graphlets are small connected subgraphs of a large graph
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Figure 1: Illustration of our main idea. For multi-task learn-

ing, we specifically design intra-task and inter-task pattern-

structure diffusion (PSD) to mine and propagate useful pat-

tern structures within/across tasks. Inter-task PSD bridges t-

wo tasks to mutually transfer pattern structures for each oth-

er through derived correlations, while intra-task PSD prop-

agates within-task patterns through high-order diffusion on

graphlets.

share with each other.

Recently joint-task learning methods [29, 55, 8, 38, 53]

have sprung up and shown a promising direction to boost

the performance through cross-task interactions. Most of

them devote to feature fusion (e.g., concatenation) or model

sharing (e.g., common network parameters) by following

the conventional fusion lines. Due to unintentional inte-

gration, these ”black-box” methods cannot concern/know

what concrete information is transmitted/interacted be-

tween multi-tasks. Ultimately, what information could be

available to bridge different tasks has not yet been well re-

vealed and utilized in the study of multi-task pixel predic-

tion.

An observation [58] is that local patch patterns high-

frequently recur within the same image, as well as different-
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scaling images. It implicitly indicates the high-degree sim-

ilarity of a large number of local pattern structures of nat-

ural images. The structures of local patterns provide some

strong cues for pixel-level predictions, where the matching

pattern structures could result in similar prediction values

with high probabilities. More importantly, this observation

can be extended into the scenes across different tasks as

shown in Fig. 1, where a large number of patches have ex-

tremely similar pattern structures at the same spatial posi-

tions. For example, the patches (red squares) at the same

positions from different tasks have similar pattern struc-

tures across depth, segmentation and surface normal. They

describe the same objects, and endow the similar informa-

tion about object shapes/boundaries. Therefore, those local

pattern-structures hidden in the image also inter-task should

be mined and utilized for pixel-level multi-task learning.

Motivated by the observation on the recurrency of pat-

tern structures within intra-task also across tasks, we pro-

pose a pattern-structure diffusion (PSD) framework to mine

and propagate task-specific and task-across pattern struc-

tures in the task-level space for joint multi-task learning

across depth estimation, segmentation and surface normal

prediction. To characterize local pattern structures, we con-

struct them as small-scale graphlets, whose topologies rep-

resent the pixel-level structure layouts while each vertex is

anchored at one pixel position. It means that the graph w.r.t

a local region encodes the correlations of pixel-level pat-

terns therein. To transmit pattern structures in the task do-

main, we construct two types of pattern-structure diffusion

process, named intra-task and inter-task PSD. For the for-

mer, to overcome the limit of locality of pattern-structure,

we propose the high-order recursive diffusion to multiplica-

tively increase the propagation scope through calculating

on the adjacent matrix. Such a recursive pattern-structure

diffusion can reduce computation burden as well as memo-

ry requirement, in contrast to direct larger-scope or global

pattern correlations. In the inter-task PSD process, we de-

rive the similarities of those paired pattern structures cor-

responding to the same spatial positions, and then mutu-

ally transfer the counterpart structures into the task itself

based on the learnt similarities. As the long-distance dif-

fusion is done in intra-task, actually, inter-task PSD could

implicitly borrow those large-scope pattern structures of the

counterpart tasks besides the task itself. Finally, the intra-

task and inter-task pattern structures are jointly diffused a-

mong the task-level patterns, and encapsulated into an end-

to-end PSD network to boost the performance of multi-task

learning. We conduct extensive experiments of joint depth,

segmentation and surface normal estimation on two public

datasets, NYUD-v2 [35], SUNRGB-D [40]. The experi-

ments demonstrate that our proposed PSD method is more

effective than those baselines and also achieves the state-of-

the-art or competitive results.

In summary, our contributions are in three aspects: i)

We propose a novel pattern-structure diffusion framework

to attempt to mine and propagate local pattern structures

in/across different task domains, ii) We propose two types

of pattern-structure diffusions, i.e., intra-task and inter-task,

where the former introduces recursive mechanism to learn

long-distance propagation, while the latter derives inter-task

correlations to transfer cross-task structures, iii) We validate

the effectiveness of our proposed PSD method and achieve

the state-of-the-art or competitive performance for depth,

segmentation and surface normal estimation on two public

multi-task learning datasets.

2. Related Work

Semantic Segmentation: With the great success of deep

learning in high-level vision tasks, numerous semantic seg-

mentation approaches [31, 33, 4, 9, 37] are beneficial from

CNNs. Long et al. [24] proposed a full convolutional neu-

ral network (FCN) for semantic segmentation which con-

duct the pixel-wise classification in an end-to-end fashion.

Later, many methods [7, 20, 31] are based on FCN. Due to

the large scale RGB-D datasets are published, some RGB-

D methods [36, 47, 13, 14] have sprung up. Besides, some

methods [44, 15] used the graph-based representation for

the problem of segmenting an image into regions. Differ-

ent from these methods, we only use RGB images as input

source and conduct semantic segmentation prediction based

on depth prediction rather than depth ground truth. Also, we

draw support from other tasks for improving the segmenta-

tion prediction.

Depth Estimation. Monocular depth estimation has

been studied for a long history, previous works on it gen-

erally utilized Markov Random Field (MRF) [3, 2]. Re-

cently, several works [45, 19, 34, 50, 38, 27, 18, 52, 57, 56]

with CNN architectures have achieved state-of-the-art re-

sults. Eigen et al. [11] first used CNN and proposed a

multi-stage network to solve the monocular depth estima-

tion. Roy et al. [39] utilized the regression forest and con-

structed shallow architectures at each tree nodes to predict

depth. Unlike these depth-only prediction methods, we pro-

pose to make use of cues from other tasks to boost depth

estimation.

Surface Normal Estimation. Own to the strong fea-

ture representation ability of deep neural networks, most

methods [30, 16, 17, 26, 48] for surface normal estima-

tion are based on deep neural networks. Eigen and Fer-

gus [14] adopt a unified coarse-to-fine hierarchical network

for depth/normal prediction. Wang et al. [46]are the first

to regularize dense geometry estimation with planar surface

information via only a single RGB image. Recently, Qi et

al. [38] proposed to use 3D geometric information for pre-

dicting surface normal and depth. In our work, our predic-

tion of surface normal is boosted by depth and segmentation
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Figure 2: The PSD network architecture for joint prediction of depth, semantic segmentation and surface normal. The whole

network is divided into a shared encoder and three task-specific decoder branches. In each branch, we first perform intra-

task PSD (Section 3.3) to transmit long-distance pattern-structure information within each task. Then cross-task pattern

structures are correlated to transfer to each other, called inter-task PSD (Section 3.4). Finally, intra-task and inter-task PSD

are encapsulated into a pattern structure diffusion layer (named PSD layer), which can be stacked in the deep mode for

pixel-level multi-task learning.

information.

Multi-task Learning. Many multi-task learning meth-

ods [1, 23, 43, 22, 53, 41, 54] have achieved great success.

Several researchers [22, 53] proposed multi-task learning

mechanisms for feature transmitting. Recently, Zhang et

al. [55] proposed to learn non-local task-specific pattern

affinities and obtain the cross-task affinities with fixed pa-

rameters for interactiveness. Our method is different from

these approaches in the following aspects: i) transmits

pattern structures across tasks rather than simple weight-

ing features, ii) mines local patch pattern structures (i.e.,

graphlets) and multiplicatively diffuses them from local to

global region, which has an incidental advantage of high-

efficient computation compared to global affinities [55], iii)

models with graph topologies versatile to different tasks.

3. Pattern-Structure Diffusion

In this section, we first overview the whole network ar-

chitecture, and then introduce the definition of local pat-

tern structure, intra-task and inter-task pattern-structure dif-

fusion respectively, finally pose the objective function con-

sisting of three different pixel-level prediction tasks.

3.1. Network Architecture

The pattern-structure diffusion is encapsulated into an

end-to-end deep network as shown in Fig. 2. The whole

network can be divided into a shared encoder and three

task-specific decoders in which pattern structures are mu-

tually propagated within intra-task also across tasks. Given

one RGB image x, the encoder produces multi-scale hierar-

chical feature maps through convolutional neural networks,

e.g., ResNet [21]. We feed the response maps from the last

convolutional layer of the encoder into each task-branch to

decode pixel-level task-related information. To produce re-

fining high-resolution predictions, we decode this convolu-

tional features into higher-resolution feature maps, and then

concatenate with the same-scale features at the encoder to

feed into a residual block to produce task-specific features.

Next, we perform pattern-structure diffusion on three

task-specific feature maps. Concretely, intra-task PSD (Sec-

tion 3.3) is first performed on the decoded features to trans-

mit long-distance context information within each task, then

inter-task PSD (Section 3.4) is used for two different tasks

to mutually absorb the counterpart structures. In order for

high-efficient PSD, we construct small graphlets on pixel-

level local pattern regions instead of the large-scale or glob-

al region, which is introduced in Section 3.2. Further, we

derive a recursive process on graphlets to propagate into

long-distance positions. For inter-task PSD, we correlate

those paired graphlets at the common position and weight-

edly transfer the structure information into the target task.

In virtue of the joint PSD on intra-task and inter-task, pat-

tern structures could be widely spread among long-range

contexts within/across the three tasks.

Repeatedly, we can continue to upscale feature maps

and perform the above decoding process to produce a high-

er feature scale of our requirement for the final pixel-level

prediction. Such a coarse-to-fine process is supervised un-

der multi-loss functions followed by a convolution predic-

tion layer at each scale, where the details are given in Sec-
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tion 3.5.

3.2. Local PatternStructure Definition

Let us denote the decoded multi-channel feature map-

s of depth, segmentation, surface normal tasks respectively

with X
Td ,XTs ,XTn ∈ R

H×W×C . Here H,W,C repre-

sent height, width and channel number respectively. We

characterize each local pattern with the pixel-level correla-

tions therein, which is named as pattern-structure. To con-

veniently illustrate the construction of the pattern-structure,

we omit the superscript T in the following description.

At each spatial position of the multi-channel feature X,

we can crop out a l × l square region and denote local

pattern as XPi
∈ R

l×l×C , where Pi means the cropped

pattern at position i. For simplification, we abuse the

notation vec(XPi
): R

l×l×C → R
l2×C , which vector-

izes the 2D spatial dimensions in the row-by-row stack-

ing way. For each local patch pattern, we construct a

graphlet GPi
= {VPi

,APi
,XPi

}, where one vertex vi ∈
VPi

corresponds to one pixel position, the adjacent matrix

APi
∈ R

l2×l2×C defines the edge-connection correlation,

and XPi
= vec(XPi

) ∈ R
l2×C is the feature matrix. For-

mally, the adjacent matrix APi
of local patch pattern is de-

fined as

[APi
]jk = exp{−

‖[vec(XPi
)]j − [vec(XPi

)]k‖
2

σ2
}, (1)

s.t. , i = 1, 2, . . . , H ×W, j, k = 1, 2, . . . , l2, (2)

where [·]j takes the j row of the input matrix, [APi
]jk

records the pattern-correlation between the position j and

k at the i-th patch pattern, and σ (σ2 = 2 as default) is an

exponential factor. The similar the patterns of node j and k
are, the larger the corresponding value in [APi

]jk is. Thus,

APi
represents the local structure, which are recurred high-

frequently and can be used for intra-task/inter-task pattern

propagation to boost the performance based on our above

observation.

As the global representation, we can collect all local

structures into an entire graph defined on feature map X,

denoted as G = {V,A,X}, where |V| = H × W is the

set of all vertices w.r.t spatial positions, X = vec(X) is the

vertorized feature map. The adjacent matrix of the whole

graph is written as

A = diag[vec(AP1
)⊺; vec(AP2

)⊺; ·; vec(AP
H2W2

)⊺], (3)

where vec(APj
): R

l2×l2×C → R
l4×C is similar to the

above definition, diag(·) is the diagonalization on block-

wise matrices. Obviously, the global matrix A is sparse be-

cause most values are zeros and only those positions w.r.t

local patches are non-zeros values. Concretely, the number

of non-zero values is l2HW ≪ H2W 2, where l ≪ H,W
is size of patch kernels. Thus, the calculation on sparse
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Figure 3: Intra-task diffusion process. A graphlet GPi
is

constructed based on a local region. The pattern struc-

turesAPi
are used to diffuse those adjacent patterns XPi

to

produce new patterns through matrix multiplication, which

then are weightedly summarized to original patterns as the

enhanced responses. This process is recursively performed

for long-distance diffusions.

matrix could be utilized to speed up in practice. The lo-

cal structures can not only benefit for high-efficient compu-

tation and low-memory requirement, but also be spread to

global region after high-order calculation as introduced in

the following section.

3.3. IntraTask PSD

The purpose of intra-task diffusion is to capture long-

distance semantic information by diffusing local patterns in

single task so as to enhance the task-specific patterns. To

reduce the influence of scales for different local structures,

we normalize the adjacent correlations in each APi
to the

sum 1, i.e.,

APi
← APi

/(1⊺APi
1), (4)

where 1 is a column vector with all values equal to 1.

In order to propagate information, we take the summa-

tion aggregation to weight the patterns of those adjacent ver-

tices, formally,

vi ←
∑

j∈N (vi)

w(vi, vj)f(vj), (5)

where the neighbor set N (vi) and the weight w(vi, vj) are

determined by the adjacent relations APi
computed above,

f denotes the feature extraction function. The intra-task

diffusion process is shown in Fig. 3. To propagate long-

distance pattern information, we can recursively iterate the

aggregation process in Eqn. (5) and spread local patterns to

more distant regions. Concretely, we formulate the recur-

sive process in the following matrix formula,

[vec(X(t+1))]i =
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[vec(X(t))]i + β ·
∑

j∈N (vi)

Aij × [vec(X(t))]j , (6)

where t = 1, · · · , T is the iterate step, and β (Here β = 0.05

as [55]) is the balance factor. In the above equation, we

take the residual connection, in which the aggregated fea-

ture is integrated with the feature of reference vertex by the

weight parameter β. For each iteration, the diffused recep-

tive field will enlarge one time. After multi-step iterations,

a local pattern can be spread into those distant regions. Due

to locality also sparsity of edge connection, the computa-

tion complexity of an iteration step depends on the edge

number, i,e., O(l2|V|C), where l2 ≪ |V|. Thus, the intra-

task diffusion with T ≪ |V| iterations has the complexity

O(l2T |V|C), which is obviously lower than the global con-

nectivity with dense edges O(|V|3C). Moreover, the mem-

ory requirement, O(l2|V|C), is relatively lower in contrast

to the global dense connection which is O(|V|2C).
Finally, intermediate features of multiple steps is collect-

ed to enhance the local patterns, which can be formulated as

[vec(X̃)]i = g(Γ([vec(X(1))]i, ·, [vec(X(T ))]i),Θ), (7)

where ’Γ’ means feature concatenation, ’g’ is a non-linear

function with the parameter Θ to be learnt, e.g., one 1 × 1
convolution layer followed by the ReLU activation unit.

Therefore, the new produced feature X̃ ensembles those lo-

cal pattern structures within different-scale receptive fields.

3.4. InterTask PSD

For the same input, the different-task pixel-level predic-

tions own the similar local pattern structures at those cor-

responding positions, which implies some latent cues to

correlate different tasks. To this end, we attempt to trans-

fer local pattern structures from one task to another task to

achieve cross-task pattern propagation. In Fig. 4, we show

the main process of inter-task pattern-structure diffusion.

Below we take segmentation as the target task, and prop-

agate the information of the other two tasks into the seg-

mentation task. Formally, we derive the pattern at the i-th
position as follows

[vec(X̃Ts)]i ← [vec(X̃Ts)]i

+ βTsd
·

∑

j∈N (vi)

ATsd

ij × [vec(X̃Ts)]j

+ βTsn
·

∑

j∈N (vi)

ATsn

ij × [vec(X̃Ts)]j , (8)

s.t. , ATsd

Pi
= ATs

Pi
⊙ATd

Pi
/F Tsd

Pi
, (9)

ATsn

Pi
= ATs

Pi
⊙ATn

Pi
/F Tsn

Pi
, (10)

where ⊙ is the element-wise product operation,

{βTsd
, βTsn

} are the balance factors, {F Tsd

Pi
, F Tsn

Pi
}

are the normal factors to constrain the sum of all elements
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Figure 4: Inter-task diffusion process. The cross-task corre-

lations (ATsd

Pi
) are defined on intra-task pattern structures

(ATs

Pi
, ATd

Pi
). According to ATsd

Pi
, local structures can be

adaptively transferred from one task to another task.

equal to 1, {ATs

Pi
,ATn

Pi
,ATd

Pi
} are the adjacent matrices of

the patch Pi for segmentation, surface normal and depth

feature maps respectively. In the above Eqns. (9) and (10),

the cross-task adjacent structures {ATsd

Pi
,ATsn

Pi
} are the

transferred structures from depth and surface normal tasks

respectively, which are adaptively regularized by weighting

structures therein. The strong weight of the edge can be

enhanced while the weak weight can be attenuated further.

In Eqn. (8), the inter-task diffusion towards to segmentation

absorbs the structure information from depth and surface

normal. As the joint learning with intra-task PSD, actually,

the inter-task diffusion also integrates the long-distance

pattern information of counterpart tasks. Similar to the

above Eqn. (7), we concatenate the diffused feature and the

original feature (i.e.,the intra-task feature) to feed into one

1 × 1 convolution layer to reduce the number of channels,

which followed by non-linear activation unit such as ReLU.

Accordingly, the transfer to other tasks follows the same

process.

3.5. Loss Function

For different tasks, we take task-specific loss function-

s. Following a state-of-the-art depth estimation algorith-

m [27], we use berHu loss for the depth supervision. As for

semantic segmentation and surface normal, cross-entropy

loss and L1 loss has been adopted respectively.

4. Experiment

4.1. Datasets

NYUD-v2. The NYUD-v2 dataset [35] is a popular

indoor-scene RGB image dataset, captured with a Microsoft

Kinect. There are only 1449 selected frames from 40 class-

es labeled for segmentation. Following the standard set-

ting [14], we use 795 images to train our model and 654

images to test the final performance. In addition, we fol-

low the method in [16, 38], randomly sampling around

12k images and generating the surface normal ground truth.
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Thus, more data can be used for training the joint depth and

surface normal model.

SUNRGB-D. The SUNRGB-D dataset [40] is a very

large and challenging dataset containing 10355 RGB-D

images of indoor scenes. These images are divided into 37

classes including wall, table, floor, etc. All these images

have both segmentation and depth labels but no surface nor-

mal labels. Therefore, we train our jointly predicting seg-

mentation and depth model with 5285 images and test on

5050 images according to the official documents.

4.2. Implementation Details

Training. We implement our proposed model on Py-

torch with double NVIDIA GeForce RTX2080Ti (12GB of

GPU memory for each). We build our framework based on

ResNet-50 [21] which is pre-trained on the ImageNet clas-

sification task [12]. Our initial learning rate is 1e-4/0.01 for

parameters of pre-trained layers and others respectively and

decay to 1e-5/0.01 during fine-tuning process. We use a mo-

mentum of 0.9 and a weight decay of 1e-4. The network is

trained on RGB images for depth, segmentation and surface

normal in an end-to-end manner. In order to further speed

up and reduce the computation and memory cost, we only

concern on the connection of the center node with others

within a local graphlet that makes the adjacent matrix more

sparse and aggregate all channels of the adjacent matrix in-

stead of taking a channel-wise calculation, i.e.,APi
∈ R

l×l.

The original frames of 640×480 pixels are center-cropped

to 416×416. To increase the diversity of data, we have tak-

en the same data augmentation strategy as [32]: scaling,

flipping, cropping and rotating. For SUN-RGBD dataset,

we train the model for 50 epochs and fine-tune it for 30 e-

pochs. For NYUD-v2 dataset, the joint depth-segmentation

model is trained for 50 epochs and fine-tuned for another 25

epochs with 12k images. As to the three-task joint model,

200 epochs are firstly taken and 100 epochs are for fine-

tuning.

Metrics. For the evaluation of depth estimation, we

follow the previous works [14, 27] and use the metric-

s including: root mean square error (RMSE), average rel-

ative error (REL), root mean square error in log space

(RMSE-Log) and the accuracy with threshold δ, where

δ ∈ {1.25, 1.252, 1.253}. For semantic segmentation, we

take the same metrics as [10, 31]: pixel accuracy (PixAcc),

mean accuracy (mAcc) and mean intersection over union

(mIoU). As for surface normal, we use the following met-

rics: mean of angle error (Mean), medians of the angle error

(Median), root mean square error for normal (Nor-RMSE),

and pixel accuracy as percentage of pixels with angle error

below threshold η, where η ∈ {11.25◦, 22.50◦, 30◦}.

4.3. Comparison with the StateoftheArts

In this section, we compare our proposed method with

various state-of-the-art methods for depth estimation, se-

mantic segmentation and surface normal respectively. In

each experiment, we set node number = 9 (i.e., region size

= 3×3) and the iteration step is 9. All the following exper-

iments adopt ResNet-50 as backbone.

Semantic segmentation. The comparisons of seman-

tic segmentation are made on widely-used NYUD-v2 and

SUNRGB-D dataset. The superior or competitive compari-

son results on NYUD-v2 dataset are shown in Table 1. Note

that here most methods are RGB-D methods which directly

take depth map as a source of input. Conversely, our model

trained for three tasks only takes 795 RGB images as input

which achieves the best PixAcc (outperform TRL [53] by

0.8%) and mIoU (outperform D-CNN [47] by 2.6%) but s-

lightly poor in mAcc than D-CNN [47]. This may due to

imperfect depth predictions. Although our PSD can obtain

impressive depth estimation results, the predictions are stil-

l not as precise as ground truth which results in negative

effects on the segmentation predictions. For SUNRGB-D

dataset, we train our model for depth and segmentation. As

illustrated in Table 2, we can observe that our method is

slightly weaker than RDF-ResNet152 [36] on mAcc but su-

perior on PixAcc and mIoU. This is may due to the afore-

mentioned reason as well. Meanwhile, RDF-ResNet152 us-

es stronger network backbone than ours with ResNet-50.

Quantitative results are shown in Fig. 5. All these results

demonstrate that our PSD can boost segmentation via infor-

mation from other tasks.

Depth estimation. We mainly compare the proposed

PSD with state-of-the-arts for depth estimation on NYUD-

v2 dataset. As illustrated in Table 3, our model trained

jointly for three tasks (PSD-Td+Ts+Tn) is able to deliver

comparable results against previous state-of-the-art meth-

ods though only using 795 images for training. As to the

model trained jointly for depth and normal (PSD-Td+Tn)

with more data (12k images), the performance gets better

and achieves the best on most metrics except REL and δ1.

Actually, AdaD-S [34] and DORN [18] use large scale data

(120k/100k images) for training which is highly beneficial

for the model. As quantitative results are shown in Fig. 6,

the predictions are more precise which demonstrates that

the performance of our proposed PSD is superior.

Surface normal. We mainly evaluate our method for

surface normal prediction on NYUD-v2 dataset. The result-

s are listed in Table 4. Our PSD consistently outperforms

previous approaches on most metrics except η3 = 30◦. The

results well indicate PSD can utilize the task-specific and

cross-task correlations for improving the current task per-

formance. Quantitative results are shown in Fig. 7 from

which we can find that predictions of our PSD are better

and contain more details.
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Table 1: Comparisons with state-of-the-art semantic seg-

mentation approaches on NYUD-v2 dataset

Method data PixAcc mAcc mIoU

FCN [24] RGB 60.0 49.2 29.2

Lin et al. [32] RGB 70.0 53.6 40.6

Mousavian et al. [33] RGB 68.6 52.3 39.2

TRL [53] RGB 76.2 56.3 46.4

RefineNet [31] RGB 72.8 57.8 44.9

3DGNN [37] RGBD - 55.7 43.1

RDFNet-ResNet50 [36] RGBD 74.8 60.4 47.7

Cheng et al. [10] RGBD 71.9 60.7 45.9

Deng et al. [13] RGBD 63.8 - 31.5

Eigen & Fergus [14] RGBD 65.6 45.1 34.1

D-CNN [47] RGBD - 61.1 48.4

PSD-ResNet50 RGB 77.0 58.6 51.0

Table 2: Comparisons with state-of-the-art semantic seg-

mentation approaches on SUNRGB-D dataset

Method data PixAcc mAcc mIoU

SegNet [4] RGB 72.6 44.8 31.8

Lin et al. [32] RGB 78.4 53.4 42.3

Bayesian-SegNet [25] RGB 71.2 45.9 30.7

RefineNet [31] RGB 80.4 57.8 45.7

TRL [53] RGB 83.6 58.9 50.3

PAP [55] RGB 83.8 58.4 50.5

Cheng et al. [10] RGBD - 58.0 -

3DGNN [37] RGBD - 57.0 45.9

D-CNN [47] RGBD - 53.5 42.0

RDF-ResNet152 [36] RGBD 81.5 60.1 47.7

PSD-ResNet50 RGB 84.0 57.3 50.6

(a)

(b) 

(c)

Figure 5: Visual results of semantic segmentation on

SUNRGB-D dataset. (a) original RGB images; (b) ground

truth; (c) our predictions

Table 3: Comparisons with state-of-the-art depth estimation

approaches on NYUD-v2 dataset

Method data
Lower is better Higher is better

RMSE REL RMSE-log δ1 = 1.25 δ2 = 1.252 δ3 = 1.253

PAD-Net [49] 795 0.582 0.120 - 0.817 0.954 0.987

Wang et al. [45] 795 0.745 0.220 0.262 0.605 0.890 0.970

Li et al. [29] 795 0.821 0.232 - 0.621 0.886 0.968

Xu et al. [51] 795 0.593 0.125 - 0.806 0.952 0.986

Lee et al. [28] 795 0.538 0.148 0.180 0.837 0.971 0.994

PAP [55] 795 0.530 0.142 0.190 0.818 0.957 0.988

Eigen et al. [11] 120k 0.877 0.214 0.285 0.611 0.887 0.971

Eigen & Fergus [14] 120k 0.641 0.158 0.214 0.769 0.950 0.988

DORN [18] 120k 0.509 0.115 - 0.828 0.965 0.992

AdaD-S [34] 100k 0.506 0.114 - 0.856 0.966 0.991

Multu-scale CRF [50] 95k 0.586 0.121 - 0.811 0.954 0.987

GeoNet [38] 16k 0.569 0.128 - 0.834 0.960 0.990

Laina et al. [27] 12k 0.573 0.127 0.194 0.811 0.953 0.988

TRL [53] 12k 0.501 0.144 0.181 0.815 0.962 0.992

PSD-Td+Ts+Tn 795 0.510 0.149 0.184 0.810 0.958 0.990

PSD-Td+Tn 12k 0.488 0.132 0.172 0.840 0.966 0.994

4.4. Ablation Study

In this section, we perform extensive experiments to ver-

ify the efficacy of our method. All the following exper-

（a）

（b）

（c）

（d）

Figure 6: Visual results of depth on NYUD-v2 dataset. (a)

original RGB images; (b) predictions of [51]; (c) our pre-

dictions; (d) ground truth.

Table 4: Comparisons with state-of-the-art surface normal

approaches on NYUD-V2 dataset

Method
Lower is better Higher is better

Mean Median Nor-RMSE η1 = 11.25◦ η2 = 22.5◦ η3 = 30◦

3DP [16] 35.3 31.2 - 16.4 36.6 48.2

3DP(MV) [16] 36.3 19.2 - 39.2 52.9 57.8

Eigen & Fergus [14] 23.7 15.5 - 39.2 62.0 71.1

UNFOLD [17] 35.1 19.2 - 37.6 53.3 58.9

Deep3D [48] 26.9 14.8 - 42.0 61.2 68.2

SkipNet [5] 19.8 12.0 28.2 47.9 70.0 77.8

Discr. [26] 33.5 23.1 - 27.7 49.0 58.7

SURGE [46] 20.6 12.2 - 47.3 68.9 76.6

Liao et al. [30] 19.7 12.5 - 45.8 72.1 80.6

GeoNet [38] 19.0 11.8 26.9 48.4 71.5 79.5

PSD-ResNet50 18.2 11.5 24.9 48.9 72.7 79.9

(a) (b) (c) (d) (e) (f)

Figure 7: Visual results of surface normal on NYUD-v2

dataset. (a) original RGB images; (b) predictions of [14];

(c) predictions of [5]; (d) predictions of [38]; (e) our pre-

dictions; (f) ground truth.

iments adopt ResNet-18 as backbone and are trained for

three tasks on the NYUD-v2 dataset.

Single-task versus multi-task learning. To verify the ef-

fectiveness of jointly predicting segmentation, depth and

surface normal with our PSD method, we first predict each

task separately and then jointly predict three tasks with our

intra-task and inter-task PSD. To reflect the essential com-

parisons, we conduct the experiments on a single scale ( 1
16

scale of input). As is shown in Table 5, the performance of

joint-task model outperforms the single-task model by 7.0%

totally, and each task is indeed promoted after joint learn-

ing.

Analysis on network settings. We perform a series of ex-

periments to evaluate the influence of each module in our
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Table 5: Results of single-task versus multi-task learning

Settins mIoU RMSE Nor-RMSE

Sementation only 42.4 - -

Depth only - 0.572 -

Surface normal only - - 29.0

Three task jointly 44.9 0.548 26.9

Table 6: Analysis on network settings on NYUD-v2 dataset

Model mIoU RMSE Nor-RMSE

baseline 40.9 0.585 29.2

naive fusion 42.1 0.576 28.7

cross-stitch [22] 43.4 0.554 28.4

+ intra-task PSD 42.2 0.578 28.3

+ inter-task PSD 43.1 0.565 27.8

+ intra&inter-task PSD on small scale 44.9 0.548 26.9

+ intra&inter-task PSD on middle scale 46.3 0.534 26.6

+ intra&inter-task PSD on big scale 47.2 0.526 26.1

+ intra&inter-task PSD on all scales 50.0 0.498 25.8

（a） （b） （c） （d） （e） （f）

Figure 8: Visualization of response maps. (a) original RGB

image; (b) baseline; (c) naive fusion; (d) intra-task PSD; (e)

inter-task PSD; (f) intra&inter-task PSD on middle scale

proposed network. As shown in Table 6, the first five rows

show results of experiments conducted on 1
16 scale of the

input. The baseline denotes the model jointly trained on

three tasks without any interactiveness. We also compare

two feature-fusion approaches under the same settings, i.e.,

naive fusion and cross-stitch [22]. The former directly

concatenates cross-task features. The latter adds the cross-

stitch unit to baseline. We can observe that both perfor-

mances are poorer than ours. The reason behind it should

be that, these two methods just combine features, but not

mine/utilize pattern structures. Next, we add intra-task or

inter-task PSD to baseline. The performance improvemen-

t indicates the benefit of each module. Further, we study

the influence of different scales. The results are reported in

the last four rows of Table 6. The larger scale results in a

better performance, because the finer patterns at larger scale

can be decoded to better estimate pixel-level subtle informa-

tion. In addition, we show some qualitative visual results in

Fig. 8. We can find that both intra-task and inter-task PSD

can well boost pixel-level semantic understanding.

Analysis on graphlet size. Here we perform experi-

ments to investigate the influence of graphlet size (i.e., the

node number). From Fig. 9, we can observe that the perfor-
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Figure 9: (a) RMSE (left axis, lower the better) and Nor-

RMSE (right axis, lower the better) and (b) mIoU (higher

the better) of PSD w.r.t graphlet size; (c) RMSE and Nor-

RMSE and (d) mIoU of PSD w.r.t iteration numbers.

mance becomes better as the graphlet size increases, then

reaches the best at the size of 25. The reason should be two

folds: i) as the graphlet size increases, more pattern struc-

tures will be diffused which makes the correlations become

more complicated and is more sensitive to feature response,

ii) to some extend, some details may be fuzzed up as the

diffused receptive field becomes larger. In addition, the size

of 25 brings limited improvements over size of 9 while cost

heavier memory and computation, which can be seen as a

trade-off.

Analysis on the iteration number of diffusion. In Fig. 9,

we show the results of different iteration numbers. Here

we set intra-task and inter-task PSD only on the 1
16 scale

of input with the graphlet size 9. We can observe that the

performance increases at first and tends to saturate when

the iteration number is 9. It reveals that the model can cap-

ture longer distance correlations as the iteration number in-

creases. Nevertheless, transmitting too long-distance pat-

terns might bring negative impacts for the current region

pattern to a certain extent. This reason might be that, in the

pixel-level prediction task, each pixel highly depends on its

neighbours instead of too far away pixels unless the similar

pattern structures.

5. Conclusion

In this paper, we proposed the pattern-structure diffu-

sion (PSD) framework for multi-task learning. Two types of

pattern-structure diffusion stage were designed to effective-

ly mine and propagate the relationships within/across tasks.

In virtue of these two PSD strategies, the interactions across

tasks can be connected with pattern-structures as well as the

correlations. Besides, graphlets are utilized to model the

pattern-structures which can bring the additional benefit of

low computation and memory burden. Finally, all these dif-

fusion models were capsulated into a PSD layer, which can

be flexible to be incorporated those general deep networks.

Extensive experiments verified we can benefit from pattern-

structure diffusion for joint prediction of depth, segmenta-

tion and surface normal. In the future, we may generalize

our method to other tasks in computer vision.
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