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Figure 1: The rotated faces synthesized by our approach on CelebA-HQ dataset. The first row is the input and the

second row is our result. It can be observed that our unsupervised framework produces near photo-realistic results even under

extreme poses and expressions.

Abstract

Though face rotation has achieved rapid progress in re-

cent years, the lack of high-quality paired training data

remains a great hurdle for existing methods. The current

generative models heavily rely on datasets with multi-view

images of the same person. Thus, their generated results

are restricted by the scale and domain of the data source.

To overcome these challenges, we propose a novel unsu-

pervised framework that can synthesize photo-realistic ro-

tated faces using only single-view image collections in the

wild. Our key insight is that rotating faces in the 3D space

back and forth, and re-rendering them to the 2D plane can

serve as a strong self-supervision. We leverage the recent

advances in 3D face modeling and high-resolution GAN to

constitute our building blocks. Since the 3D rotation-and-

render on faces can be applied to arbitrary angles with-

out losing details, our approach is extremely suitable for

in-the-wild scenarios (i.e. no paired data are available),

where existing methods fall short. Extensive experiments

demonstrate that our approach has superior synthesis qual-

ity as well as identity preservation over the state-of-the-

art methods, across a wide range of poses and domains.

∗Equal contribution.
†Corresponding author.

Furthermore, we validate that our rotate-and-render frame-

work naturally can act as an effective data augmentation

engine for boosting modern face recognition systems even

on strong baseline models1.

1. Introduction

Face rotation, or more generally speaking multi-view

face synthesis, has long been a topic of great research in-

terests, due to its wide applications in computer graphics,

augmented reality and particularly, face recognition. It is

also an ill-posed task with inherent ambiguity that can not

be well solved by existing methods. Traditionally, this prob-

lem is addressed by using 3D models such as 3DMM [1].

A common challenge here is that invisible areas would ap-

pear when rotating a 3D-fitted face. Previous researchers

propose to solve this problem through symmetric editing

and invisible region filling [48]. However, this filling pro-

cess usually introduces visible artifacts which lead to non-

realistic results.

With the rapid progress of deep learning and generative

adversarial networks (GANs), reconstruction-based meth-

ods have been widely applied to face frontalization and ro-

1Code and models are available at: https://github.com/

Hangz-nju-cuhk/Rotate-and-Render.

5911



tation [42, 14, 33, 12, 32]. Due to the information loss

when encoding the given face to bottleneck embeddings,

reconstruction-based methods often suffer from the loss of

local details such as known facial textures and shapes. It

further leads to the confusion of identity information. More-

over, the most notable drawback of existing reconstruction-

based methods is that multi-view data of the same person

has to be provided as direct supervisions in most cases. To

this end, the datasets used for training are constraint to ones

in controlled environments such as Multi-PIE [7], and syn-

thetic ones such as 300W-LP [48]. Models trained on con-

trolled datasets can only generate results within a specific

domain, lacking the desired generalization ability. Also,

their generated resolutions are normally limited to under

128× 128, far from perceptually satisfying.

To overcome these challenges, we propose a novel un-

supervised framework that can synthesize photorealistic ro-

tated faces using only single-view image collections in the

wild, and can achieve arbitrary-angle face rotation. While

details and ID information tend to degrade during the en-

coding process of 2D-based methods, we propose to keep

as much known information about the given face as possi-

ble with 3D model.

Our key insight is that rotating faces in the 3D space

back and forth, and re-rendering them to the 2D plane

can serve as a strong self-supervision. We take the advan-

tage of both 3D face modeling and GANs by using off-the-

shelf 3D-fitting network 3DDFA [49] and the neural ren-

derer [18]. Invisible parts would appear to one fixed 2D

view when a face is rotated from one pose to another. While

previous methods require both images to form an {input,

ground truth} pair, we use the self-supervision of one sin-

gle image. The key is to create and then eliminate the ar-

tifacts caused by rotations. Given one face at pose Pa, we

rotate its 3D-mesh firstly to another arbitrary pose Pb, and

render it to the 2D space to get a 2D-rendered image Rdb.

Then we rotate it back to its original position and render

it to be Rda′ using textures extracted from Rdb. Finally,

we use an image-to-image translation network to fill the in-

visible parts and map the rendered image to real image do-

main. The overview of our pipeline is shown in Fig. 2. In

this way, existing local texture information can be preserved

while GAN is responsible for fixing the occluded parts. As

the whole pipeline rotates and renders a face forward and

backward, we term it Rotate-and-Render framework.

Remarkably, our proposed framework does not rely on

paired data or any kind of label, thus any face image can be

used as our training source. With unlimited training data,

our model can be leveraged to boost large-scale face recog-

nition, providing augmentations and alignments for profile

faces. While previous methods are often evaluated on small

datasets with moderate baselines, we validate the effective-

ness of our approach for large-scale face recognition on
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Rd𝑎𝑎′
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Figure 2: Overview of our unsupervised face rotation

framework from only single-view image collections. We

rotate the 3D-mesh firstly to an arbitrary pose Pb, and ren-

der it to the 2D space to get a 2D-rendered image Rdb. Then

we rotate it back to its original position Pa and render it to

be Rda′ using textures extracted from Rdb. Finally we use

an render-to-image translation network to fill the invisible

parts and map the rendered image to real image domain.

strong baseline models.

Our contributions are summarized as follows: 1) We

propose a novel Rotate-and-Render framework for train-

ing face rotation in a fully unsupervised manner under in-

the-wild scenarios. No paired data or any label is needed.

2) We convert incomplete rendered images to real images

using an image-to-image translation network, with which

photo-realistic face rotation results can be generated. 3) We

validate that our generation results benefit large-scale face

recognition even on strong baseline models.

2. Related Work

2.1. Face Rotation and MultiView Synthesis

The problem of face rotation aims to synthesize multi-

view faces given a single face image regardless of its view-

point. Among all views, the frontal view particularly at-

tracts much more research interests. Traditionally, this

problem is tackled by building 3D models and warping tex-

tures on 3D or 2D [9, 48]. OpenGL can also be used to

also easier cases [24]. However, their synthesized results

are usually blurry and not photorealistic.

Reconstruction-based Methods. Recently, with

the progress of deep learning [22] and GANs [6],

reconstruction-based models have revolutionized the

field of face frontalization [33, 14, 12, 34, 29, 30]. DR-

GAN [33, 34], for the first time, adopts GAN to generate

frontal faces with an encoder-decoder architecture. Al-

though they do not use multi-view data, the generated

results are not satisfying and have perceptually-visible

artifacts. Then TP-GAN [14] utilizes global and local

networks together with a multi-task learning strategy to
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frontalize faces. CAPG-GAN [12] uses face heatmap to

guide the generation of multi-view faces. Most of the

methods are trained on Multi-PIE dataset, which makes

them overfit the dataset’s environment and cannot general-

ize well to unseen data. Even FNM [30] which proposes

to combine both labeled and unlabeled data can only

normalize faces to a standard MultiPIE-like frontal-view.

The common shortcoming that almost all of them share is

the requirement of paired multi-view training data.

3D Geometry-based Methods. Several attempts have been

made to incorporate 3D prior knowledge into GAN-based

frontalization pipeline. FF-GAN [44] proposes to integrate

the regression of 3DMM coefficients into the network and

employ them for generation. But its generation results are

of low-quality. UV-GAN [3] proposes to complete UV-map

using image-to-image translation, which is similar to our

work. However, their pipeline requires high precision 3D

fitting and ground-truth UV-maps, which are both difficult

to obtain. Besides, their generated results are not photore-

alistic under in-the-wild scenarios. Recently, HF-PIM [2]

achieves high-quality face frontalization results using fa-

cial texture map and correspondence fields. However, their

method also requires paired data for training. In this work,

our proposed approach not only gets rid of the requirement

for paired training data, but also has the capacity to gener-

ate high-quality results which preserve texture and identity

information.

2.2. ImagetoImage Translation

Image-to-image translation aims at translating an input

image to a corresponding output image, typically from a

different modality or domain. The core idea is to predict

pixel values directly with encoder-decoder architecture and

low-level connections. GANs are widely adopted in this

field [16, 47, 35, 26, 37, 5, 45, 43, 21, 20], since the adver-

sarial loss can alleviate the blurry issue by L1 reconstruction

loss. Pix2Pix framework [16] firstly uses image-conditional

GANs for this task. Pix2PixHD [35] used stacked structures

to produce high-quality images. Recently, SPADE [26] and

MaskGAN [20] discovers that semantic information can be

infused via conditional batch normalization to further im-

prove the results.

Cycle Consistency in Unsupervised Image-to-Image

Translation. Cycle consistency has been proven useful on

various tasks [47, 28, 38, 36], particularly for image trans-

lation without paired data. For example, CycleGAN [47]

achieves unpaired image-to-image translation, and GANi-

mation [28] proposes to generation animation without su-

pervision. Our idea shares similar intuition with cycle con-

sistency. However, The difference is that for most unpaired

translation papers, they focus on mapping across domain by

training neural networks, while our proposed Rotate-and-

Render operation is performed off-line.

Get Texture Rendering
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{V, 𝐏𝐏𝑎𝑎}

{V, 𝐏𝐏𝑎𝑎, 𝐓𝐓𝑎𝑎}
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Figure 3: The process of getting texture and rendering. 3D

points lying on the same lines will correspond to the same

texture in the 2D space. The subscript a and b are associated

with pose a and b in Fig 4.

Inpainting with GAN. After the rendering step, our tar-

get is to synthesize photorealistic images from renders with

artifacts, which is substantially a combination of image

translation and inpainting. Recently, advanced inpainting

techniques also benefit from the image-to-image translation

pipeline with GAN [27, 40, 37, 46]. Therefore we adopt

the recent advances in image-to-image translation to realize

render-to-image generation.

3. Our Approach

Overall Framework. Our whole face rotation framework

consists of three parts: 3D face fitting, the rotate-and-render

strategy for training data preparation, and the render-to-

image translation module. We elaborate each component

as follows.

3.1. 3D Face Modeling and Render

3D Face Fitting. Our method relies on a rough 3D para-

metric fitting of a given face, where all kinds of 3D models

and predicting methods are applicable. Here we briefly in-

troduce the notations and concepts of 3D face model we use

as an instruction for the following sections.

Given one definition of 3D face model with n vertices,

the shape prediction of a face V = [v1,v2, · · · ,vn] repre-

sents the normalized position of its vertices in the 3D space

with vi = [xi, yi, zi]
T. The projection of a 3D shape onto

the 2D image can be written as:

Π(V,P) = f ∗ pr ∗R ∗V + h2d, (1)

where Π is the projection function that maps model vertices

to their 2D positions. The matrix multiplication is denoted

by “∗”. f is the scale factor, pr is the orthographic

projection matrix, R is the rotation matrix and h2d is the

2D shift. Here we regard all the above defined projection

related parameters to be a joint representation of the face’s

relative pose P = {f,R,h2d}.
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Figure 4: Our framework for unsupervised photorealistic face rotation. Our key insight is that rotating faces in the 3D

space back and forth, and re-rendering them to the 2D plane can serve as a strong self-supervision. After two rotate-and-

render processes, we can create a rendered image Rda′ which has the artifacts of a face rotated to the position a from any

position b. So that the input image Ia itself can serve as ground truth for training. Only the Render-to-Image module needs

training during the whole process.

Acquiring Textures. Textures also play a crucial role when

transforming a complete 3D representation to 2D space.

For each vertex vi, there exists an associated texture ti =
[ri, gi, bi]

T on a colored face. We use the simplest vertical

projection to get the colors of the vertices from the original

image I. The color of each vertex can be written as :

ti = I(Π(vi,P)), (2)

where Π(vi,P) is the projected 2D coordinate of the ver-

tice vi. In this way we get all corresponding textures

T = [t1, · · · , tn]. This process can be easily depicted in

Fig 3. We refer to the whole process of getting textures uni-

formly as:

T = GetTex(I, {V,P}). (3)

The projected result Π(V,P) is irrelevant to the ver-

tices’ z coordinate due to the orthographic matrix pr. For

each position (xj , yj) on the 2D space, there might exist

multiple rotated vertices on the line {x = xj and y = yj}
in 3D space, then the same texture will be assigned to ev-

ery one of them. For all vk ∈ {v | (xj , yj) = Π(vk,P)},

only the outermost one with the largest z axis value gets the

correct texture. Its index is

Kj = argmax
k

([0, 0, 1] ∗ vk). (4)

The rest are actually invisible vertices due to occlusion in

the 2D space. We keep the wrongly acquired textures and

regard them as artifacts that we aim to deal with.

Rendering. Given a set of 3D representation of a face

{V,P,T}, rendering is to map it to the 2D space and gen-

erate an image. The rendering process is the reverse of ac-

quiring texture as depicted in Fig 3 (b). Same as equation 4,

it is known that Kj is the index of outermost vertice given

a 2D point (xj , yj). The rendered color image Rd can be

calculated as:

Rd(xj , yj) =

{

T{Kj}, ∃Kj ∈ N,

0, ∄Kj ∈ N.
(5)

Finally, we denote the whole rendering process as:

Rd = Render({V,P,T}). (6)

We use the open-sourced Neural Mesh Renderer [18] to per-

form rendering without any training.

3.2. RotateandRender Training Strategy

It can be discovered that with an accurately fitted 3D

model, our aim is to fill the invisible vertices with the cor-

rect textures for getting another view of a face. However,

existing works with similar ideas [2, 3] require ground truth

supervision from multi-view images which are difficult to

get.

Here we propose a simple strategy to create training

pairs called Rotate-and-Render (R&R) which consists of

two rotate-and-render operations. The key idea is to cre-

ate the artifacts caused by rotating occluded facial surface

to the front and eliminate them. Thus we can leverage only

self-supervision to train networks. The whole pipeline and

visualizations of each step are all illustrated in Fig 4.

Given an input image Ia, we firstly get the 3D model

parameters by a 3D-face fitting model:

{V,Pa} = Fitting(Ia), (7)
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Figure 5: Our render-to-image module. Rendered images

Rda′ and Rdb are sent into the generator G to get the results

Fa′ and Fb. Losses are conducted between generated Fa′

and the ground truth Ia through the discriminator and the

pretrained VGG network.

where a denotes the current view of this face in the 2D

space, with Pa = {f,Ra,h2d}. The textures of its ver-

tices can be acquired as:

Ta = GetTex(Ia, {V,Pa}). (8)

We then rotate the 3D representation of this face to an-

other random 2D view b by multiplying Ra with an-

other rotation matrix Rrandom to get Pb = {f,Rb,h2d}.

And we render the current 3D presentation to Rdb =
Render({V,Pb,Ta}). This completes the first rotate-and-

render operation.

Under this circumstance, another set of textures can be

acquired as:

Tb = GetTex(Rdb, {V,Pb}). (9)

We discover that the vertice set whose textures are correct

under view b is the subset of the vertice set whose textures

are correct under view a. So unlike previous works rely on a

ground truth image Ib as supervision to recover a face under

view b given view a, we propose to recover Ta regarding Tb

as input.

Specifically, we rotate the 3D position Pb back to Pa

and render it back to its original 2D position with

Rda′ = Render({V,Pa,Tb}). (10)

This Rda′ is basically a rendered image with artifacts

caused by rotating a face from view b to a in the 2D space.

In this way, we get our input/ground truth pair {Rda′ , Ia}
for training.

3.3. RendertoImage Generation

In order to eliminate the artifacts and map the rendered

images Rdb and Rda′ from the rendered domain to real

image domain, we propose the render-to-image generation

module to create Fa′ = G(Rda′) and Fb = G(Rdb) using

generator G, as shown in Fig 5.

The basic generator G is adopted from CycleGAN [47],

which is enough to handle most images in our datasets.

R&R

Rd𝑎𝑎𝑎

Rd𝑏𝑏𝑎 Rd𝑏𝑏 F𝑏𝑏

Rd𝑎𝑎′ F𝑎𝑎′

Figure 6: Illustration of the miss-alignment effect and the

results of the erosion preprocessing.

The multi-layer discriminator and perceptual loss from

Pix2PixHD [35] are borrowed directly. The loss function

of the discriminator includes the adversarial loss

LGAN(G,D) = EI[logD(Ia)] + ERd[log(1− D(G(Rda′))],
(11)

and a feature matching loss. The feature matching loss is

realized by extracting features from multiple layers of the

discriminator and regularizing the distance between input

and generated images. We use F
(i)
D (I) to denote the feature

extracted from the ith layer of the discriminator for an input

I. For total ND layers, the feature matching loss can be

written as:

LFM (G,D) =
1

ND

ND
∑

i=1

‖F
(i)
D (Ia)− F

(i)
D (G(Rda′))‖1.

(12)

Perceptual loss is achieved by using ImageNet pretrained

VGG network. It is used to regularize both the generation

results and the generated identity. The perceptual loss is

very similar to that of LFM , with the features denoted by

F
(i)
vgg , the loss function is:

Lvgg(G,D) =
1

Nvgg

Nvgg
∑

i=1

‖F (i)
vgg(Ia)− F (i)

vgg(G(Rda′))‖1.

(13)

Our full objective function can be written as:

Ltotal = LGAN + λ1LFM + λ2Lvgg. (14)

During testing, our desired output can be directly gen-

erated by assigning the target view Pc to form Rdc =
Render({V,Pc,Ta}), and send the rendered Rdc into the

trained generator G.

3.4. Building Block Details

3D Fitting Tool. Our choice of 3D face model is the 3D

Morpohable Model (3DMM) [1]. Its flattened vertice ma-

trix V can be denoted by S = [vT
1 ,v

T
2 , · · · ,v

T
n]

T. Its de-

scription of 3D faces is based on PCA:

S = S+Aidαid +Aexpαexp. (15)
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Here S is the mean shape, Aid and Aexp are the principle

axes for identities and expressions, respectively.

We use the open-sourced implementation and the

pretrained model of 3DDFA [49] for 3D face fitting. It is

a deep learning based model for regressing the parameters

[PT,αid,αexp], from a single 2D face image. Therefore

the face’s 3D shape and its relative position in 2D space

{V,P} can be predicted. Please be noted that we do not

train the 3DDFA. The usage of it is only for fast application,

and its miss-alignment on 3D shape prediction can cast

certain problems to the final results. An alternative way is

to tune the 3D model using identity labels. However, in a

fully unsupervised setting, we propose to solve it using a

novel eroding preprocessing.

Pre-Render and Erosion. Due to the inaccuracy of 3D

fitting methods, the projection of wrongly fitted vertices

sometimes lies outside the true edges of a face. When

this kind of 3D miss alignment happens, background pix-

els would be assigned to these vertices. During the rotate-

and-render process, those wrongly acquired textures will be

rendered onto the rotated Rdb (see Fig. 6 left column). How-

ever, such artifacts are difficult to create directly on Rda′ by

the rotate-and-render process, which means that they do not

exist in training input-output pairs. Thus they cannot be

handled by our generator.

The way to solve it is to pre-render the fitted 3D repre-

sentation {V,Pa,Ta} to Rda0, and erode the rendered im-

age by certain pixels. The erosion is performed basing on

the projected edge of V with an average color of all vertices.

Then texture Ta is renewed to

Ta = GetTex(erode(Rda), {V,Pa}). (16)

So that Rdb can only contain artifacts that exist in Rda′ . The

output after the erosion can be found at Fig. 6.

4. Experiments

4.1. Experimental Settings

Implementation Details. We firstly run 3DDFA across all

datasets to get the parameters {V,P} for all images. With

known V, we are able to know the facial key points and

perform alignment for faces according to their eye centers

and noses. The generator G contains 4 downsample and

upsample blocks and 9 residual blocks. Spectral Normal-

ization [23] and Batch Normalization [15] are applied to all

layers. The discriminator consists of two scales.

Our models are trained using Pytorch on 8 Tesla V100

GPUs with 16 GB memory. Two graphical cards are used

for rendering and the others for training. The time for rotat-

ing one single image is about 0.1s. The weights λ1 and λ2

are both set to 10. Please refer to our code and models for

more details.

Input

LFW-3D

HPEN

FF-GAN

Ours

Figure 7: Frontalization results with 3D-based Methods. the

first row is the input. From top to down rows are results

from: LFW-3D [9]; HPEN [48]; FF-GAN [44] and the last

is ours. The samples are selected from LFW [13].

Datasets. Using our rotate-and-render strategy, we do not

rely on any paired multi-view data or supervision, so there

is no problem of over-fitting in evaluation. Theoretically,

we have unlimited number of data for training our system.

As datasets in controlled environments are not always appli-

cable to real-world scenarios, we focus more on large-scale

in-the-wild problems.

CASIA-WebFace [41] and MS-Celeb-1M [8] are se-

lected as training sets for both our render-to-image mod-

ule and our face recognition network. Specifically, we

adopt the version named MS1MV2 cleaned in [4]. For

evaluating our boost on strong face recognition systems,

we test on the standard LFW [13], IJBA [19] which con-

tain profile faces in videos, and MegaFace 1-million Chal-

lenge [25]. MegaFace is the most challenging and wildly

applied dataset for evaluating face recognition results.

4.2. Qualitative Results

As most papers do not release their code and models,

we directly borrow the results reported from some of the

papers and perform frontalization with the corresponding

image in the reported dataset. Our results are cropped for

better visualization. It is recommended to zoom-in for a

better view. Results on CelebA-HQ [17] are shown in Fig 1

to validate that we can generate high-quality results under

extreme poses and expressions

Comparison with 3D-based methods. Fig 7 illustrates the

results of 3D-based methods and FFGAN [44], which com-

bines 3D and GAN. It can be seen from the figure that while

pure 3D methods attempt to fill the missing part with sym-

metric priors, they would create great artifacts when coming
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Input OursTP-GAN CAPG-GAN HF-PIM FNM

Figure 8: Frontalization results comparing with GAN-based

methods. The samples are selected from LFW.

to large poses. This figure is extracted from FFGAN [44].

However, FFGAN fails to rotate faces to the front fully with

serious loss of details. Our results seem much appealing

comparing to theirs.

Comparison with GAN-based methods. Fig 8 de-

picts our comparisons with GAN-based methods. TP-

GAN [14], CAPG-GAN [12], and FNM [30] are all purely

reconstruction-based methods trained on a constrained

dataset. As a consequence, the generated results lie only

in the domain where their networks are trained. This limits

their applications in the field of entertainment. Ours, on the

other hand, preserves the illumination and environment sat-

isfyingly. Besides, the results of TP-GAN [14] change the

facial shape, CAPG-GAN [12] suffers from identity change.

HF-PIM [2] is the previous state-of-the-art method. How-

ever, the results reported seem to change more details of

identity than that of ours. For example, nose and jaw shapes

on the first person (Keanu Reeves) in their results have been

changed. FNM [30] is a GAN-based method that takes both

constraint and in-the-wild data. Their results tend to gen-

erate the standard frontal face with neutral expressions in

even the same background.

Numerical Results. We have conducted an additional nu-

merical experiments on VidTIMIT dataset [31] to directly

compare frontalization results on pixel level. The multi-

view frames part is used. We select frames with yaw angle

larger than 45◦ as input and frontal face as ground truth.

We unify the scale to 128×128 to compute the PSNR. Only

open-sourced methods are used for comparison. The results

of ours, FNM [30] and CR-GAN [32] are 28.8, 27.9 and

28.2 (dB), respectively. This is only for reference because

it is almost impossible for frontalized results to match the

ground truth. However, we can still find our results outper-

form others.

4.3. Face Recognition Results

Face Recognition Settings. Normally, previous works

report face recognition results to validate the success of

Training Data Method ACC(%) AUC(%)

CASIA TP-GAN[14] 96.13 99.42

CASIA FF-GAN[44] 96.42 99.45

- CAPG-GAN[12] 99.37 99.90

- LightCNN in [2] 99.39 99.87

- HF-PIM[2] 99.41 99.92

CASIA Res18 98.77 99.90

CASIA+rot. Res18(ours) 98.95 99.91

MS1MV2 Res18 99.63 99.91

MS1MV2+rot. Res18(ours) 99.68 99.92

Table 1: Verification performance on LFW dataset. Our

method can still boost the performance on a strong baseline.

Training Data Method @FAR=.01 @FAR=.001

CASIA FF-GAN 85.2±1.0 66.3±3.3

CASIA DR-GAN 87.2±1.4 78.1±3.5

CASIA FNM[30] 93.4±0.9 83.8±2.6

- HF-PIM[2] 95.2±0.7 89.7±1.4

CASIA Res18 90.57±1.2 80.0±4.1

CASIA+rot. Res18(ours) 91.98±0.7 82.48±2.5

MS1MV2 Res18 97.28±0.6 95.39±0.9

MS1MV2+rot. Res18(ours) 97.30±0.6 95.63±0.7

Table 2: Verification performance on IJB-A dataset [19].

their identity preserving quality after frontalization. How-

ever, clear descriptions about their settings are seldom

given. Moreover, they report results on the baseline

of LightCNN [39] with different structures and baseline

scores, which are non-comparable. As a result, we will only

report their final numbers as a reference.

Meant for proposing a real-world applicable system, we

use the state-of-the-art loss function ArcFace [4] and stan-

dard ResNet18 [10] backbone which has slightly smaller

parameter size than LightCNN29 [39] for face recognition.

Both results trained on CASIA and MS1MV2 are provided.

We propose a different way of using frontalized data to

boost the performance of face recognition by augmenting

the original datasets with our 3D generated ones. Then the

networks are trained on our augmented datasets. For fair

comparison, best results are provided for baselines.

Quantitative Results. We do a comprehensive study on

the LFW datatset. The 1:1 face verification accuracy and

area-under-curve (AUC) results are reported. It can be dis-

covered that regardless of both weak (CAISA) or strong

(MS1M) baselines, augmenting the training set with our

frontalized results can boost the performance. Particularly,

HF-PIM improves less on their baseline than our proposed

method. Improvements can be found on IJB-A as listed

in Table 2 with the verification experiments conducted on

ResNet18. MultiPIE [7] is also evaluated with the same
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Angle ±30◦ ±45◦ ±60◦ ±75◦ ±90◦

Res18 100 99.7 96.0 76.4 39.0

FF-GAN[44] 92.5 89.7 85.2 77.2 61.2

TP-GAN[14] 98.1 95.4 87.7 77.4 64.6

CAPG-GAN[12] 99.6 97.3 90.3 76.4 66.1

HF-PIM[2] 100 99.9 99.1 96.4 92.3

Res18(ours) 100 100 99.7 99.3 94.4

Table 3: Rank-1 recognition rates (%) across views on

Multi-PIE dataset.

Training Data Method Id%

MS1MV2 R100 (ArcFace) 98.35

MS1MV2 R18 97.00

MS1MV2+rotate R18 97.48

MS1MV2 R50 98.26

MS1MV2+rotate R50 98.44

Table 4: Evalution on MegaFace dataset, “Id” refers to the

rank-1 face identification accuracy with 1M distractors.

settings as [14] and all works listed in Table 3. As stated

before, controlled datasets are not our focus. However, with

our strong baseline, we can improve the recognition results

on MultiPIE as well.

Finally, we conduct experiments on MegaFace dataset,

which is wildly used in the field of face recognition. How-

ever, no face frontalization paper has reported results on this

dataset. Rank-1 face identification accuracy with 1 million

distractors has been evaluated. We use the modified ver-

sion of the 18 and 50 layers ResNet introduced by the Ar-

cFace [4], and compare with their state-of-the-art result on

R100. With our rotated augmentation, we can boost the per-

formance of R50 to outperform the ArcFace R100 model,

reaching 98.44%.

4.4. Ablation Study

We train the same network with the same set of pa-

rameters and training strategy additionally without (i) the

VGG loss; (ii) using multi-scale discriminator and the fea-

ture matching loss, as they are proposed together. Instead,

we change it to the PatchGAN in the original Pix2Pix pa-

per [16]. An additional L1 loss on image level is added for

regularization.

Quantitative Results. Frechet Inception Distance

(FID) [11] is widely used to measure the distances between

generated and real image domains. The results of FID

scores are listed in Table 5. We can observe that the per-

formance reaches the best FID scores with our full model.

Qualitative Results. We show two sets of frontalization

results on the LFW dataset. It can be seen that without the

multi-scale D, it is difficult for the network to discriminate

the real domain, so the results contain certain GAN artifacts.

Input Ours w/o {MultiD} Ours w/o {VGG} Ours

Figure 9: Ablation study of frontalization results.

Approach \ Dataset LFW IJB-A

Ours w/o {VGG} 93.1 126.5

Ours w/o {MultiD} 83.9 132.3

Ours 83.1 70.9

Table 5: Ablation study on loss functions with FID metric.

For FID scores, the lower the better.

Without the VGG loss, the results tend to be smooth. They

are both crucial when it comes to large poses.

Note that the modules we use are the least ones to gen-

erate reasonable results. Our method can still create visible

artifacts, but there is great potential for improvements.

5. Conclusion

In this work, we take the advantage of 3D face priors

and propose a novel strategy called Rotate-and-Render for

unsupervised face rotation. Our key insight is to create self-

supervision signal by rotating and rendering the roughly-

predicted 3D representation to a random pose and back to

its original place. So that self-supervision can be leveraged

to create photo-realistic results by translating rendered im-

age to real-image domain. Through comprehensive exper-

iments, the following strengths of our pipeline have been

validated: 1) No multi-view or paired-data, nor any kind

of labels, including identities are needed for training our

method. 2) Instead of purely frontalization a single-view

face can be rotated to any desired angle. 3) Near photoreal-

istic face rotation results which preserve details and illumi-

nation condition can be generated. Visualization indicates

the superiority of our method. 4) It can be used to aug-

ment face datasets and boost recognition results on large-

scale benchmarks with strong baseline models.
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