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Abstract

This paper addresses the problem of text-to-image syn-

thesis from a new perspective, i.e., the cause-and-effect

chain in image generation. Causality is a common phe-

nomenon in cooking. The dish appearance changes depend-

ing on the cooking actions and ingredients. The challenge

of synthesis is that a generated image should depict the vi-

sual result of action-on-object. This paper presents a new

network architecture, CookGAN, that mimics visual effect in

causality chain, preserves fine-grained details and progres-

sively upsamples image. Particularly, a cooking simulator

sub-network is proposed to incrementally make changes to

food images based on the interaction between ingredients

and cooking methods over a series of steps. Experiments on

Recipe1M verify that CookGAN manages to generate food

images with reasonably impressive inception score. Fur-

thermore, the images are semantically interpretable and

manipulable.

1. Introduction

Text-to-image synthesis aims to generate images from

natural language description. A generated image is expect-

ed to be photo and semantics realistic. Specifically, an im-

age should have sufficient visual details that semantically

align with the text description. Since the proposal of Gen-

erative Adversarial Network (GAN) [1], there have been nu-

merous progresses that address the issues in photo-realistic

quality [11, 18, 19, 20], and semantic consistency [17].

While both aspects emphasize image quality, an aspect be-

ing overlooked in the literature is the cause-and-effect vi-

sual scenario in image generation. For example, an image

corresponding to the text “cut chicken into dice and stir with

roasted peanuts” is hard to be generated with the curren-

t text-to-image synthesis paradigm. The reason is that the

sentence is action-oriented. The expected image details are

entities like “diced chicken” and “roasted peanuts”, and the

visual consequence of stirring both entities. The curren-

t state-of-the-art techniques that rely on mapping between

textual and visual entities cannot deal with this cause-and-

effect realistic image generation.

This paper studies recipe-to-image synthesis, specifical-

ly, to generate food image from cooking recipe. Different

from visual narrative sentences that describe the visual con-

tent expected in an image, recipes provide ingredients as

entities and cooking steps to textually instruct preparation

of a dish. The expected image is to present the final pre-

pared dish as a visual consequence over a series of cooking

steps. Note that a cooking step is not necessarily to be vi-

sually relevant. It implies a new state of ingredient entities

after the step is taken.

We propose a new network architecture, named Cook-

GAN, to address the causality effect in image generation.

Different from other GANs [18, 19, 20, 16, 23, 17], Cook-

GAN is a tailor-made GAN for food image generation. The

input to CookGAN consists of a list of words (i.e., ingredi-

ents) and a sequence of procedural descriptions (i.e., cook-

ing steps). CookGAN addresses four issues in generating

causality realistic food image. First, the network allows

explicit interaction between cooking steps and ingredients.

Second, the evolution of dish over different steps is learnt

incrementally, such that on-the-fly modification of ingredi-

ents and instructions is possible to visualize novel effect of

a dish. Third, the bundled effect of ingredient-action can be

modeled. For example, the shape of egg changes depending

on whether an action is boil, fry or steam. Fourth, the vis-

ibility and impact of ingredients to dish are learnt. For ex-

ample, “sugar” is likely non-visible, while “tomato sauce”

can significantly change the appearance of a dish.

Other than these issues, photo and semantics realistic im-

age generation are also considered. Similar in spirit as oth-

er GANs [19, 20, 16], CookGAN progressively upsamples

image from low to high resolution. The relative importance

of each ingredient to the sub-regions of a generated image

is computed for presentation of fine-grained ingredient de-

tails. The ingredients of a generated food image can also

be semantically interpreted using an existing ingredient en-

coder [13].

The main contribution of this paper is addressing causal-

ity effect in image generation. To the best of our knowledge,

there is no prior work for this problem. We contribute a nov-
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el network, CookGAN, that vividly mimics cooking process

in step-by-step learning of cause-and-effect scenario. Cook-

GAN is capable of generating photo and causality realistic

food images as demonstrated in the experiments.

2. Related Works

Conditional GAN (CGAN) [9] has pushed forward the

rapid progress of text-to-image synthesis. By employing

CGAN, Reed et al.[11] proposed a complete and standard

pipeline of text-to-image synthesis to generate images from

text descriptions. Nevertheless, the size of image is as small

as 64 × 64. To address this problem, StackGAN [18] was

proposed to generate higher resolution images in two stages.

The CGAN in first stage captures the primitive shapes and

basic colors of objects in a low-resolution image. Together

with text descriptions, the image is refined with more details

by the CGAN in the second stage.

Nevertheless, the two stages in StackGAN are learnt in-

dependently, resulting in lack of interaction between two

closely related stages. This problem is addressed by training

an end-to-end multi-stage GANs. Both StackGAN++ [19]

and HDGAN [20] adopt tree-like structure with multiple

pairs of generators and discriminators to progressively gen-

erate an image from low to high resolution. Differen-

t branches of the tree capture image distributions at various

scales of resolution. The progressive way of upsampling en-

ables a generator to inherit the mid-level features from the

previous immediate stage for effective image generation. A

limitation of these approaches, nevertheless, is that image

generation is sensitive to different ways of expressing the

meaning of a sentence. The issue of consistent semantics

was recently addressed by SDGAN [17]. Consistent high-

level semantics and diverse low-level semantics are guar-

anteed by a Siamese mechanism and semantic-conditioned

batch normalization respectively.

The aforementioned approaches take only sentence-level

features as condition. As a consequence, fine-grained im-

age details are often missing in the generated images. This

issue is addressed in AttnGAN [16] and DMGAN [23] by

further leveraging word-level features as condition. By as-

signing weights to words, AttnGAN [16] manages to gen-

erate fine-grained image details at different regions of an

image. Furthermore, the generator is trained by ensuring

cross-modal similarity between a text description and the

generated image. Similar in spirit but through a differen-

t way, DMGAN [23] employs a memory network to deter-

mine word importance based on the initial generated image.

By fusing image content and word-attended text, an image

is dynamically refined with fine-grained details.

CookGAN inherits most properties of the existing GAN-

s for text-to-image synthesis. Specifically, CookGAN is

multi-stage as [19, 20, 16] for progressive upsampling, and

emphasizes word-level condition as [16] for fine-grained

image generation. Different from these GANs, CookGAN

is designed to address causality effect. Specially, the cause-

and-effect evolution of a food image is implicitly captured

in a sequential network, while fine-grained ingredient de-

tails are explicitly modeled with attention-like network.

There are few works [4, 6, 2, 21, 10] addressing the prob-

lem of food image synthesis. In [4], rather than using recipe,

image is generated based on food style. In [6, 2], only

ingredients are exploited for food image generation while

cooking steps are ignored. PizzaGAN is proposed in [10]

to synthesize food images by learning different operators to

add, remove and cook ingredients. Different from Cook-

GAN where input is recipe, PizzaGAN relies on image-

level labels to perform stepwise generation of images mir-

roring cooking procedure. While interesting, the approach

is tailored made for pizza image generation with limited

kinds of ingredients and cooking methods being consid-

ered. Extension for dishes beyond pizza is not straightfor-

ward. The most relevant work to this paper is [21], which

trains R2GAN to generate 64 × 64 thumbnail images from

recipes. Nevertheless, the design of R2GAN is not from

the angle of causality effect, but rather to learn cross-modal

feature spaces for explainable recipe search. Specifically,

R2GAN treats ingredients and cooking steps independent-

ly and then collapses them into a feature for image gener-

ation and cross-modal learning. Different from this paper,

the issue of how the cause of a cooking step results in a

new effect for ingredients is not considered. To our best

knowledge, the high-resolution food image generation con-

sidering causality is still an unexplored problem.

3. CookGAN

3.1. Model Architecture

The architecture of CookGAN is depicted in Figure 1.

Given a recipe in text, we employ a recipe encoder,

R2GAN [21], to extract recipe features. R2GAN embeds

the features extracted from ingredients and cooking instruc-

tions respectively into a latent space compatible with food

images. As demonstrated by R2GAN , the embedded fea-

ture, denoted as ϕr, can be used to generate a thumbnail

image of resolution 64 × 64. The basic idea of CookGAN

is to progressively upsample the small-size image up to a

resolution of 256 × 256. The key component of CookGAN

is Cooking Simulator (Section 3.2), which generates cause-

and-effect visual scenario.

CookGAN contains three pairs of generators and dis-

criminators {(G0, D0), (G1, D1), (G2, D2)}. Initially, an

embedded feature ϕr is concatenated with random noise z

sampled from a Gaussian distribution Z ∼ N (0, I). The re-

sult is input to an upsampling block, which is a multi-layer

feedforward network that transforms the perturbed features

into hidden image features V0. The first generator G0 pro-
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Picnic Caviar

rice vinegar; vegetable 

oil; garlic cloves; dried 

oregano; dried basil; 

black beans; red onion; 

corn kernels…

1. Whisk together 

vinegar, oil, sugar, 

garlic, oregano, and 

basil in large bowl.

2. Stir in black and 

pinto beans, corn, 

bell pepper, onion, 

chiles, and …

3. …

Title

Ingredients

Instructions

Recipe

Ingredient 

Encoder

Instruction 

Encoder

Recipe 

Encoder

Z~N(0, 1)

D0

64×64
128×128

Upsampling

G2

D1

D2

Ingredient 

features

Instruction 

features

256×256

Recipe

features

Upsampling
Cooking

Simulator

G0

Upsampling
Cooking

Simulator

G1

Image features Image features

Ground Truth

256×256

Figure 1. The food image of a recipe is progressively upsampled from resolution of 64 × 64 to 256 × 256. The Cooking Simulator is a

tailor-made sub-network to implicitly model cause-and-effect visual change in cooking process.

duces 64 × 64 images using V0. The features V0 are also

fed into Cooking Simulator for the preparation of features

in the next round of image upsampling. The process is re-

peated for two times, where G1 and G2 generate 128 × 128

and 256 × 256 images respectively.

CookGAN learns image distributions at different scales

in an end-to-end fashion. Each generator is in charge of cap-

turing distribution at a particular scale along with a discrim-

inator to distinguish between real and fake images. Same as

vanilla GAN [1], generator and discriminator are trained in

an adversarial manner. Specifically, the three discriminators

are trained separately, each of which used for training the

corresponding generator. Meanwhile, the entire pipeline of

image generation network at different scales, including the

three upsampling blocks, generators and Cooking Simula-

tors, are trained jointly. The objective function is defined as

following:

L =

2∑

i=0

LGi
+ λLCA, (1)

where LGi
is the ith generator loss and LCA is condition-

ing augmentation [19] loss. The parameter λ is a trade-off

hyperparameter to balance the two losses.

The generator loss consists of unconditional and condi-

tional loss terms. The former loss is derived from discrim-

inator in distinguishing between real and fake images. The

latter term is to evaluate the degree-of-match between an

generated image and its embedded feature initially extract-

ed from R2GAN . The ith generator loss is defined as:

LGi
=
1

2
(Eϕr∼pr,z∼pz

[log (1−Di(Gi(ϕr, z))]
︸ ︷︷ ︸

unconditional loss

+

Eϕr∼pr,z∼pz
[log (1−Di(Gi(ϕr, z), ϕr)])

︸ ︷︷ ︸

conditional loss

.
(2)

The discriminator loss, similarly, contains two pairs of

unconditional and conditional loss terms, as following:

LDi
=−

1

2
(Exi∼pdatai

[logDi(xi)]
︸ ︷︷ ︸

unconditional loss

+

Exi∼pdatai,ϕr∼pr
[logDi(xi, ϕr)]

︸ ︷︷ ︸

conditional loss

+

Eϕr∼pr,z∼pz
[log (1−Di(Gi(ϕr, z)))]

︸ ︷︷ ︸

unconditional loss

+

Eϕr∼pr,z∼pz
[log (1−Di(Gi(ϕr, z), ϕr))]

︸ ︷︷ ︸

conditional loss

),

(3)

where xi is sampled from from the ith scale of real food

image distribution. Note that the ith discriminator is only

responsible for distinguishing between real images xi and

fake images Gi(ϕr, z) in ith scale.

Inspired by the effectiveness of conditioning augmenta-

tion in StackGAN++ [19], LCA loss is employed as a reg-

ularizer to avoid overfitting and enforce smooth sampling

from the recipe embedding manifold. To be specific, condi-

tion vectors are sampled from an independent Gaussian dis-
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Conv1×1

GRU GRU GRU

+
Residual 

Block

Ingredient features φing

Image features Vi

Image attended 

ingredient features Fiattend

Instruction features φins

Cooked features Ficook

.

f(φing)

Figure 2. Cooking Simulator prepares image attended ingredient features and “cooked” features for upsampling of food image. The GRUs

are initialized with the image attended ingredient features. At each step of cooking, a GRU cell turns the image attended ingredient features

into a new hidden state, modeling the change in ingredients as result of a cooking action.

tribution N (μ(ϕr),Σ(ϕr)), where mean μ(ϕr) and diag-

onal covariance matrix Σ(ϕr) are parameterized by recipe

features ϕr. LCA is defined as the Kullback-Leibler diver-

gence between N (μ(ϕr),Σ(ϕr)) and Gaussian distribution

N (0, I):

LCA = DKL(N (μ(ϕr),Σ(ϕr))||N (0, I)). (4)

3.2. Cooking Simulator

The intuition of Cooking Simulator is to imitate real

cooking scenario, where different cutting and cooking ac-

tions are incrementally imposed on ingredients over time.

Each action transforms some ingredients into a new form

with change in composition, color or shape. For examples,

“carrot” is cut into slice, “spaghetti” turns into black when

stir fried with “squid sauce”. The next subsequent actions

can additively make change on this form along the cooking

process.

Figure 2 depicts the network of Cooking Simulator. De-

note ϕing = {ϕingm
}Mm=1

∈ R
M×ding as a list of ingredi-

ents, where ϕingm
represents the ding-dimensional vector

of mth ingredient in the list. Furthermore, the image fea-

tures of ith scale are denoted as Vi = {vj}
C
j=1

∈ R
C×L,

where C is the channel depth and L = W ×H is the reso-

lution of a feature map. Initially, the image features Vi are

fused with the list of ingredient features ϕing to produce

image attended ingredient feature maps, where the size of

each map is C×L. The jth channel of Fiattend
is computed

by:

Fiattendj
=

M−1∑

m=0

σ(vTj · f(ϕingm))f(ϕingm), (5)

where f(·) is a 1×1 convolution to map ingredient features

to the same dimension as the ith scale hidden image features

Vi. The operator σ(·) is softmax function that outputs an at-

tention map of size L with probability values to indicate

the spatial distribution of an ingredient. Through the soft-

max function, an attention map, i.e., σ(vTj · f(ϕingm)), is

generated for each ingredient. The spatial location of the in-

gredient is attended by multiplying the map with the corre-

sponding ingredient feature f(ϕing). Equation 5 performs

weighted linear sum of the result for each ingredient to form

the jth channel image attended ingredient feature map.

Next, the cooking steps are sequentially encoded with

Gated Recurrent Unit (GRU). The GRU cell is initialized

with the image attended ingredient features Fiattend
, as

shown in Figure 2. This design aims to imitate the process

of cooking, where the ingredients are “cooked” by one step

at a time. The result of cooking in a step, i.e., the hidden

state of a GRU, is fed into the next GRU cell for subsequent

cooking actions. Denote ϕins = {ϕinsn}
N
n=1

∈ R
N×dins

as a sequence of cooking steps, where ϕinsn represents the

dins-dimensional vector of nth instruction in the sequence.

The last hidden state of GRU for jth channel of cooked fea-

ture map is formalized as:

Ficookj
= GRU(Fiattendj

, ϕins). (6)

where Ficookj
denotes the jth channel of “cooked” feature

map at ith scale. The final cooked feature maps share the

same dimension as Vi with C number of channels and size

equals to W × H . To this end, the three groups of feature

maps, Vi, Fiattend
and Ficook , are concatenated and fed into

residual blocks [3]. The transformed feature maps become

the input for next round of image upsampling.

3.3. Implementation Details

The initial embedded feature extracted from

R2GAN [21] is in 1,024 dimensions, i.e., ϕr ∈ R
1024.

The ingredient encoder employs word2vec embedding to

transform an ingredient from word into a high dimensional

vector, i.e., ϕing ∈ R
300. The instructor encoder is based

on skip-thoughts technique [8] as in [14], which encodes a

step sentence into a fixed length vector. The resulting in-

struction feature is in 1,024 dimensions, i.e., ϕins ∈ R
1024.

The channel depth of hidden image features is set to be 32

(Figure 1 and Figure 2). Inspired by PatchGAN [5, 22]
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and local adversarial image loss [20], each feature map in

the image attended ingredient features (Figure 2) is divided

into 32×32 patches. Cooking Simulator processes up to 10

cooking steps. Instructions beyond ten steps are truncated

in consideration of the computational time.

Following [19, 16], Adam solver [7] with a learning rate

of 0.0002 is adopted to train all the models. The balance

factor in Equation 1 is set to be λ = 1. All the models are

trained from scratch for 50 epochs.

4. Experiments

We validate CookGAN by visual quality assessmen-

t (Section 4.2), semantic interpretation (Section 4.3) and

content manipulatability (Section 4.4). Semantic interpre-

tation includes the three tasks: (a) ingredient recognition on

the CookGAN generated images, (b) retrieval of recipe us-

ing its generated image as query, and (c) retrieval of food

image that is prepared with the same recipe as the gener-

ated query image. Content manipulatability is to test how

a generated image reacts to change in cooking process, for

example, by adding or removing ingredients in a recipe.

4.1. Experimental Settings

Dataset. The experiments are conducted on

Recipe1M [14], which is the only publicly available

large-scale dataset with paired recipes and images. The

dataset provides 340,922 recipe-image pairs, with 70% for

training, 15% for validation and 15% for tesing. As learning

process of CookGAN for generating high resolution food

images is slow and memory consuming, only validation

set is used for model training. The R2GAN [21], which

extracts the initial stage of recipe features, is trained and

validated on the training and validation sets respectively.

The average number of instructions per recipe is 9 in

original validation set.

Evaluation Metrics. Inception score (IS) is used to e-

valuate the visual quality of generated images. As studied

in [12], IS is correlated with human perception. A higher

value of IS indicates better visual diversity and quality. We

randomly sample 30,000 recipes from the test set for im-

age generation. Comparison is made against state-of-the-art

techniques including StackGAN++ [19] and R2GAN [21].

The retrieval performance is based on median rank (MedR)

among the true positives retrieved for testing queries. A

lower value of MedR indicates better ability in retrieval.

Following [21, 14], the retrieval dataset is formed by ran-

dom sampling of 1,000 recipes from test set. All the 1,000

recipes take turn to generate images as testing queries.

4.2. Visual Quality Assessment

We compare CookGAN with StackGAN++ [19],

the state-of-the-art text-to-image synthesis method, and

R2GAN [21], a baseline that generates low-resolution im-

age. Ablation study is also conducted to compare with t-

wo different versions of CookGAN with only ingredients

(i.e., IngredientGAN) or cooking steps (i.e., StepGAN) be-

ing considered respectively. Note that, StepGAN still makes

use of ingredient information. The major difference from

CookGAN is that the input features to Residual blocks in

Cooking Simulator do not involve image attended ingre-

dient features (Fiattend
), i.e., only image features (Vi) and

cooked features (Ficook ) are used to produce images for next

round. IngredientGAN, on the other hand, skips Ficook and

leverages only Vi and Fiattend
.

The result is listed in the 2nd column of Table 1. When

comparing to the baseline, which linearly interpolates the

64 × 64 thumbnails generated by R2GAN [21] to the reso-

lution of 256 × 256, all other approaches show consistently

higher inception score (IS). Among them, CookGAN sig-

nificantly outperforms others, including StackGAN++, in a

large margin. CookGAN is more capable in modeling the

color and texture distribution of a dish when composing d-

ifferent ingredients. With reference to Figure 3, the images

simulated by CookGAN show similar pattern of ingredien-

t composition as the real sample images. Using the recipe

“Picnic Caviar” as an example, the image is correctly pre-

sented with “porn kernels” in yellow and “pinto beans” in

brown color. Furthermore, the simulated image vividly im-

itates the fuzzy composition of various ingredients in small

size, resulting in a visually and structurally similar image

as the original image. Although StackGAN++ manages to

present the colors of some ingredients in red and yellow,

the failure in simulating the original shapes and sizes of in-

gredients makes the generated image appear unnatural. In

general, StackGAN++ is incapable of handling the recipes

with relatively larger number of ingredients. The simulat-

ed images by StackGAN++ are often composed of only a

few major ingredients. Thanks to image attended ingredien-

t features, CookGAN is able to visually capture both major

and supplementary ingredients. Further with Cooking Sim-

ulator to procedurally encode instructions, these ingredients

are sometimes composed in way similar to food preparation

in real world scenario.

As shown in Table 1, the IS scores drop dramatically

when leveraging only ingredients or cooking steps. The ab-

lation studies indicate that both ingredients and cooking in-

structions play a significant role in food image generation.

On the one hand, when comparing to the case when cook-

ing steps are not considered, IngredientGAN shows much

lower IS score, drops by 11.5% compared with CookGAN.

As shown in Figure 3, despite that IngredientGAN manages

to generate images with relatively fine-grained texture pat-

tern than StackGAN++, the dish colors are monotonic and

lack of visual diversity, resulting in lower IS score. The

monotone in color appearance is due to the fact that, in the
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Method Inception score↑ MedR (I2R)↓ MedR (I2I)↓
R2GAN [21] 4.54 ± .07 500.0 476.0

StackGAN++ [19] 5.03 ± .09 144.5 147.0

IngredientGAN 4.79 ± .08 84.5 115.5

StepGAN 5.30 ± .09 77.0 123.0

CookGAN 5.41 ± .11 64.0 108.0

Table 1. Visual quality and semantics comparison in terms of inception score and median rank (MedR) respectively. “↑” indicates higher

is better and “↓” indicates lower is better.

GT

Braised Country Style Pork Ribs

canola oil; vegetable oil; country-style 

pork ribs; salt; black pepper; tomato paste; 

red wine; fish sauce…

1. Heat oil in a Dutch oven over medium-

high heat.

2. Season pork ribs with salt and pepper.

3. Working in two batches, sear the pork 

until light golden brown…

CookGAN StepGAN IngredientGAN StackGAN++

Picnic Caviar

rice vinegar; vegetable oil; garlic cloves; 

dried oregano; dried basil; black beans; 

red onion; corn kernels; pinto beans…

1. Whisk together vinegar, oil, sugar, 

garlic, oregano, and basil in large bowl.

2. Stir in black and pinto beans, corn, bell 

pepper, onion, chiles, and cilantro.

3. Season with salt and pepper…

Kir iboshi Daikon & Olive Oil Stir -Fry

kiriboshi daikon; carrot; soy beans; bacon; 

olive oil; black pepper; coarse salt.

1. Soak the kiriboshi daikon in water and 

squeeze it to remove the excess water.

2. If there is water in the canned soybeans, 

drain them well.

3. Julienne the carrots…

Recipe

Figure 3. Comparison of food images generated by CookGAN, StepGAN, IngredientGAN and StackGAN++.

design of CookGAN, the ingredients are mainly to prioritize

image regions of different important levels for upsampling.

Without Cooking Simulator that changes the appearances

of ingredients in stepwise manner, learning photo-realistic

image is ineffective.

Comparing to StepGAN, CookGAN boosts IS to 5.41

from 5.30 achieved by StepGAN. The result verifies the

advantage of attending ingredient to regions for sequential

upsampling of a small-size image to higher resolution ver-

sions. Based on the results, the image attended ingredient

features indeed help to prevent ingredients in small size and

quantity, which are usually supplementary ingredients, from

being ignored during image upsampling. As shown in Fig-

ure 3, the images generated by StepGAN cannot capture the

rich color and texture variations as in CookGAN.

4.3. Semantic Interpretation

We argue that a generated image should not only be vi-

sually appealing, but also semantically explainable. We de-

sign three tasks to measure the interpretability of generated

images.

Task 1: Ingredient recognition is to multi-label the in-

gredients in an food image. We employ the ingredient de-

coder [13] pre-trained on Recipe1M [14] for this task. Com-

parison is made between the images generated by Cook-

GAN and the real images prepared by their corresponding

recipes. Using Intersection of Union (IoU) between the pre-

dicted and ground-truth labels as a measure, both real and

synthetic images show almost the same performance of IoU

= 0.29. The result basically verifies that the CookGAN syn-

thesized images are as interpretable as the real images. Fig-

ure 4 lists the recognized ingredients of two sample images

generated by CookGAN. Not only visible ingredients, but

non-visible ingredients, such as “butter” for “Bajan sweet

bread” and “pepper” for “Spanish pisto”, can be recognized.

The result is similar to that of original image. Limited by

the accuracy of decoder, ingredients such as “chicken” and

“potato” cannot be distinguished for both real and synthetic

images. Similarly, “egg” and “baking soda”, which com-

monly appear in recipes of cookies, are falsely detected for

both kinds of images.
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GT

CookGAN

Image

sugar; butter; flour; salt; 

coconut; raisin; dried 

cherry; nutmeg; extract; 

milk; water; butter.

sugar; butter; chips; egg; 

flour; salt; baking soda; 

extract.

Ingredients Image

potato; tomato; onion; 

salt; pepper; eggplant; 

garlic; oil; zucchini; 

water.

onion; pepper; tomato; 

oil; chicken; salt.

Ingredients

Spanish PistoBajan Sweet Bread

Figure 4. Ingredient recognition results of the images generated by CookGAN. Ingredients appeared in ground truth are highlighted in red

and blue otherwise.

Query GT

Images Generated 

by CookGAN Real Images

Figure 5. Examples of using food images generated by CookGAN to retrieve real images. Ground truth images are marked with red

bounding box.

Task 2: Image-to-recipe retrieval (I2R). This is a re-

verse engineering task, where a generated image is treated

as a query to retrieve its recipe from a dataset composed

of 1K recipe-image pairs. We employ R2GAN to extrac-

t the cross-modal features of images and recipes. Recipes

are subsequently ranked in descending order of their sim-

ilarities to a query image based on cosine similarity. The

third columns of Table 1 shows the performances using im-

ages generated by different GANs. When directly using the

thumbnails generated by R2GAN for retrieval, the perfor-

mance is close to random ranking of recipes. In contrast,

by learning to progressively upsample from low-resolution

to high-resolution, all other GANs significantly boost the

performance.

Interestingly, the MedR performance is not necessarily

correlated to visual quality based on IS. While Ingredient-

GAN is lower in IS score than StackGAN++, its MedR

is better by 60 ranks. The result clearly indicates the su-

perior capability of CookGAN in encoding the semantic-

s of food than StackGAN++. StepGAN shows slight im-

provement than IngredientGAN for being capable of disam-

biguating recipes with similar ingredients but different cut-

ting and cooking methods. CookGAN, afterall, shows the

best performance among all the approaches. Nevertheless,

compared to using the original images as queries where the

MedR can be as high as 1.0 [15], there is still a performance

gap between using real and synthetic images for retrieval.

Task 3: Image-to-image retrieval (I2I). This task is to

retrieve the real food images using the generated images.

The result is listed in the 4th column of Table 1. Slight-

ly different trends of performance than I2R is observed.

Specifically, the performance of IngredientGAN is better

than StepGAN. We believe that this is due to the compo-

sition of dataset, where most of the recipes are only associ-

ated to one food image. As a consequence, when StepGAN

generates an image with visually different ingredient com-

position from the sample image in the dataset, their similar-

ity might be decreased. IngredientGAN, which merely re-

trieves similar images based on ingredient content, bypasses

the issue due to fuzzy variations in ingredient composition
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Recipe Manipulation Concrete Operation GT Before Manipulation After Manipulation

Add Ingredients + Carrot

Minus Ingredients - Carrot

Replace Ingredients Carrot lettuce

Figure 6. Examples of generated images by CookGAN with different recipe manipulation operators.

GT Before Manipulation Add Sugar Add Tomato Sauce

Scrambled Egg Paste Egg Fried Egg

(b)

(a)

Figure 7. Examples showing manipulability of CookGAN in deal-

ing with (a) visibility of ingredient, (b) different cooking actions

on an ingredient.

and hence achieves lower MedR. Figure 5 shows the top-

5 retrieved images by the queries generated by CookGAN.

The retrieved images are not only visually but also seman-

tically similar.

4.4. Content Manipulability

An advantage of CookGAN is that an image can be pro-

duced on-the-fly by incremental manipulation of a recipe,

for example, through semantically changing ingredient list.

In this section, we contrast the visual presentation of food

images when they are prepared with slightly different ingre-

dients from an original recipe. Figure 6 shows the examples

of dishes when “carrot” is added, removed or replaced by

“lettuce”. In the case of addition, it can be seen that carrot-

s (or items in orange color) are distributed throughout the

dish. On the other hand, when “carrot” is removed, the dish

becomes much less in orange color. In the case of replace-

ment, the spaghetti is changed from orange to creamy white,

and is covered with lettuce-like objects. More impressively,

CookGAN manages to learn the visibility of ingredients in

a dish. As shown in Figure 7 (a), the appearance of dish re-

mains the same when “sugar” is added. On the contrary, the

color changes when “tomato sauce” is added. Figure 7 (b)

shows examples to demonstrate the bundle effect of ingredi-

ent + action. The appearance of “egg” varies dramatically

depending on cooking method.

5. Conclusion

We have presented CookGAN for visual modeling of

causality effect. Empirical results show that CookGAN is

capable of synthesizing realistic visual scenario in depict-

ing the cause-and-effect of cooking action. Comparing to

StackGAN++, CookGAN manages to simulate proper col-

or, shape and composition of ingredients due to cooking

actions. Furthermore, CookGAN demonstrates common-

sense response to manipulation operators, including deal-

ing with transparency effect of ingredients and ingredient-

action bundle effect. Compared to real images, similar per-

formance is also reported when recognizing ingredients of

synthetic images. While encouraging, CookGAN does not

consider ingredient quantity and cooking style (e.g., home

cooked style, sweet-and-sour), which will be our future

work.
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