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Abstract

Zero-shot detection, namely, localizing both seen and

unseen objects, increasingly gains importance for large-

scale applications, with large number of object classes,

since, collecting sufficient annotated data with ground truth

bounding boxes is simply not scalable. While vanilla deep

neural networks deliver high performance for objects avail-

able during training, unseen object detection degrades sig-

nificantly. At a fundamental level, while vanilla detectors

are capable of proposing bounding boxes, which include

unseen objects, they are often incapable of assigning high-

confidence to unseen objects, due to the inherent preci-

sion/recall tradeoffs that requires rejecting background ob-

jects. We propose a novel detection algorithm “Don’t Even

Look Once (DELO),” that synthesizes visual features for un-

seen objects and augments existing training algorithms to

incorporate unseen object detection. Our proposed scheme

is evaluated on PascalVOC and MSCOCO, and we demon-

strate significant improvements in test accuracy over vanilla

and other state-of-art zero-shot detectors.

1. Introduction

While deep learning based object detection methods

have achieved impressive average precision over the last

five years [13, 35, 32, 27, 14, 33], these gains can be at-

tributed to the availability of training data in the form of

fully annotated ground-truth object bounding boxes.

Zero-Shot Detection (ZSD): The Need. As we scale

up detection to large-scale applications and “in the wild”

scenarios, the demand for bounding-box level annotations

across a large number of object classes is simply not scal-

able. Consequently, as object detection moves towards

large-scale 1 , it is imperative that we move towards a frame-

work that serves the dual role of detecting objects seen dur-

ing training as well as detecting unseen classes as and when

they appear at test-time.

1Although annotations have increased in common detection datasets

(e.g. 20 classes provided by PASCAL VOC [8]; 80 in MSCOCO [26]), the

size is substantially smaller relative to image classification [7].

Reusing Existing Detectors. Vanilla DNN detectors rele-

gate unseen objects into the background leading to missed

detection of unseen objects. To understand the root of this

issue, we note that most detectors, base their detection, on

three components, (a) proposing object bounding boxes; (b)

outputting objectness score to provide confidence for a can-

didate bounding box, and to filter out bounding boxes with

low confidence; (c) a classification score for recognizing the

object in a high-confidence bounding box.

Objectness Scores. Evidently, our empirical results sug-

gest that, of the three different components, the high miss-

detection rate of vanilla DNN detectors for unseen objects

can be attributed to (b). Indeed, (a) is less of an issue, since

existing detectors typically propose hundreds of bounding

boxes per image, which also include unseen objects, but are

later filtered out because of poor objectness scores. Finally,

(c) is also not a significant issue, since, conditioned on hav-

ing a good bounding box, the classification component per-

forms sufficiently well even for unseen objects with rates

approaching zero-shot recognition accuracy (i.e., classifica-

tion with ground-truth bounding boxes). Consequently, the

performance loss primarily stems from assigning poor con-

fidence to bounding boxes that do not contain seen objects.

On the other hand, naively modifying confidence penalty,

while improving recall, leads to poor precision, as the sys-

tem tends to assign higher confidence to bounding boxes

that are primarily part of the background as well.

Novelty. We seek to improve confidence predictions on

bounding boxes with sufficient overlap with seen and un-

seen objects, while still ensuring low confidence on bound-

ing boxes that primarily contain background. Our dilemma

is that we do not observe unseen objects during training,

even possibly as unannotated images. With this in mind,

we propose to leverage semantic vectors of unseen objects,

and construct synthetic unseen features based on a condi-

tional variational auto-encoder (CVAE). To train a confi-

dence predictor, we then propose to augment the current

training pipeline, composed of the three components out-

lined above, along with the unseen synthetic visual features.

This leads to a modified empirical objective for confidence
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prediction that seeks to assign higher confidence to bound-

ing boxes that bear similarity to the synthesized unseen

features as well as real seen features, while ensuring low

confidence on bounding boxes that primarily contain the

background. In addition, we propose a sampling scheme,

whereby during training, the proposed bounding boxes are

re-sampled so as to maintain a balance between background

and foreground objects. Our scheme is inspired by focal

loss [25], and seeks to overcome the significant foreground-

background imbalance, which tends to reduce recall, and in

particular adversely impacts unseen classification.

Evaluation. ZSD algorithms must be evaluated carefully to

properly attribute gains to the different system components.

For this reason we list four principal attributes that are es-

sential for validating performance in this context:

(a) Dataset Complexity. Datasets such as ImageNet [7] typ-

ically contain one object/image; and F-MNIST [44] in ad-

dition has a dark background. As such, detection is some-

what straightforward obviating the need to employ DNNs.

For this reason, we consider only those datasets containing

multiple objects per image such as MSCOCO [26] and Pas-

calVOC [8], where DNN detectors are required to realize

high precision.

(b) Protocol. During training we admit images that contain

only seen class objects, and filter out any image contain-

ing unseen objects (so transductive methods are omitted in

our comparison). We follow [48] and consider three sets

of evaluations: Test-seen (TS), Test-Unseen (TU) and Test-

Mix (TM). The goal of test-seen is to benchmark perfor-

mance of proposed method against vanilla detectors, which

are optimal for this task. The goal of test-unseen evaluation

is to evaluate performance when only unseen objects are

present, which is analogous to the purely zero-shot evalu-

ation in the recognition context [41]. Test-mix containing

a mixture of both seen and unseen objects typically within

the same image is the most challenging, and can be viewed

analogous to generalized zero-shot setting.

(c) High vs. Low Seen-to-Unseen Splits. The number of

objects seen during training vs. test-time determines the

efficacy of the detection algorithm. At high seen/unseen ob-

ject class ratios, evidently, gains are predominantly a func-

tion of recognition algorithm, necessitating no improvement

object bounding boxes on unseen objects. For this reason,

we experiment with a number of different splits.

(d) AP and mAP. Once a bounding box is placed around

a valid object, the task of recognition can usually be per-

formed by passing the bounding box through any ZSR algo-

rithm. As such mAP performance gain could be credited to

improvements in placing high-confidence bounding boxes

(as reflected by AP) in the right places as well as improve-

ments in ZSR algorithm. For instance, as we noted above,

high seen/unseen ratios can be attributed to improved recog-

nition. For this reason we tabulate APs for different splits.

2. Related Work

Traditional vs. Generalized ZSL (GZSL). Zero Shot

Learning (ZSL) seeks to recognize novel visual categories

that are unannotated in training data [21, 40, 22, 45]. As

such, ZSL exhibits bias towards unseen classes, and GZSL

evaluation attempts to rectify it by evaluating on both seen

and unseen objects at test-time [3, 43, 12, 17, 15, 46, 37,

47]. Our evaluation for ZSD follows GZSL focusing on

both seen and unseen objects.

Generative ZSL methods. Semantic information is a key

ingredient for transferring knowledge from seen to unseen

classes. This can be in the form of attributes [10, 21, 28, 29,

2, 5], word phrases [38, 11], etc. Such semantic data is of-

ten easier to collect and the premise of many ZSL methods

is to substitute hard to collect visual samples for semantic

data. Nevertheless, there is often a large visual-semantic

gap, which results in significant performance degradation.

Motivated by these concerns, recent works have proposed to

synthesize unseen examples by means of generative mod-

els such as autoencoders [4, 19], GANs and adversarial

methods [49, 20, 42, 16, 23, 36] that take semantic vec-

tors as input, and output images. Following their ap-

proach, we propose to similarly bridge visual-semantic gap

in ZSD through synthesizing visual features for unseen ob-

jects (since visual images are somewhat noisy).

Zero-Shot Detection. Recently, a few papers have begun

to focus attention on zero-shot detection [1, 31, 24, 30, 48].

Unfortunately, methods, datasets, protocols and splits are

all somewhat different, and the software code is not pub-

licly available to comprehensively validate against all the

methods. Nevertheless, we will highlight here some of the

differences within the context of our evaluation metric (a-d).

First, [31, 24] evaluate on Test-Unseen (TU) problem.

Analogous to ZSL vs. GZSL, optimizing for TU can in-

duce an unseen class bias resulting in poor performance on

seen. Furthermore, [1] tabulate GZSD performance (be-

cause purportedly mAP is low) only as a recall rate wrt top-

100 bounding boxes ranked according to confidence scores.

As such, there are fewer than 10 foreground objects per im-

age, this metric is difficult to justify, since 100 bounding

boxes typically includes all unseen objects. [30] proposes a

transductive approach, which while evaluates seen and un-

seen objects, leverages appearance of unseen images during

training. In contrast to these works, and like [48] we evalu-

ate our method in the full GZSD setting.

Second, methodologically these works [1, 31, 24, 30]

could be viewed as contributing to post-processing of de-

tected bounding boxes, leveraging extensions to zero-shot

recognition systems. In essence, these methods take out-

puts of existing vanilla detectors as given (region proposal

network (RPN) [31, 30, 24] or Edge-Box [1]), and take their

bounding boxes along with confidence scores as inputs into

their system. This means that their gains arise primarily
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Figure 1. (a) An illustration of seen/unseen classes and the semantic description; (b) A vanilla detector trained using seen objects only

tends to relegate the confidence score of unseen objects; (c) The proposed approach. We first train a visual feature generator by taking a

pool of visual features of foreground/background objects and their semantics with a balanced ratio. We then use it to synthesize visual

features for unseen objects; Finally we add the synthesized visual features back to the pool and re-train the confidence predictor module of

the vanilla detector. The re-trained confidence predictor can be plugged back into the detector and detect unseen objects.

from improved recognition rather than in placing bounding

boxes of high-confidence. In contrast, and like [48], we

attempt to improve localization performance by outputting

high-confidence bounding boxes for unseen objects. Never-

theless, unlike [48], who primarily utilize semantic and vi-

sual vectors of seen classes to improve confidence of bound-

ing boxes, we synthesize unseen visual features as well. As

a result, we outperform [48] in our various evaluations.

Third, there is an issue of complexity of datasets, and as

to how they are evaluated. [6] tabulates F-MNIST with clear

black backgrounds, and [31] ImageNet with only single ob-

ject/image, both of which are not informative from a detec-

tion perspective. Then, there is the issue of splits. A number

of these methods exclusively consider high seen/unseen ob-

ject class ratio splits (16/4 in [6], 177/23 in [31, 30], and

48/17 and 478/130 in [1]). Such high split ratios could be

uninformative, since we maybe in a situation where the vi-

sual features of the seen class could be quite similar to the

unseen class, resulting in placing sufficiently large number

of bounding boxes on unseen objects. This coupled with

recall@100 metric or TU evaluations could exhibit unusu-

ally high gains. Finally, AP scores are seldom tabulated,

which from our viewpoint would be informative about lo-

calization performance. In contrast, and following [48]

we consider several splits, different metrics (AP, mAP, re-

call@100) and tabulate performance on detection datasets

such as MSCOCO and PascalVOC.

3. Methodology

Problem Definition. We formally define zero-shot

detection (ZSD). A training dataset of M images with cor-

responding objects labels Dtr = {Im, {Obj(i)m }Nm

i=1}
M
m=1

is provided, where Nm is the number of objects and

{Obj(i)m }Nm

i=1 is the collection of all objects labels in the

image Im. Every object is labeled as Obj = {B, c} where

B = {x, y, w, h} is the location and the size of the bound-

ing box and c ∈ Cseen is the class label (sup-/subscript are

omitted when clear). For testing, images containing objects

from both seen (Cseen) and unseen classes (Cunseen)

are given with Cseen ∩ Cunseen = ∅). The task is to

predict the bounding box for every foreground objects.

Additionally, for training the semantic representation Sc of

all classes (c ∈ Call = Cseen∪Cunseen) are also provided.

Backbone Architecture. We use YOLOv2[34] as a base-

line. However, our proposed method can readily incor-

porate single stage detectors (SSD) or region-proposal-

network (RPN). We briefly describe YOLOv2 below.

YOLOv2 is a fully convolutional network and consists of

two modules: a feature extractor F and an object predictor.

The feature extractor is implemented by Darknet-19 [32],

which takes input image size 416×416 and outputs the con-

volutional feature maps F (Im) with size 13 × 13 × 1024.

The object predictor is implemented by a 1×1 convolutional

layer, which contains 5 bounding boxes predictors assigned

with 5 anchor boxes with predefined aspect ratios for pre-

diction diversity. Each bounding box predictor consists of

an object locator, which outputs the bonding box location

and size B̂, a confidence predictor Conf , which outputs the

objectness score pconf of the bounding box, and a classi-

fier. The objectness score is in [0, 1] and denotes the con-

fidence of whether the bounding box contains foreground

object (1) or background (0). The bounding boxes predic-

tors convolves on every cell of F (Im) and make detection

predictions for the entire image.

3.1. System Overview

The three objectives in our context are: (1) Improve bad

precision-recall for unseen objects whose confidence scores

are suppressed by detectors trained with seen classes; (2)
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Deal with background/foreground imbalance that hampers

the precision; and (3) Account for generalized ZSD perfor-

mance where both seen/unseen objects exist in the test set.

Key Idea. All of these objectives can be realized by im-

proving the confidence predictor component, whereby both

seen and unseen object bounding boxes receive higher con-

fidence while background objects are still suppressed. To

do so we retrain confidence predictor by leveraging real vi-

sual features for seen and background objects, and synthetic

features for unseen objects. We resample bounding boxes

to correct the background/foreground imbalance. Fig.1 de-

picts the four stages of the proposed pipeline:

1. Pre-training. Extract confidence predictor component

after training a stand-alone detector on training data.

2. Re-sampling. Re-sample foreground (seen objects)

and background bounding boxes in the training set so

that they are equally populated;

3. Visual Feature Generation. Train generator using the

visual features of bounding boxes in (2.) and semantic

data to synthesize visual features for unseen classes;

4. Confidence Predictor Re-training Retrain confi-

dence predictor with the real and synthetic visual fea-

tures, and plug it back into the original detector.

Following [34] we train YOLOv2 for Step 1. We describe

the other steps in the sequel.

3.2. Foreground/Background ReSampling

Our objective is to construct a collection of visual fea-

tures of (seen) foreground objects and background objects

from the training set to reflect a balanced ratio of fore-

ground/background objects. Note that the cell convolutional

feature F (Im) is an inexpensive but effective visual repre-

sentation of the bounding box proposals predicted by the

current cell. However, not all cells are suitable to repre-

sent a bounding box since a cell may only overlap with the

objects partially thus not sufficiently representative of the

desired bounding box. Therefore, the re-sampled visual fea-

ture set Dα,β
res (where α refers to the cell location and β the

bounding box index) is constructed as follows:

Foreground. For every image Im, a cell feature f is viewed

as foreground if its associated bounding box prediction B̂

has a maximum Intersection over Union (IoU) greater than

0.5 on ground truth objects collections {Obj(i)m }Nm

i=1, as well

as its confidence prediction p̂conf is higher than 0.6. The

feature f , along with its confidence score p̂conf and the

ground truth class label c of the object with maximum IoU,

will be treated as a data point (f, p̂conf , c)
2.

Background. A cell feature is viewed as background if its

maximum IoUs over all ground truth objects is smaller than

2Other than the visual features, we also record the confidence value and

the class label for reasons revealed in Sec 3.3

Conditioned VAE
Visual Consistency

Checker

Attribute
Prediction

Class
Prediction

Confidence
Prediction

Figure 2. The proposed visual feature generator model.

0.2 and the associated confidence score is lower than 0.2.

Features with top r×Km smallest maximum IoU will be se-

lected as the background data points (f, p̂conf , cbg), where

Km is the number of foreground features extracted on im-

age Im, r is the ratio of foreground/background data, and

cbg is the class label for background which we set to -1. In

our experiments, we let r = 1 to balance the background

and foreground objects.

In the sequel to avoid clutter, we omit the superscripts in

Dα,β
res and write the re-sampled visual feature set as Dres.

3.3. Visual Feature Generation

After Dres is constructed, the next step is to train a visual

feature generator to synthesize those features from their se-

mantic counterparts while minimizing information loss. In

particular, we construct our generator based on the concept

of a conditional variational auto-encoder (CVAE) [39], but

add an additional visual consistency checker component D
to provide more supervision, as shown in Fig.2. The CVAE

is conditioned on the class semantic representation Sc, con-

sisting of an encoder E and a decoder G. The encoder takes

the input as a concatenation of seen feature f and semantic

attribute Sc, and outputs the distribution of the latent vari-

able z: pE(z|f, Sc). The decoder then generates exemplar

feature f̂ given the latent random variable z and class se-

mantic Sc: f̂ = G(z, Sc). The visual consistency checker

D provides three additional supervisions on the generated

feature f̂ in addition to the reconstruction loss for CVAE:

confidence consistency, attribute consistency loss, and clas-

sification consistency as described below.

Conditional VAE. The decoder G with parameters θG, is

responsible for generating unseen exemplar features which

will be further used to retrain the confidence predictor. θG
is trained along with θE , the parameters of the encoder, by

the conditional VAE loss function as following:

ℓCVAE(θG, θE) = KL (pE(z|f, Sc)‖p(z))

− EDres
[log pG(f |z, Sc)] (1)

where the first term on right hand side is the KL divergence

between the encoder posterior and prior of latent variable

z, and the second term is the reconstruction error. Minimiz-

ing the KL divergence will enforce the conditional posterior

distribution approximates the true prior. Following [18], we

utilize an isotropic multivariate Gaussian and the reparam-

eterization trick to simplify these computations.
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Visual Consistency Checker. This component provides

multiple supervisions to encourage the generated visual fea-

tures f̂ to be consistent with the original feature f :

Confidence Consistency: The reconstructed feature f̂
should have the same confidence score as the original one,

therefore, the confidence consistency loss is defined as the

mean square error (MSE) between the confidence score of

reconstructed and original features:

ℓconf (θG) = EDres

∣

∣

∣
p̂conf − Conf(f̂)

∣

∣

∣

2

(2)

where Conf(·) refers to the confidence predictor model

whose weights is frozen here for training the visual feature

generator.

Classification Consistency: The reconstructed feature f̂
should also be discriminating enough to be recognized as

the original category. Therefore, we feed f̂ in to the clas-

sifier Clf and penalize the generator with the cross-entropy

loss:

ℓclf(θG) = EDres
[CE(Clf(f̂), c)] (3)

where c ∈ Cseen∪{−1} is the ground truth class for f , and

Clf is pretrained by cross-entropy loss on Dres and will not

be updated when training the generator. A class-weighted

cross-entropy loss can also be used here to balance the data.

Attribute Consistency: The generated feature should also be

coherent with its class semantic. We thus add an attribute

consistency loss ℓattr which back-propagates error to the

generator between the attribute predicted on f̂ and the con-

ditioned class semantic:

ℓattr(θG) = EDres

∣

∣

∣
Sc −Attr(f̂)

∣

∣

∣

2

(4)

where S−1 = 0 zero vector for background. The predictor

Attr is also pretrained on Dres and the weights are frozen

when optimizing ℓattr. Different class weights can also be

applied for the purpose of data balance because the number

of background is much larger than the other classes.

The parameters of CVAE can be end-to-end learned by

minimizing the weighted sum of the CVAE and visual con-

sistency checker loss functions:

θ∗G, θ
∗
E = arg min

θG,θE
ℓCVAE+λconf ·ℓconf+λclf ·ℓclf+λattr·ℓattr

(5)

where λ[·] are the weights for the respective loss terms.

After the CVAE is trained, we can synthesize data fea-

ture for both seen and unseen objects by feeding the corre-

sponding class attribute Sc and latent variable z randomly

sampled from the prior distribution p(z) to the decoder

G. We generate Nseen examples for every seen class and

Nunseen for every unseen class. We assume every synthe-

sized data is ground truth object and assign 1 as its target

confidence score, thus the synthesized data is constructed

as Dsyn = {f̂ , 1, c} where c ∈ Call.

3.4. Confidence Predictor ReTraining

With the collected real features Dres and the synthetic

visual features Dsyn which contains the generated visual

features of unseen classes, we are now ready to re-train

the confidence predictor Conf(·) to encourage its confi-

dence prediction on unseen objects while retaining its per-

formance on seen and background objects. Specifically,

Conf(·) is then re-trained on the combination of the ex-

tracted and synthetic features Dres ∪ Dsyn. Following the

original YOLOv2[34], MSE loss is used and the formal loss

function is defined as:

ℓ =
1

|Dres|

∑

f∈Dres

|Conf(f)− p̂conf |
2

+
1

|Dsyn|

∑

f̂∈Dsyn

|Conf(f̂)− 1|2 (6)

We load weights from pretrained YOLOv2 in the first step

(see Sec 3.1) as a warm-start. Training with loss, ℓ, en-

courages the confidence predictor to output higher scores

for unseen object features while preserving existing confi-

dences for seen objects and background.

3.5. Implementation Details

The encoder E and decoder G are both two fc-layer

networks in our CVAE model. The input size of E is

Nfeat +Nattr where Nfeat = 1024 is the feature size and

Nattr is the length of the class semantic. The output size of

E which is also the size of latent variable z, Nlatent, is set

to 50. The input size of G is Nlatent+Nattr and the hidden

layer of E and G has 128 nodes.

For the visual consistency checker, both the classifier

Clf(·) and attribute predictor Attr(·) are paramterized by

a two FC-layer networks with hidden size 256. When pre-

trained on Dres, Clf(·) is trained 5 epochs with learning rate

1e-4 and Attr(·) is trained 10 epochs with learning rate 1e-

4, respectively. We set λconf = 1, λclf = 2 and λattr = 1.

We generate Nseen = 50 examples for every seen classes

and Nunseen = 1000 for unseen.

4. Experiments

To evaluate the performance of our method, DELO,

we conduct extensive qualitative and quantitative experi-

ments. We tabulate results against other recent state-of-the-

art methods, and then perform ablative analysis to identify

important components of our system. We follow the pro-

tocol of [48], which emphasizes the need for evaluation

both seen and unseen examples at test-time. As in [48]

we consider only visual seen examples during training. In

summary, (1) Consider generalized ZSD setting and omit

results for the transductive generalized setting of [30] and

somewhat de-emphasize the purely unseen detection results

of [1, 31, 24]); (2) Consider multiple splits with various
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Figure 3. Visual examples of our ZSD results. Each triple shows: (from left to right) DELO detection results, vanilla YOLOv2 detection

results at the same confidence threshold as DELO, vanilla YOLOv2 detection results at a much smaller confidence threshold. The seen,

unseen and errors are color-coded as red, green and blue. Notice that compared to DELO, the vanilla YOLOv2 constantly predicts extremely

low objectness scores on unseen objects, and suffers from significant detection errors for those unseen objects to be detected.

Method
Pascal VOC MS COCO

split TU TS TM split TU TS TM

YOLOv2

5/15

36.6 85.6 30.0

20/20

37.3 34.5 12.3

ZS-YOLO 37.3 85.0 30.9 40.6 41.2 20.2

DELO 39.4 88.2 34.7 41.5 54.3 41.6

YOLOv2

10/10

56.4 71.6 54.3

40/20

40.8 48.7 24.6

ZS-YOLO 60.1 71.0 53.9 42.7 44.0 30.0

DELO 61.3 73.5 59.6 44.4 49.7 37.5

YOLOv2

15/5

55.3 75.3 53.6

60/20

34.9 44.8 37.6

ZS-YOLO 57.3 73.9 53.8 43.8 40.6 33.6

DELO 58.1 76.3 58.2 48.9 47.7 39.4

Table 1. Zero-shot detection evaluation results on various datasets and seen/unseen

splits. TU = Test-Unseen, TS = Test-Seen, TM = Test-Mix represents different data

configurations. Overall average precision (AP) in % is reported. The highest AP

for every setting is in bold.

Method TU TS TM

YOLOv2 56.4 71.6 54.3

BS-1 59.5 (3.1) 73.2 (1.6) 58.5 (4.2)

BS-2 60.6 (4.2) 73.4 (1.8) 59.0 (4.7)

BS-3 61.0 (4.6) 73.4 (1.8) 59.4 (5.1)

DELO 61.3 (4.9) 73.5 (1.9) 59.6 (5.3)

Table 2. Evaluation on the 10/10 split of Pascal

VOC for baseline models. TU = Test-Unseen, TS =

Test-Seen, TM = Test-Mix. Overall average preci-

sion in % is reported. The difference between orig-

inal YOLOv2 is reported in (·) and the highest dif-

ference is in bold.

seen/unseen ratios in contrast to tabulating results for single

splits with large seen/unseen ratios by [31, 1]); (3) consider

multi-object image datasets, and results for other datasets

such as F-MNIST that has clear black backgrounds as in [6]

or single objects/image such as ImageNet as in [31, 30]).

More detailed discussions can be found in Sec. 1 and Sec. 2.

Datasets. We choose Pascal VOC [9] and MSCOCO [26],

both of which are well known detection benchmarks, and

as such exhibit multiple objects per image. PascalVOC

has only 20 classes. For this reason, our goal here is to

primarily understand how performance varies with differ-

ent split ratios of seen to unseen objects (5/15, 10/10, and

15/5). MSCOCO is a larger dataset with about 80 classes

and serves the purpose of understanding performance for

fixed collection of unseen classes as the number of seen

classes increase (20, 40 to 60).

Setting. For each seen/unseen split, we evaluate our method

on three data configurations: Test-Seen (TS), Test-Unseen
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(TU), and Test-Mix (TM) [48]. For Test-seen our test im-

ages only contain objects from seen classes; test-unseen are

images that only contain unseen objects; and test-mix are

those that contain both seen and unseen objects. Test-mix

is the generalized ZSD setting and is the most challenging,

where the model needs to detect seen and unseen objects si-

multaneously. Following [48], we also use 0.5-IoU and 11

points average precision (AP) for evaluation.

Semantic Information. Following [48], we use the at-

tribute annotation from aPY [10] as the semantics on Pas-

cal VOC. The semantic vectors are obtained by averaging

the object-level attribute of all examples in the class. We

use PCA to reduce dimensions to 20 to mitigate noise. On

MSCOCO, a 25-dim word embedding w2vR proposed in

[48] is used. The semantics are re-scaled to [0, 1] on each

dimension for both Pascal and MSCOCO.

Training Details For Pascal VOC, CVAE is trained by an

Adam optimizer with a learning rate of 1e−4. On the 10/10

and 15/5 splits, we set training epochs to 60 and scale the

learning rate by 0.5 every 15 epochs. On the 5/15 split, the

training epoch is 200 and the learning rate is scaled by 0.5

every 60 epochs. On MSCOCO, the learning rate is set to

1e − 4. On 20/20 split the model is trained for 60 epochs,

while on 40/20 and 60/20 splits, the model is trained for 40

epochs. The learning rate is scaled by 0.5 every 15 epochs.

4.1. Zero Shot Detection Evaluation

Tabulating AP. We evaluate DELO on all seen/unseen

splits as well as Test-Seen/Unseen/Mix configurations (Ta-

ble 1) against vanilla YOLOv2 [34] trained in a standard

fully-supervised manner with the training partition, as well

as the state-of-the-art ZSD method ZS-YOLO [48].

Discussion Part-A.

(1) Vanilla YOLOv2 does well on Test-Seen. The state-of-

art YOLOv2 as reported in [34] are 73.4% mAP on Pascal

VOC2012 and 44.0% mAP on MSCOCO. Observe from

Table 1 that the vanilla YOLOv2 trained on seen parti-

tion achieves similar performances on Test-Seen with no

unseen objects, i.e. 85.6%, 71.6%, 75.3% for Pascal VOC

(5/15. 10/10. 15/5 split, respectively), and 34.5%, 48.7%,

44.8% for MS COCO (20/20, 40/20, 60/20 split, respec-

tively). Consequently, YOLOv2 is a strong baseline to com-

pare against particularly for test-seen. Furthermore, as we

increase the split ratio the number of seen classes increases,

and consequently, test-mix tends to favor seen class detec-

tion. For this reason we should expect vanilla YOLOv2 de-

tector to perform better in this case as well.

(2) Re-training with synthetic visual features improves

detection performance. DELO consistently outperforms

vanilla YOLOv2 and ZS-YOLO on all test configurations.

ZS-YOLO uses semantic features to train the confidence

predictor, which can be visually noisy (attributes such as

“useful”). As a result, while improving upon YOLOv2

Method
Recall@100 mAP

ZSD GZSD ZSD GZSD

SB[1] 24.4 - 0.70 -

DSES[1] 27.2 15.2 0.54 -

TD[24] 34.3 - - -

YOLOv2 24.8 (51.6) 30.8 (52.8) 5.4 9.6

DELO 33.5 (55.7) 36.6 (55.8) 7.6 13.0

Table 3. ZSD and GZSD performance evaluated with Recall@100

and mAP on MS COCO to compare with other ZSD methods. A 2-

FC classifier trained on Dsyn is appended to YOLOv2 and DELO

to conduct the full detection. The number in the parenthesis is

class-agnostic recall ignoring classification.

on Test-Unseen/-Mix, its Test-seen, performance is lower,

e.g. MS COCO 40/20 split, ZS-YOLO gets 44.0% on

Test-Seen, compared to YOLOv2’s 48.7%. In contrast,

DELO’s confidence predictor leverages visual features from

seen/unseen/background boxes. Additionally, the feature

pool is re-sampled according to a more balanced fore-

ground/background ratio. Consequently, DELO, also im-

proves Test-Seen performance, e.g. MS COCO all splits,

we see average DELO’s AP is (2.53% / 8.63% / 11.53%)

and (7.25% / 7.90% / 14.63%) better than ZS-YOLO and

YOLOv2 respectively, on Test-Unseen/Seen/Mix.

(3) DELO is robust to different seen/unseen configura-

tions. YOLOv2 and ZS-YOLO’s performance changes sig-

nificantly with large number of classes (MSCOCO). As

seen classes increases and unseen classes remain the same,

YOLOv2 realizes (12.3% / 24.6% / 37.6%) on Test-Mix;

ZS-YOLO realizes (20.2% / 30.0% / 33.6%). Compared

to these, DELO produces a much more consistent detection

performance (41.6% / 37.5% / 39.4%). On Pascal VOC,

performance of all the three models varies significantly for

different splits of Test-Mix since the dataset is of a smaller

scale and the number of unseen classes is also changing.

But DELO’s performance is still superior.

Tabulating Recall@100 and mAP. Following the protocol

in [1], we conducted a second set of experiments on MS

COCO, adopting the Recall@100 and mAP as evaluation

metrics, to baseline against [1, 24] (more details in Sec. 2).

The configurations and ZSD performance are reported in

Table 3.

Discussion Part-B.

ZSD is in essence a classification problem under the Re-

call@100 metric at high seen/unseen ratio. Observe that,

a vanilla detector, e.g. YOLOv2 in cascade with a ZSR

model (we chose a 2-FC classifier trained on Dsyn) achieves

similar performance on Recall@100 as existing ZSD meth-

ods, i.e. 24.8 (YOLOv2) compared to 24.4 (SB [1]), 27.2

(DSES [1]), 34.3 ( [24]). Fundamentally, the issue is two-

fold. First at large split ratio’s the current methods ben-

efit from unseen visual features that resemble seen exam-
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ples, and so do not require better detections. Vanilla de-

tectors that are not optimized for unseen objects are capa-

ble of localizing unseen objects. Second, the Recall@100

metric also helps in this process since 100 bounding boxes

typically contain all unseen objects at the high split ratios.

Once this is guaranteed, background boxes can be elimi-

nated based on post-processing with a zero-shot classifier

that rejects background whenever no unseen class is deemed

favorable. For this reason, we also present other metrics

such as AP in Table 1 as well as (in Table 3 within brackets)

whether bounding boxes are true objects. In addition we

see that mAP improves both under ZSD as well as the more

important GZSD setting. Finally, while TD is marginally

better on ZSD, we emphasize that it is possible to bias ZSR

models towards unseen classes when we are cognizant of

the fact that no seen classes are present [41]. Note that a

large fraction of our bounding boxes are indeed correct, and

so our lower performance can be attributed to the fact that

we did not fine tune our ZSR model.

4.2. Ablative Analysis

Contribution of visual consistency checker. The visual

consistency checker D in our generative model provides

more supervision to the decoder to encourage it gener-

ates better exemplar features. To measure the contribu-

tion of each components in the visual consistency checker,

we compare with three baselines: (1) BS-1: the entire vi-

sual consistency checker D is removed, the model is thus

reduced to a standard CVAE and trained only by ℓCVAE.

(2) BS-2: only the confidence predictor is used in the

visual consistency checker and the model is trained by

ℓCVAE + λconf · ℓconf (3) BS-3: the attribute predictor is

removed from the visual consistency checker and the model

is trained by ℓCVAE + λconf · ℓconf + λclf · ℓclf . We eval-

uate the baseline models on 10/10 split of Pascal VOC and

the results along with the differences between the original

YOLOv2 are tabulated in Table.2.

It is apparent that with all the visual consistency checker

components included, DELO realizes optimal performance.

Without any supervision from the consistency checker, the

pure CVAE achieves 59.5 on TU, 73.2 on TS and 58.5 on

TM (BS-1). Incorporating the confidence predictor Conf
increases 1.1 on TU and 0.5 on TM, and the classifier Clf
contributes 0.3 improvement on TU and 0.4 on TM. Finally,

by integrating the attribute predictor, the performance fur-

ther increases 0.3 on TU, 0.1 on TS, and 0.2 on TM. The vi-

sual consistency checker improves the overall performance,

especially on TU and TM, as it encourages the generated

data to be more consistent to the original feature and the

class information.

Number of Generated Examples. We also perform exper-

iments to evaluate how the number of generated examples

affects the detection performance. In the experiment, we

Figure 4. Performance of various Nseen (left) and Nunseen (right)

on 10/10 split of Paascal VOC. TU = Test-Unseen, TS = Test-Seen,

TM = Test-Mix.

first vary Nseen in the range [20, 50, 100, 200, 500] while

keeping Nunseen = 1000. Then we vary Nunseen in the

range of [0, 100, 200, 500, 1000, 2000] while set Nseen =
50. The experiments are conducted on 10/10 split of Pascal

VOC and the final detection performance are visualized in

Fig.4. The generated unseen data plays an important role in

the method, as we can see the performance on TU and TM

drops > 2% when training with Nunseen = 0. The per-

formance on TU and TM increases when more unseen data

are available, and get saturated after Nunseen > 1000. A

small number of unseen examples (e.g. 100) is sufficient for

learning a strong confidence predictor. The number of seen

generated data, on the other hand, only affects the overall

performance slightly as it has similar distribution as Dres

5. Conclusion

We proposed DELO, a novel Zero-shot detection algorithm

for localizing seen and unseen objects. We focus on the

generalized ZSD problem where both seen and unseen ob-

jects can be present at test-time, but we are only provided

examples of seen objects during training. Our key insight is

that, while vanilla DNN detectors are capable of produc-

ing bounding boxes on unseen objects, these get filtered

out due to poor confidence. To address this issue DELO

synthesizes unseen class visual features, leveraging seman-

tic data. Then a confidence predictor is trained with train-

ing data augmented with synthetic features. We employ a

conditional variational encoder, with additional loss func-

tions, that are specifically chosen to improve detection per-

formance. We also propose a re-sampling strategy to im-

prove the foreground/background during training. Our re-

sults show that on a number metrics, on complex datasets

involving multiple objects/image, DELO achieves state-of-

the-art performance.
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