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Abstract

Recently, increasing interest has been drawn in exploit-

ing deep convolutional neural networks (DCNNs) for no-

reference image quality assessment (NR-IQA). Despite of

the notable success achieved, there is a broad consensus

that training DCNNs heavily relies on massive annotated

data. Unfortunately, IQA is a typical small sample prob-

lem. Therefore, most of the existing DCNN-based IQA met-

rics operate based on pre-trained networks. However, these

pre-trained networks are not designed for IQA task, leading

to generalization problem when evaluating different types

of distortions. With this motivation, this paper presents a

no-reference IQA metric based on deep meta-learning. The

underlying idea is to learn the meta-knowledge shared by

human when evaluating the quality of images with various

distortions, which can then be adapted to unknown distor-

tions easily. Specifically, we first collect a number of NR-

IQA tasks for different distortions. Then meta-learning is

adopted to learn the prior knowledge shared by diversified

distortions. Finally, the quality prior model is fine-tuned on

a target NR-IQA task for quickly obtaining the quality mod-

el. Extensive experiments demonstrate that the proposed

metric outperforms the state-of-the-arts by a large margin.

Furthermore, the meta-model learned from synthetic distor-

tions can also be easily generalized to authentic distortion-

s, which is highly desired in real-world applications of IQA

metrics.

1. Introduction

In recent years, the explosive growth of social networks

has produced massive amounts of images. Digital images

could be distorted in any stage of their life cycle, from ac-

quisition, compression, storage to transmission, which lead-

s to the loss of received visual information. Consequently,
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a reliable quality assessment metric of digital images is in

great need to pick out high quality images for the end user-

s. Although human’s subjective evaluation of images is ac-

curate and reliable, it is time-consuming and laborious in

practical applications. Hence, objective image quality as-

sessment (IQA) [20] is needed to imitate human beings to

automatically assess image quality, which has extensive ap-

plications in image restoration [6], image retrieval [13] and

image quality monitoring systems [23], etc.

Typically, IQA methods can be divided into three

categories: full-reference IQA (FR-IQA) [17], reduced-

reference IQA (RR-IQA) [11], and no-reference IQA (NR-

IQA) [54], depending on the amount of reference informa-

tion needed during quality evaluation. Although FR-IQA

and RR-IQA methods can achieve promising performance,

reference images are often not available in real-world sit-

uations. Hence, NR-IQA methods have attracted exten-

sive attention recently, as they operate on the distorted im-

ages directly. Meantime, the lacking of reference infor-

mation poses huge challenge for NR-IQA methods. Early

NR-IQA methods mainly focus on specific distortion types,

such as blocking artifacts [25], blur [24] and ringing effect-

s [29]. The prerequisite of these approaches is that there

is only one known type of distortion in the images. Since

the distortion types are usually not known in advance in

real-world applications, more and more attention has been

drawn in general-purpose NR-IQA methods over the past

few years [39, 32, 56, 51, 50, 12, 54, 49, 10]. These met-

rics attempt to characterize the general rules of image dis-

tortions through hand-crafted [39] or learned [54] features,

based on which an image quality prediction model can be

established.

Recent years have witnessed the great success of Deep

Convolutional Neural Networks (DCNNs) [14] in many

computer vision tasks [4, 5], which has also spawned a

number of DCNNs-based NR-IQA approaches [16, 2, 28,

30, 52, 58, 57]. These approaches have achieved signifi-
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Figure 1. An illustration of our motivation. Humans can use

the quality prior knowledge learned from various distortions (e.g.

brighten, white noise, and motion blur) for fast adapting to un-

known distortions (e.g. images captured by mobile cameras).

Hence, it is necessary to make the NR-IQA model learn such qual-

ity prior knowledge to achieve high generalization performance.

cantly better performance than the traditional hand-crafted

feature-based NR-IQA methods [39, 32, 56, 51, 50, 12].

The main reason is that DCNNs consist of massive parame-

ters, which are helpful in learning the intricate relationship

between image data and human perceived quality. At the

same time, it is a broad sense that training DCNNs requires

huge amount of annotated data. Unfortunately, collecting

huge image quality data for training DCNNs-based IQA

models is difficult, since annotating image quality by hu-

man is extremely expensive and time-consuming. As a re-

sult, the scale of existing annotated IQA databases [41, 38]

is usually limited, thus training deep IQA models directly

using these databases easily leads to over-fitting. To tack-

le the problem, existing works usually resort to pre-trained

network models where big training data is available, e.g.

ImageNet image classification task [1, 44]. Although these

metrics can alleviate the over-fitting problem to some ex-

tent, the generalization performance is unsatisfactory when

facing images with unknown distortions. In our opinion,

this mainly attributes to the fact that the pre-trained models

are not designed for IQA task, so they cannot easily adapt

to new types of distortions.

In real-world situations, human beings can easily obtain

quality prior knowledge from images with various distor-

tions and quickly adapt to the quality evaluation of unknown

distorted images, as shown in Figure 1. Therefore, it is criti-

cal for NR-IQA method to learn the shared prior knowledge

of humans in evaluating the quality of images with various

distortions. With this motivation, this paper presents a novel

NR-IQA metric based on deep meta-learning that can make

machines learn to learn, that is, to have the ability to learn

quickly through a relatively small amount of training sam-

ples for a related new task [45, 48]. In particular, the pro-

posed approach leverages a bi-level gradient descent strate-

gy based on a number of distortion-specific NR-IQA tasks

to learn a meta-model. The distortion-specific NR-IQA task

is actually an IQA task for a specific distortion type (e.g.,

JPEG or blur). Different from the existing approaches, the

learned meta-model can capture the shared meta-knowledge

of humans when evaluating images with various distortion-

s, enabling fast adaptation to the NR-IQA task of unknown

distortions. The contributions of our work are summarized

as follows.

• We propose a no-reference image quality metric based

on deep meta-learning. Different from the existing

IQA metrics, the proposed NR-IQA model is charac-

terized by good generalization ability, in that it can per-

form well on diversified distortions.

• We adopt meta-learning to learn the shared meta-

knowledge among different types of distortions when

human evaluate image quality. This is achieved us-

ing bi-level gradient optimization based on a num-

ber of distortion-specific NR-IQA tasks. The meta-

knowledge serves as an ideal pre-trained model for fast

adapting to unknown distortions.

• We have done extensive experiments on five public

IQA databases containing both synthetic and authen-

tic distortions. The results demonstrate that the pro-

posed model significantly outperforms the state-of-

the-art NR-IQA methods in terms of generalization a-

bility and evaluation accuracy.

2. Related Work

2.1. No­reference image quality assessment

NR-IQA can be classified into distortion-specific meth-

ods [25, 24, 29, 47] and general-purpose methods [39, 32,

56, 51, 50, 12, 54, 49, 10]. In distortion-specific method-

s, the image quality is evaluated by extracting features of

known distortion types. This kind of metrics have achieved

remarkable consistency with human perception. Howev-

er, their application scope is rather limited, considering

the fact that the distortion type is usually unknown in re-

al applications [15, 9]. Thus, general-purpose NR-IQA ap-

proaches have received increasingly more attention recent-

ly [31]. Generally, conventional hand-crafted feature-based

general-purpose NR-IQA methods can be divided into nat-

ural scene statistics (NSS) based metrics [8, 32, 33, 39] and

learning-based metrics [53, 54, 36]. The NSS-based meth-

ods hold that natural images have certain statistical charac-

teristics, which will be changed under different distortions.

Moorthy et al. [33] proposed to extract NSS features from

the discrete wavelet transform (DWT) domain for blind im-

age quality assessment. Saad et al. [39] leveraged the statis-

tical features of discrete cosine transform (DCT) to estimate
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the image quality. Mittal et al. [32] proposed a general-

purpose NR-IQA metric by extracting NSS features in the

spatial domain and achieved promising performance. In ad-

ditional to the NSS-based approaches, learning-based ap-

proaches have also been developed. The codebook rep-

resentation approaches [53, 54] were proposed to predict

subjective image quality scores by Support Machine Re-

gression (SVR) model. Zhang et al. [36] combined the

semantic-level features that influence human vision system

with local features for image quality estimation.

In recent years, the deep learning-based general-purpose

NR-IQA methods have demonstrated superior prediction

performance over traditional methods [1, 44, 55, 28, 2, 30,

52, 58, 57]. One key issue of deep learning is that it requires

abundant labeled data, but IQA is a typical small sample

problem. In [1], Bianco et al. pre-trained a deep model

on the large-scale database for image classification task and

then fine-tuned it for NR-IQA task. Talebi et al. [44] pro-

posed a DCNNs-based model by predicting the perceptu-

al distribution of subjective quality opinion scores, and the

model parameters were initialized by pre-training on Ima-

geNet database [22]. Zeng et al. [55] also fine-tuned sever-

al popular pre-trained deep CNN models on IQA databases

to learn a probabilistic quality representation (PQR). These

approaches use the deep semantic features learned from im-

age classification task as prior knowledge to assist in the

learning of the NR-IQA task. However, image classification

and quality assessment are quite different in nature, which

leads to the generalization problem of deep NR-IQA model-

s. In contrast to these approaches, in this paper, we take the

advantage of meta-learning [45] to explore a more effective

prior knowledge for the NR-IQA task.

2.2. Deep meta­learning

Deep meta-learning is a knowledge-driven machine

learning framework, attempting to solve the problem of

how to learn [45]. Human beings can effectively learn

a new task from limited training data, largely relying on

prior knowledge of related tasks. Meta-learning is to ac-

quire a prior knowledge model by imitating this ability of

human beings. Typically, meta-learning can be divided

into three main approaches: Recurrent Neural Network-

s (RNNs) memory-based methods [40, 34], metric-based

methods [42, 43] and optimization-based methods [7, 35].

The RNN memory-based methods use RNNs with mem-

ories to store experience knowledge from previous tasks

for learning new task [40, 34]. The metric-based methods

mainly learn an embedding function that maps the input s-

pace to a new embedding space, and leverage nearest neigh-

bour or linear classifiers for image classification [42, 43].

The optimization-based methods aim to learn the initializa-

tion parameters of a model that can quickly learn new tasks

by fine-tuning the model using few training samples [7, 35].

Although these methods are designed for few-shot learn-

ing in image classification task [48], the optimization-based

method is easier to be extended because it is based on gra-

dient optimization without limiting network structures [7].

Inspired by this, we propose an optimization-based meta-

learning approach for NR-IQA task, which uses a number

of distortion-specific NR-IQA tasks to learn the shared pri-

or knowledge of various distortions in images. The NR-

IQA task requires a quantitative measure of the perceptual

quality of image, making it more complex and difficult than

image classification task. Hence, we tailor a deep meta-

learning with more efficient gradient optimization.

3. Our Approach

In this section, we detail our deep meta-learning ap-

proach for no-reference image quality assessment. The di-

versity of distortions in images leads to the generalization

problem of deep NR-IQA models. In view of this, our ap-

proach leverages meta-learning to seek the general rules of

image distortion through multiple distortion-specific NR-

IQA tasks. That is, we learn a shared quality prior model

through a number of NR-IQA tasks with known distortion

types, and then fine-tune it for the NR-IQA task with un-

known distortions. The overall framework of our approach

is shown in Figure 2, which is composed of two steps, i.e.,

meta-training for quality prior model and fine-tuning for

NR-IQA of unknown distortions. In the first step, we lever-

age a number of distortion-specific NR-IQA tasks to estab-

lish a meta-training set, which is further divided into two

sets: support set and query set. Then, a bi-level gradient de-

scent method from support set to query set is used to learn

the quality prior model. In the second step, we fine-tune the

quality prior model on a target NR-IQA task to obtain the

quality model. Our method is termed Meta-learning based

Image Quality Assessment (MetaIQA).

3.1. Meta­training for quality prior model

Shared quality prior knowledge among distortions.

As mentioned in [31], most of the existing NR-IQA meth-

ods are distortion-aware, which are sensitive to image dis-

tortion types. Moreover, the available training data on cur-

rent IQA databases cannot directly train an effective deep

NR-IQA model. This limits the generalization ability of the

trained NR-IQA model among images with different dis-

tortion types. Therefore, we need to learn a shared qual-

ity prior knowledge model from various distortions of im-

ages and make it quickly generalize to unknown distortions.

Motivated by learning to learn in deep meta-learning [45],

an optimization-based approach is introduced to learn the

model parameters of shared quality prior knowledge from a

number of NR-IQA tasks. For the NR-IQA task, we expect

that the learned model can be quickly generalized to images

with unknowable distortions. Hence, we use a two-level
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Figure 2. The overview framework of our deep meta-learning approach for no-reference image quality assessment.

gradient descent method to learn this generalization ability.

First, the training data of each NR-IQA task is divided in-

to support set and query set. Then, we use the support set

to calculate the gradients of the model parameters and tenta-

tively update them with stochastic gradient descent. Finally,

the query set is used to verify whether the updated model is

effectively performed or not. In this way, the model can

learn the fast generalization ability among NR-IQA tasks

with diversified distortions. The two-level gradient descen-

t approach from support set to query set is called bi-level

gradient optimization.

Meta-learning with bi-level gradient optimization. S-

ince the optimization-based meta-learning method can be

easily applied to any deep network using stochastic gra-

dient descent, we introduce a deep regression network fθ
for the NR-IQA task. As shown in Figure 2, the deep re-

gression network consists of convolutional layers and fully-

connected layers. The convolutional layers derive from a

popular deep network and we employ a Global Average

Pooling (GAP) operation for yielding a fully-connected lay-

er. Then, we add another fully-connected layer to generate

the output of our deep regression network. In particular, for

an input image x, we fed it into the deep network to gen-

erate the predicted quality score of the image ŷ, which is

defined as

ŷ = fθ(x; θ), (1)

where θ denotes the initialized network parameters. Since

we expect to minimize the difference between the predicted

and ground-truth quality scores of the image x, the squared

Euclidean distance is used as loss function, which takes the

following form

L = ‖fθ(x; θ)− y‖22, (2)

where y denotes the ground-truth quality score of the input

image x.

The purpose of our approach is to learn a shared pri-

or model among various distortions when human evaluate

image quality. Therefore, we obtain the meta-training set

Dp(τ)
meta = {Dτn

s ,Dτn
q }Nn=1 from a number of distortion-

specific NR-IQA tasks, where Dτn
q and Dτn

s are the support

set and query set of each task, and N is the total number of

tasks. In order to capture a generalized model among differ-

ent NR-IQA tasks, we randomly sample k tasks as a mini-

batch from the meta-training set (1 < k ≤ N ). For the i-th
support set Dτi

s in the mini-batch, the loss can be calculated

by Eq. 2 and denoted as Lτi (i ∈ {1, 2, . . . , k}). Since our

deep regression network is more complex than the classifi-

cation network in [7] and there are more samples available

for training, we leverage a more efficient stochastic gradient

descent (SGD) approach to optimize our model. Therefore,

we first calculate the first-order gradients of loss function

Lτi relating to all model parameters and it is defined as

gθ = ∇θLτi(fθ). (3)

Then, we update the model parameters for S steps using the

Adam [21] optimizer on the support setDτi
s (i = 1, 2, ..., k),

which is defined as

Adam(Lτi , θ) : θ
′

i ← θ − α

S
∑

s=1

mθ(s)√
vθ(s) + ǫ

, (4)

where ǫ = 1e − 8 and α is the inner learning rate. mθ(s)

and vθ(s) denote the first moment and second raw moment

of gradients, which are formulated as

mθ(s) = µ1mθ(s−1) + (1− µ1)gθ(s) , (5)

vθ(s) = µ2vθ(s−1) + (1− µ2)g
2
θ(s) , (6)

where mθ(0) = 0 and vθ(0) = 0. µ1 and µ2 are the exponen-

tial decay rates of mθ(s) and vθ(s) , respectively. gθ(s) denote
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the updated gradients in step s (s ∈ {1, 2, ..., S}). As we

mentioned previously, we expect that the quality model up-

dated with the support set can perform well on the query

set. In contrast to calculating second-order gradients in [7],

we then compute the first-order gradients of updated model

parameters for a second time to reduce the computation-

al complexity of our model. The model parameters θ
′

i are

updated with Adam optimizer for S steps on the query set

Dτi
q (i = 1, 2, ..., k), which takes the following form

Adam(Lτi , θ
′

i) : θi ← θ
′

i − α
S
∑

s=1

mθ
′(s)√

vθ′(s) + ǫ
, (7)

where mθ
′(s) and vθ′(s) are the first moment and second raw

moment of gradients. For the mini-batch of k tasks, the

gradients of all tasks are integrated to update the final model

parameters, which is defined as

θ ← θ − β
1

k

k
∑

i=1

(θ − θi), (8)

where β is the outer learning rate. With this approach, we

iteratively sample k NR-IQA tasks on the meta-training set

Dp(τ)
meta to train our deep regression network fθ. Finally, the

quality prior model shared with various image distortions

can be obtained by the meta-learning with bi-level gradient

optimization.

3.2. Fine­tuning for unknown distortions

After training the quality prior model from a number of

distortion-specific NR-IQA tasks, we then use this model

as prior knowledge for fine-tuning on NR-IQA task with

unknown distortions. Given M training images with anno-

tated quality scores from a target NR-IQA task, we denote

the predicted and ground-truth quality scores of i-th image

as ŷi and yi (i = 1, 2, ...,M), respectively. We first use

the squared Euclidean distance as loss function, which is

formulated as

L =
1

M

M
∑

i=1

‖ŷi − yi‖22. (9)

Then, we leverage Adam optimizer to update the quality

prior model for P steps on the NR-IQA task and it is defined

as

Adam(L, θ) : θte ← θ − αf

P
∑

p=1

mθ(p)√
vθ(p) + ǫ

, (10)

where αf is the learning rate of fine-tuning. mθ(p) and vθ(p)

are first moment and second raw moment of gradients. Fi-

nally, the quality model can be obtained for assessing the

quality of images with unknown distortions. It is worth not-

ing that the fine-tuning process of our approach does not

need to learn additional parameters, which greatly improves

the learning efficiency and enhances the generalization abil-

ity of our model.

For a query image x, the predicted quality score ŷ can

be obtained by capturing the output of the quality model

ŷ = fθte(x; θte). The whole procedure of the proposed

MetaIQA is summarized in Algorithm 1.

Algorithm 1 Meta-learning based IQA (MetaIQA)

Input: Meta-training set Dp(τ)
meta = {Dτi

s ,Dτi
q }Ni=1, where

Dτi
trq

and Dτi
trs

are task-support set and task-query set,

and N is the total number of tasks, a target NR-IQA

task with M training images, query image x, learning

rate β
Output: Predicted quality score ŷ for x

1: Initialize model parameters θ;

2: /⋆ meta-training for prior model ⋆/
3: for iteration = 1, 2, ... do

4: Sample a mini-batch of k tasks in Dp(τ)
meta;

5: for i = 1, 2, ..., k do

6: /⋆ first level computing ⋆/
7: Compute θ

′

i = Adam(Lτi , θ) on Dτi
s ;

8: /⋆ second level computing ⋆/
9: Compute θi = Adam(Lτi , θ

′

i) on Dτi
q ;

10: end for

11: update θ ← θ − β 1
k

∑k

i=1(θ − θi);
12: end for

13: /⋆ fine-tuning for NR-IQA task ⋆/
14: Update θte = Adam(L, θ) on the NR-IQA task;

15: Input x into the quality model fθte ;

16: return ŷ.

4. Experiments

4.1. Databases

We evaluate the performance of our approach on two

kind of databases: synthetically distorted IQA databases

and authentically distorted IQA databases.

Synthetically distorted IQA databases can be used for

generating the meta-training set and evaluating the general-

ization performance of our quality prior model for unseen

distortions, including TID2013 [38] and KADID-10K [27].

The information for each database is listed in Table 1.

Authentically distorted IQA databases are used to ver-

ify the generalization performance of our quality prior mod-

el for real distorted images, including CID2013 [46], LIVE

challenge [9] and KonIQ-10K [26]. The CID2013 database

contains six subsets with a total of 480 authentically distort-

ed images captured by 79 different digital cameras. Subject-

s participated in the user study to evaluate the quality scores

of images, which are in the range [0, 100], and the high-

er the score, the higher the quality. The LIVE challenge
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Table 1. Summary of synthetically distorted IQA databases with

respect to numbers of reference images (Ref.), distortion images

(Dist.), distortion types (Dist. Types) and score range. higher score

indicates higher quality.

Databases Ref. Dist. Dist. Types Score Range

TID2013 [38] 25 3,000 24 [0, 9]
KADID-10K [27] 81 10,125 25 [1, 5]

database contains 1,162 images with authentic distortions

taken from mobile cameras, such as motion blur, overexpo-

sure or underexposure, noise and JPEG compression. The

quality scores of images were obtained by crowdsourcing

experiments, which are in the range [0, 100], and higher

score indicates higher quality. Recently, a relatively large-

scale IQA database, KonIQ-10K, consisting of 10,073 im-

ages was introduced in [26]. The quality score of each im-

age is averaged by the five-point ratings of about 120 work-

ers, which are in the range [1, 5], and higher score also

indicates higher quality.

4.2. Implementation details

In the proposed model, a popular network architecture,

ResNet18 [14], is adopted as our backbone network. All

training images are randomly cropped to 224 × 224 pixel

patches for feeding into the proposed model. We train our

model using bi-level gradient optimization with the inner

learning rate α of 1e − 4 and the outer learning rate β of

1e − 2, which is implemented based on Pytorch [37]. We

set the fine-tuning learning rate αf to 1e−5. These learning

rates drop to a factor of 0.8 after every five epochs and the

total epoch is 100. For both model training and fine-tuning,

the weight decay is 1e− 5. The other hyper-parameters are

set as follows: mini-batch size k of 5, exponential decay

rate µ1 of 0.9, exponential decay rate µ2 of 0.99, learning

steps S of 6, learning steps P of 15.

4.3. Evaluation criteria

In our experiments, Spearman’s rank order correlation

coefficient (SROCC) and Pearson’s linear correlation coef-

ficient (PLCC) are employed to evaluate the performance of

NR-IQA methods [2, 52]. For N testing images, the PLCC

is defined as

PLCC =

∑N

i=1(si − µsi)(ŝi − µŝi)
√

∑N

i=1(si − µsi)
2

√

∑N

i=1(ŝi − µŝi)
2

, (11)

where si and ŝi denote the ground-truth and predicted qual-

ity scores of i-th image, and µsi and µŝi denote the average

of each. Let di denote the difference between the ranks of

i-th test image in ground-truth and predicted quality scores,

the SROCC is defined as

SROCC = 1− 6
∑N

i=1 d
2
i

N(N2 − 1)
. (12)

The PLCC and SROCC range from -1 to 1, and higher ab-

solute value indicates better prediction performance.

4.4. Comparisons with the state­of­the­arts

Evaluation on synthetically distorted images. To val-

idate the generalization performance of our meta-model

for unknown distortions, we compare our method with

six state-of-the-art general-purpose NR-IQA methods by

using the Leave-One-Distortion-Out cross validation on

TID2013 [38] and KADID-10K [27] databases. In imple-

mentation, suppose there are N kinds of distortions in a

database, we use (N − 1) kinds of distortions for train-

ing and the remaining one kind of distortion is used for

performance test. These methods are BLIINDS-II [39],

BRISQUE [32], ILNIQE [56], CORNIA [54], HOSA [49]

and WaDIQaM-NR [2]. For a fair comparison, all the

source codes of NR-IQA methods released by original au-

thors are conducted under the same training-testing strategy.

The tested SROCC values of our approach and state-of-

the-art NR-IQA methods are listed in Table 2 and the best

result for each distortion type is marked in bold. As can be

seen, our approach is superior to other methods in overall

performance (average results) on both databases by a large

margin. For most of the distortion types (19 out of 24 on

TID2013 and 19 out of 25 on KADID-10K), our method

can achieve the best evaluation performance. In TID2013

database, the SROCC values of our method are higher than

0.9 for more than half of the distortion types, which indi-

cates that our meta-learning based NR-IQA method can ef-

fectively learn a shared quality prior model and fast adapt

to a NR-IQA task with unknown distortion types.

Generalization performance on authentically distort-

ed images. To further evaluate the generalization perfor-

mance of the quality prior model learned from synthetic

distortions for the IQA of authentic distortions, we com-

pare the proposed method with five state-of-the-art hand-

crafted feature-based and six state-of-the-art deep learning-

based general-purpose NR-IQA methods. The five hand-

crafted feature-based NR-IQA methods are BLIINDS-

II [39], BRISQUE [32], ILNIQE [56], CORNIA [54]

and HOSA [49], while the six deep learning-based NR-

IQA methods are BIECON [18], MEON [30], WaDIQaM-

NR [2], DistNet-Q3 [3], DIQA [19] and NSSADNN [52].

For a fair comparison with the reported results of these

methods on CID2013 [46], LIVE challenge [9] and KonIQ-

10K [26] databases, we follow the same experimental setup

in [2, 49, 52]. In CID2013 database, four out of six subsets

are used for model training, and the remaining two subset-

s are used for testing. In LIVE challenge and KonIQ-10K

databases, all images are randomly divided into 80% train-

ing samples and 20% testing samples. All experiments are

conducted 10 times to avoid the bias of randomness and the

average results of PLCC and SROCC are reported.
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Table 2. SROCC values comparison in leave-one-distortion-out cross validation on TID2013 and KADID-10K databases.

TID2013

Dist. type BLIINDS-II [39] BRISQUE [32] ILNIQE [56] CORNIA [54] HOSA [49] WaDIQaM-NR [2] MetaIQA

AGN 0.7984 0.9356 0.8760 0.4465 0.7582 0.9080 0.9473
ANC 0.8454 0.8114 0.8159 0.1020 0.4670 0.8700 0.9240
SCN 0.6477 0.5457 0.9233 0.6697 0.6246 0.8802 0.9534
MN 0.2045 0.5852 0.5120 0.6096 0.5125 0.8065 0.7277
HFN 0.7590 0.8965 0.8685 0.8402 0.8285 0.9314 0.9518
IN 0.5061 0.6559 0.7551 0.3526 0.1889 0.8779 0.8653
QN 0.3086 0.6555 0.8730 0.3723 0.4145 0.8541 0.7454
GB 0.9069 0.8656 0.8142 0.8879 0.7823 0.7520 0.9767

DEN 0.7642 0.6143 0.7500 0.6475 0.5436 0.7680 0.9383
JPEG 0.7951 0.5186 0.8349 0.8295 0.8318 0.7841 0.9340
JP2K 0.8221 0.7592 0.8578 0.8611 0.5097 0.8706 0.9586
JGTE 0.4509 0.5604 0.2827 0.7282 0.4494 0.5191 0.9297
J2TE 0.7281 0.7003 0.5248 0.4817 0.1405 0.4322 0.9034
NEPN 0.1219 0.3111 -0.0805 0.3571 0.2163 0.1230 0.7238
Block 0.2789 0.2659 -0.1357 0.2345 0.3767 0.4059 0.3899
MS 0.0970 0.1852 0.1845 0.1775 0.0633 0.4596 0.4016

CTC 0.3125 0.0182 0.0141 0.2122 0.0466 0.5401 0.7637
CCS 0.0480 0.2142 -0.1628 0.2299 -0.1390 0.5640 0.8294
MGN 0.7641 0.8777 0.6932 0.4931 0.5491 0.8810 0.9392
CN 0.0870 0.4706 0.3599 0.5069 0.3740 0.6466 0.9516

LCNI 0.4480 0.8238 0.8287 0.7191 0.5053 0.6882 0.9779
ICQD 0.7953 0.4883 0.7487 0.7757 0.8036 0.7965 0.8597
CHA 0.5417 0.7470 0.6793 0.6937 0.6657 0.7950 0.9269
SSR 0.7416 0.7727 0.8650 0.8867 0.8273 0.8220 0.9744

Average 0.5322 0.5950 0.5701 0.5465 0.4725 0.7073 0.8539

KADID-10K

GB 0.8799 0.8118 0.8831 0.8655 0.8522 0.8792 0.9461
LB 0.7810 0.6738 0.8459 0.8109 0.7152 0.7299 0.9168
MB 0.4816 0.4226 0.7794 0.5323 0.6515 0.7304 0.9262
CD 0.5719 0.5440 0.6780 0.2432 0.7272 0.8325 0.8917
CS -0.1392 -0.1821 0.0898 -0.0023 0.0495 0.4209 0.7850
CQ 0.6695 0.6670 0.6763 0.3226 0.6617 0.8055 0.7170

CSA1 0.0906 0.0706 0.0266 -0.0194 0.2158 0.1479 0.3039
CSA2 0.6017 0.3746 0.6771 0.1197 0.8408 0.8358 0.9310
JP2K 0.6546 0.5159 0.7895 0.3417 0.6078 0.5387 0.9452
JPEG 0.4140 0.7821 0.8036 0.5561 0.5823 0.5298 0.9115
WN 0.6277 0.7080 0.7757 0.3574 0.6796 0.8966 0.9047

WNCC 0.7567 0.7182 0.8409 0.4183 0.7445 0.9247 0.9303
IN 0.5469 -0.5425 0.8082 0.2188 0.2535 0.8142 0.8673

MN 0.7017 0.6741 0.6824 0.3060 0.7757 0.8841 0.9247
Denoise 0.4566 0.2213 0.8562 0.2293 0.2466 0.7648 0.8985
Brighten 0.4583 0.5754 0.3008 0.2272 0.7525 0.6845 0.7827
Darken 0.4391 0.4050 0.4363 0.2060 0.7436 0.2715 0.6219

MS 0.1119 0.1441 0.3150 0.1215 0.5907 0.3475 0.5555
Jitter 0.6287 0.6719 0.4412 0.7186 0.3907 0.7781 0.9278
NEP 0.0832 0.1911 0.2178 0.1206 0.4607 0.3478 0.4184

Pixelate 0.1956 0.6477 0.5770 0.5868 0.7021 0.6998 0.8090
Quantization 0.7812 0.7135 0.5714 0.2592 0.6811 0.7345 0.8770

CB -0.0204 0.0673 0.0029 0.0937 0.3879 0.1602 0.5132
HS -0.0151 0.3611 0.6809 0.1142 0.2302 0.5581 0.4374
CC 0.0616 0.1048 0.0723 0.1253 0.4521 0.4214 0.4377

Average 0.4328 0.4136 0.5528 0.3149 0.5598 0.6295 0.7672

In our approach, we first normalize the subjective scores

of images on TID2013 and KADID-10K databases to [0, 1]
and then use the generated NR-IQA tasks to train our net-

work for obtaining a quality prior model. Finally, we fine-

tune the quality prior model on the training set of CID2013,

LIVE challenge and KonIQ-10K. Table 3 summarizes the

testing results on the three IQA databases and the best re-

sults among the NR-IQA methods for each database are

shown boldfaced. We can see that our approach achieves

the best evaluation performance on LIVE challenge and

KonIQ-10K databases. Our method and NSSADNN have

achieved comparable results on CID2013 database, which

are significantly better than other NR-IQA methods. This

indicates that our method based on meta-learning can cap-

ture the quality prior model shared by human when evalu-

ating the perceived quality images with various synthesized

distortions, and then quickly adapt to a NR-IQA task with

authentic distortions.

4.5. Visual analysis for quality prior model

In this section, we performed a visual experiment to

demonstrate the effectiveness of our quality prior model.

Particularly, we use a CNN visualization code1 to show

the gradient maps in pixel-wisely with various distortion-

s. We learn the quality prior model from distortion-specific

images on TID2013 and KADID-10K databases, and then

randomly select four severely distorted images in the LIVE

challenge database for visualization experiment. The im-

ages as well as the corresponding gradient maps are shown

in Figure 3. As can be seen, the gradient maps can accurate-

ly capture the location of authentic distortions in images,

such as overexposure in Figure 3(a), underexposure in Fig-

ure 3(b), motion blur in Figure 3(c) and noise in Figure 3(d).

This strongly demonstrates that the shared prior knowledge

of various distortions in images can be effectively learned

from a number of NR-IQA tasks through meta-learning.

1https://github.com/sar-gupta/convisualize nb
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Figure 3. The gradient maps of some authentically distorted im-

ages in LIVE challenge database.

Table 3. Comparison results (PLCC and SROCC) of our approach

with several state-of-the-art NR-IQA methods on authentically

distorted IQA databases (i.e., CID2013 [46], LIVE challenge [9]

and KonIQ-10K [26]).

Methods
CID2013 LIVE challenge KonIQ-10K

PLCC SROCC PLCC SROCC PLCC SROCC

BLIINDS-II [39] 0.565 0.487 0.507 0.463 0.615 0.529
BRISQUE [32] 0.648 0.615 0.645 0.607 0.537 0.473
ILNIQE [56] 0.538 0.346 0.589 0.594 0.537 0.501
CORNIA [54] 0.680 0.624 0.662 0.618 0.795 0.780
HOSA [49] 0.685 0.663 0.678 0.659 0.813 0.805

BIECON [18] 0.620 0.606 0.613 0.595 / /
MEON [30] 0.703 0.701 0.693 0.688 / /
WaDIQaM-NR [2] 0.729 0.708 0.680 0.671 0.761 0.739
DistNet-Q3 [3] / / 0.601 0.570 0.710 0.702
DIQA [19] 0.720 0.708 0.704 0.703 / /
NSSADNN [52] 0.825 0.748 0.813 0.745 / /
MetaIQA 0.784 0.766 0.835 0.802 0.887 0.850

Table 4. Ablation study results (PLCC and SROCC) on authen-

tically distorted IQA databases (i.e., CID2013 [46], LIVE chal-

lenge [9] and KonIQ-10K [26]).

Methods
CID2013 LIVE challenge KonIQ-10K

PLCC SROCC PLCC SROCC PLCC SROCC

Baseline 0.727 0.712 0.801 0.743 0.832 0.816
MetaIQA 0.784 0.766 0.835 0.802 0.887 0.850

4.6. Ablation study

To further investigate whether the effectiveness of our

approach is derived from meta-learning, we conduct abla-

tion studies in this experiment. The baseline method is to

first train our network model by directly using the Adam

optimizer on distortion-specific images, and then fine-tune

the model on the training set of authentically distorted im-

ages (called Baseline). It is worth noting that baseline

method and our method have the same number of network

parameters but are trained by two different optimization ap-

proaches. The results of all tested images on three authenti-

cally distorted IQA databases are summarized in Table 4.

From the results, we can see that our MetaIQA method

is superior to Baseline method by a large margin on all

databases. Compared with the baseline approach, MetaIQA

has better generalization performance and can improve the

performance of NR-IQA model without changing the net-

work structure. This demonstrates the effectiveness of our

method in dealing with the NR-IQA task.
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Figure 4. The efficacy of parameters k and S in meta-training on

LIVE challenge database measured by SROCC.

4.7. Parameters discussion

Finally, we conduct experiments to discuss the efficacy

of two key parameters in the meta-training of our approach,

i.e. k to control the number of NR-IQA tasks in a mini-

batch and S to control the learning steps of each task. We

set k and S to different values and show the SROCC re-

sults on LIVE challenge database in Figure 4. The quality

evaluation performance of our approach increases with the

increase of k and S. If k is larger than 5, the SROCC values

of our method drop slightly. When S increases from 1 to 6,

the performance of quality evaluation increases dramatical-

ly. If S is larger than 6, the SROCC values tend to be stable.

Therefore, we set k = 5 and S = 6 in all the experiments.

5. Conclusion

In this paper, we propose to address the generalization

problem of NR-IQA tasks by using meta-learning. We in-

troduce a meta-learning based NR-IQA method with bi-

level gradient optimization to learn the shared prior knowl-

edge model of various distortions from a number of NR-

IQA tasks, and then fine-tune the prior model on the train-

ing data of a NR-IQA task with unknown distortions to ob-

tain the target quality model. Since our model can refine

the shared meta-knowledge among various types of dis-

tortions when human evaluate image quality, the learned

meta-model is easily generalized to unknown distortions.

Experiments conducted on five public IQA databases have

demonstrated that our approach is superior to the state-of-

the-art NR-IQA methods in terms of both generalization a-

bility and evaluation accuracy. In addition, the quality prior

model learned from synthetic distortions can also be quickly

adapted to the quality assessment of authentically distorted

images, which also sheds light on the design of quality e-

valuation models for real-world applications.
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