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Abstract

The effective application of neural networks in the real-

world relies on proficiently detecting out-of-distribution ex-

amples. Contemporary methods seek to model the distri-

bution of feature activations in the training data for ade-

quately distinguishing abnormalities, and the state-of-the-

art method uses Gaussian distribution models. In this work,

we present a novel approach that improves upon the state-

of-the-art by leveraging an expressive density model based

on normalizing flows. We introduce the residual flow, a

novel flow architecture that learns the residual distribution

from a base Gaussian distribution. Our model is general,

and can be applied to any data that is approximately Gaus-

sian. For out of distribution detection in image datasets,

our approach provides a principled improvement over the

state-of-the-art. Specifically, we demonstrate the effective-

ness of our method in ResNet and DenseNet architectures

trained on various image datasets. For example, on a

ResNet trained on CIFAR-100 and evaluated on detection

of out-of-distribution samples from the ImageNet dataset,

holding the true positive rate (TPR) at 95%, we improve the

true negative rate (TNR) from 56.7% (current state-of-the-

art) to 77.5% (ours).

1. Introduction

Deep neural networks (DNNs) are powerful models that

achieve high performance in various tasks in computer vi-

sion [26], speech and audio recognition [21], and lan-

guage processing [7]. Leading DNN architectures are

known to generalize well and achieve impressive perfor-

mance when evaluated on samples drawn from the distribu-

tion observed at the training phase [7, 19, 22, 26, 37]. How-

ever, DNNs tend to behave unexpectedly when encounter-

ing input taken from an unfamiliar distribution. In such in-

stances, an out-of-distribution (OOD) input causes the ma-

jority of models to mispredict, often with high confidence

[18, 27, 29, 31, 40]. This behaviour poses a severe con-

cern about the reliability of predictions made by DNNs and

hinders their applicability to real-world scenarios [1].

Contemporary work aimed at predicting classification

uncertainty adopt an approach of constructing a confidence

score based on characteristics of the feature space of trained

neural networks. In [20], Hendrycks and Gimpel propose

a baseline method, which taps into features of the penulti-

mate layer and uses the soft-max score as the confidence

score. Their method is further improved by Liang et al.

[28], who incorporate the soft-max score with temperature

scaling, alongside input pre-processing that emphasizes the

score difference between in- and out-of-distribution sam-

ples. The current state-of-the-art is the method of Lee et

al. [27], which models the feature distribution in different

layers of a trained network by a Gaussian distribution under

the LDA assumption (i.e., different mean but same covari-

ance for different classes), and forms a confidence score for

each layer based on the posterior distribution of the LDA

model, averaged over different layers. Lee’s method shows

superior performance compared with previous methods; in

some cases surpassing by a large margin [27].

Building on the observation that a Gaussian model of

network activations is an effective confidence measure, in

this work we ask: can we improve OOD detection per-

formance by using more expressive distributions of net-

work activations? In particular, there is no reason to expect

that features in mid-layers of the network follow an exact

Gaussian distribution, and we expect that a more expressive

model should capture their distribution more accurately.

We present a new approach for OOD detection and pro-

pose a more expressive density function, based on deep

normalizing flow, for modeling the distribution of the fea-

ture space of trained neural networks. As a prelude, we

posit that training a linear flow on the feature space of neu-

ral networks is equal to fitting a Gaussian distribution, as

proposed in [27]. Then, we leverage this property to pro-

pose a novel flow architecture that adds a non-linear resid-

ual to the linear flow to produce a more expressive map-

ping. The residual flow model is of independent inter-

est, and should be effective for any data that is approx-

imately Gaussian distributed. For out-of-distribution de-
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tection in image classification, modeling the network ac-

tivations as a residual from Gaussian distribution allows us

a principled improvement over the state-of-the-art, and in

some cases yields superior performance by a large mar-

gin. Furthermore, the proposed residual flow model en-

ables class-conditional density learning that improves per-

formance, even in cases of limited training examples from

each class (as in CIFAR100). Lastly, to make in- and out-

of-distribution samples more separable, we extend the input

preprocessing ideas of [28, 27] to our flow-based model,

and perturb test samples to increase their likelihood under

our model. We show that this perturbation can increase the

contrast between in- and out-of-distribution samples, lead-

ing to further performance improvement.

We demonstrate the effectiveness of our method using

trained convolution neural networks such as DenseNet [22]

and ResNet [19], trained on various datasets, and tested on

various out-of-distribution examples. Our method outper-

forms the state-of-the-art method [27] for detecting out-of-

distribution samples in all tested cases. For example, for a

ResNet trained on CIFAR-100, we improve the true nega-

tive rate (TNR) of detecting samples from the LSUN dataset

at a true positive rate (TPR) of 95% (i.e. 95% of the CIFAR-

100 test images were correctly classified) from 38.4% [27]

to 70.4% (ours), with all hyper-parameters tuned strictly

from the training dataset. Our results demonstrate that the

feature space of neural networks does not necessarily con-

form with a Gaussian distribution, and a more accurate

model can significantly improve confidence estimates.

2. Background

We present preliminaries on normalizing flows and OOD

detection.

2.1. Normalizing Flows for Density Estimation

Normalizing flows are an effective model for high-

dimensional data distributions, originally studied in classi-

cal statistics [41, 42], and recently popularized in the deep

learning community (e.g., NICE [11], RealNVP [12], and

GLOW [24]). Let x ∈ X denote data sampled from an

unknown distribution x ∼ pX(x). The main idea in nor-

malizing flows is to represent pX(x) as a transformation

of a Gaussian distribution z ∼ pZ(z) = N (0, I), i.e.

x = g(z). Moreover, we assume the mapping to be bijec-

tive x = g(z) = f−1(z). As such, the data log-likelihood

is given by the change of variable formula:

log (pX(x)) = log (pZ (f(x))) (1)

+ log

(∣∣∣∣det
(
∂f(x)

∂xT

)∣∣∣∣
)
,

where
∂f(x)
∂xT is the Jacobian of the map f(x) at x. The func-

tions f, g can be learned by maximum likelihood, where the

bijectivity assumption allows to train expressive mappings,

such as deep neural networks by backpropagation. Further,

given a sample x, its likelihood can be inferred from (1).

To achieve a tractable, yet flexible Jacobian for the map

f(x), the authors of NICE [11] and RealNVP [12] pro-

posed to stack a sequence of simple bijective transforma-

tions, such that their Jacobian is a triangular matrix. This

way, its log-determinant is simply determined by the sum of

its diagonal elements. In NICE [11], the authors proposed

the additive coupling layer for each transformation. This

was further improved in RealNVP [12] which proposed the

affine coupling layer. In each affine coupling transforma-

tion, the input vector x ∈ R
d is split into upper and lower

halves, x1, x2 ∈ R
d/2. These are plugged into the following

transformation, referred to as a single flow-block fi:

z1 = x1, z2 = x2 ◦ exp(si(x1)) + ti(x1), (2)

where ◦ denotes element-wise multiplication, and si and ti
are non-linear mappings (e.g., deep neural networks) that

need not be invertible. Given the output z1 and z2, this

affine transformation is trivially invertible by:

x1 = z1, x2 = (z2 − ti(z1)) ◦ exp(−si(z1)).

Let r denote a switch-permutation, which permutes the or-

der of x1 and x2. A RealNVP flow comprises k reversible

flow-blocks interleaved with switch-permutations,1

fRealNV P = fk · r . . . f2 · r · f1.

According to the chain rule, the log-determinant of the Ja-

cobian of the whole transformation f is computed by sum-

ming the log-determinant of the Jacobian of each fi, making

the likelihood computation (1) tractable.

In GLOW [24], additional permutations between flow-

blocks are added, to reduce the structural constraint of sep-

arating the input into two halves:

fGLOW = fk · pk−1 . . . f3 · p2 · f2 · p1 · f1,

where pi are either fixed (random) or learned permuta-

tion matrices. Since permutations are easily inverted and

| det(pi)|=1, the log-likelihood (1) remains tractable.

2.2. Out of Distribution detection

Consider a deep neural network classifier trained in the

standard supervised learning setting (via labeled data). The

OOD detection problem seeks to assign a confidence score

to the classifier predictions, such that classification of OOD

data would be given a lower score than in-distribution data.

1The RealNVP paper [12] also considered other types of permutations,

such as checkerboard masks for 2-dimensional image input. Here, we

focus on 1-dimensional data, and only consider the switch-permutation,

which was first proposed in [11].
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Liang et al. [28] applied temperature-scaling to the net-

work’s soft-max output as the confidence score. Let σi(x)
denote the network’s logit output for class i and input x.

Then the temperature-scaled (TS) score is:

STS(x;T ) = max
i

(
exp(σi(x)/T )∑N
j=1 exp(σj(x)/T )

)
,

where T is the temperature. In addition, Liang et al. [28]

proposed to pre-process the input x by modifying it in a

direction that increases the soft-max score:

x̃TS(x) = x− ǫ · sign (−∇x logSTS(x;T )) ,

where the intuition is that in-distribution samples would be

more susceptible to an informative pre-processing, leading

to better discrimination between in- and out-of-distribution

samples. The final method, termed ODIN is given by:

SODIN (x;T ) = STS(x̃TS(x);T ).

Lee et al. [27] improve on the ODIN method by con-

sidering different layers of the network, and measuring the

Mahalanobis distance from the average network activations.

For some network layer l and class label c, let φl(x) denote

the feature activations at layer l for input x.2 Let µ̂l,c de-

note the empirical mean of feature activations for training

data from class c, and let Σ̂l denote the empirical covariance

matrix of feature activations, calculated across all classes.

Given a test example x, Lee et al. [27] calculate the score as

the weighted Mahalanobis distance:

SM (x)=
∑

l

wl ·max
c

{−(φl(x)−µ̂l,c)
T
Σ̂−1

l (φl(x)−µ̂l,c)},

where wl are weights. Using the Mahalanobis distance as

a score is equivalent to modeling the feature space of every

layer as a C class-conditional Gaussian distribution with a

tied covariance Σ̂, i.e., P (φl(x)|y =c) =N (φl(x)|µ̂l,c, Σ̂),
and measuring the score as the likelihood of the features

(under the most likely class, and averaging over all layers).

Lee et al. [27] motivate the Mahalanobis score from a

connection between the softmax output of the final layer and

a generative classifier with a class-conditional Gaussian dis-

tribution model with tied covariance. This generative model

is a special case of Gaussian discriminant analysis (GDA),

also known as linear discriminant analysis (LDA).

Lee et al. [27] also propose a pre-processing method

similar to ODIN, where

x̃M (x)=x−ǫ·sign
(
∇x (φl(x)−µ̂l,ĉ)

T
Σ̂−1

l (φl(x)−µ̂l,ĉ)
)

.

2For a convolutional neural network, [27] propose to take the average

activation across the spatial dimensions for each channel. In this work we

adopt this approach, but our method can be applied without change to the

actual feature activations.

3. Residual Flow for OOD Detection

Our aim is to detect out of distribution (OOD) examples,

equipped with an already trained neural network classifier

at our disposal. This is achieved by learning the distribution

of the feature space of various layers of the network, given

valid, in-distribution inputs that were observed during the

training phase. Motivated by the empirical success of the

Gaussian distribution model of Lee at al. [27], in this sec-

tion we propose a normalizing flow architecture that allows

for a principled extension of the Gaussian model to non-

Gaussian distributions. We hypothesize that the activations

of general neural network layers do not necessarily follow

a Gaussian distribution, and thus a more expressive model

should allow for better OOD detection performance. Our

model is composed of a linear component, which we show

is equivalent to a Gaussian model, and a non-linear residual

component, which allows to fit more expressive distribu-

tions using deep neural network flow architecture.

3.1. Linear Flow Model

We start by establishing a simple relation between the

maximum-likehood estimate of a Gaussian model (as in

GDA) and linear flow. The next proposition shows that for a

linear flow model, the maximum likelihood parameters are

equivalent to the empirical mean and covariance of the data.

Proposition 1. Let X = {x1, x2, ..., xN} be a dataset of

vectors in R
d, i.e ∀i : xi ∈ R

d. Consider a linear nor-

malizing flow, i.e X = AZ + b, where Z ∼ N (0, I),
A ∈ R

d×d and b ∈ R
d. Let pA,b(xi) denote the proba-

bility of xi under this flow model. The parameters A, b that

maximize the likelihood of the dataset X under this model

satisfy: b = 1
N

∑N
n=1 xi = µ̂, the empirical mean and

AAT = 1
N

∑N
n=1(xi − µ̂)(xi − µ̂)T = Σ̂, the empirical

covariance of the data X .

Proof. Since X is a linear transformation of Z ∼ N (0, I),
the probability of X under this model is given by:

pA,b(xi) ∼ N (b, AAT ). (3)

On the other hand, the maximum likelihood (ML) estima-

tors µ̃, Σ̃ for X under Gaussian distribution assumption are

known to be the empirical mean and covariance [13]:

µ̃=
1

N

N∑

n=1

xi= µ̂, Σ̃=
1

N

N∑

n=1

(xi − µ̂)(xi − µ̂)T =Σ̂. (4)

By combining (3) and (4) we get the desired results.

The linear flow transformation A can be obtained ana-

lytically by exploiting the spectral decomposition for the

symmetric positive semi-definite (PSD) matrix Σ̂=QDQT ,

where Q is an orthogonal matrix whose columns are the
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eigen-vectors of Σ̂ and D is a diagonal matrix whose en-

tries are its eigen-values. The resulting invertible linear flow

transformation for data X can be written as:

X = AZ + b, Z = A−1(X − b),

where b = µ̂ , A = QD
1

2 , A−1 = D− 1

2QT .3 In the sequel,

we propose an extension of the linear flow that adds non-

linear components, which we term a residual flow model.

3.2. Residual Flow Model

In this section, we describe how to extend the linear

flow model to include non-linear components. Rather than

directly using a fully non-linear model like RealNVP or

GLOW, as described in Section 2, we would like a model

that can be viewed and trained as an extension to the linear

model. This approach will allow a principled improvement

over the Gaussian model of Lee et al. [27], which we al-

ready know to perform well.

We begin by composing a linear flow with a residual flow

model:

fres = pk·f
non−lin
k ·pk−1 . . . p2·f

non−lin
2 p1·f

non−lin
1 ·A−1,

with the following log determinant:

log

(∣∣∣∣det
(
∂f(x)

∂xT

)∣∣∣∣
)

= log
(∣∣det

(
A−1

)∣∣)

+
∑

i

log

(∣∣∣∣∣det
(
∂fnon−lin

i (x)

∂xT

)∣∣∣∣∣

)
.

Note that, from Eq. (2), when si and ti are set to zero, the

non-linear terms fnon−lin
i are reduced to the identity map.

In this case, the permutation terms have no effect, as the

components of z have identical and independent distribu-

tions. Thus, in this case, the residual flow fres is equivalent

to the linear flow f lin = A−1. Therefore, we can initial-

ize the residual flow by fixing the networks si and ti to be

zero, and calculating A as described in Section 3.1, which

is equivalent to fitting a Gaussian distribution model to our

data. Subsequently, we can fine-tune the non-linear com-

ponents in the model to obtain a better fit to the data. In

practice, setting only the last layer of the networks si and ti
to zero is sufficient for the initialization step.4

Similar to the GLOW model [24], we found that the per-

mutation terms pi have an important contribution, by diver-

sifying the inputs of the non-linear components. In our im-

plementation, we alternate between fixed, initially random,5

3To simplify notation, in the rest of this paper we assume that the em-

pirical mean µ̂ is zero, achieved in practice by zero-centering the data.
4We found this to perform better in fine-tuning the non-linear terms, as

most of the network is not initialized to zero and obtains large gradients in

the initial training steps.
5The random permutation shuffles the preceding layer’s input in a pre-

determined random order that remains consistent throughout training.
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Figure 1. Residual Flow architecture.

permutation matrices and switch permutation matrices to

mediate the non-linear flow blocks. Concretely, pi stands

for a random permutation for odd i and switch permutation

for even i. Figure 1 illustrates the proposed architecture,

and the full implementation is described in Section 3.3.

3.2.1 Degenerate case

If the covariance matrix Σ̂ is not full rank, then the mul-

tivariate normal distribution is degenerate: its vector el-

ements are linearly dependent, and the covariance matrix

does not correspond to a density over the d-dimensional

space. In this case, Lee et al. [27] propose to use Σ̂†, the

pseudo-inverse of Σ̂, to calculate the Mahalanobis distance:

− (X − µ̂)
T
Σ̂†(X − µ̂) ,

which is equivalent to restricting attention to a subset of

k = rank(Σ̂) of the coordinates of X , such that the co-

variance matrix of this subset is positive definite (PS); the

remaining coordinates are regarded as an affine function of

the selected coordinates. In our model we handle degener-

ate distributions with a similar approach: We set Z = A†X
to be a k-dimensional vector with a k-dimensional Gaus-

sian distribution, using a dimensionality reduction transfor-

mation A† ∈ R
k×d.6 We construct A† = D− 1

2QT with

D− 1

2 ∈ R
k×k and QT ∈ R

k×d, by considering the inverse

root of the k non-zero eigen-values of Σ̂ in D− 1

2 diagonal

and their corresponding eigen-vectors in QT rows. Note

that using A† for degenerated vectors X yields the same

Gaussian distribution as the pseudo-inverse used in [27].

In the rest of this paper we consider A† as the linear flow

transformation for degenerated vectors X . After this lin-

ear dimensionality reduction, we apply the residual flow

model on the resulting k-dimensional vector Z as presented

in Section 3.2. As a remark, the aforementioned treatment

removes only linear dependencies among feature elements,

and does not address non-linear dependencies. Practically,

6Note that here A† is not the inverse of A.
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however, we found that this approach is sufficient for all the

experiments we conducted.

Our residual flow model is a general normalizing flow

architecture, and we expect it to work well when the data

approximately fits a Gaussian distribution.

3.3. Residual Flow Applied to OOD Detection

We now describe an application of the residual flow that

extends the Gaussian model of [27] for OOD detection.

First, for each network layer l, we extract the mean activa-

tion in the training data for each class label µl,c. Then, for

each sample x in our training data, we extract the network

activation in layer l, φl(x), and subtract from it the mean

µl,c for the corresponding class, to obtain a centered fea-

ture training set φ̂l(x). Next, we fit a Gaussian distribution

to the centered data by constructing a linear flow model for

each layer as described in Section 3.1. We construct a single

linear model for all classes, similar to the single covariance

matrix in [27]. Finally, for each layer l, and for each class

c, we train a residual flow model by training the non-linear

flow blocks fnon−lin
i , as described in 3.2, and freeze the

network weights in the linear block f lin
i . As a stopping cri-

teria for training the residual flow blocks, we use a separate

validation set, and validate on the log-likelihood of the data.

We found this approach to be effective for preventing over-

fitting in our experiments. This model, applied for OOD de-

tection, already has good performance at the outset, leading

to a better fit to the data distribution as training progresses.

Implementation details: We implement the model as a

single linear flow block f lin = A−1, followed by 10 non-

linear flow blocks fnon−lin, producing a map fres totalling

11 flow blocks. As for the layers pi, which interconnect the

blocks fnon−lin, we alternate between switch and random

permutation matrices. We use three fully connected layers

per non-linear block (in each si and ti) with leaky ReLU ac-

tivation functions in the intermediate layers. We use a batch

size of 256 and Adam [23] optimizer for learning the non-

linear blocks with a learning rate of 10−5 − 10−6, chosen

via a separate validation set of 10K examples.

3.4. Input pre­processing

Motivated by the success of input pre-processing in

ODIN [28] and Mahalanobis [27], we propose an extension

of this idea to our approach. Since the Mahalanobis pre-

processing can be seen as maximizing the likelihood of the

input under the Gaussian model, we similarly introduce the

following input pre-processing stage for our flow model:

x̃ = x+ ǫ · sign (∇x log p(φl(x); ĉ)) , (5)

where ĉ = argmax
c∈C

p(φl(x); c) and p(φl(x); ĉ) is the prob-

ability distribution of the feature space of the l-th layer of

class ĉ, learned by our flow model. Note that this score aims

to increase the probability of the in-distribution data.

Algorithm 1 Computing the Residual-Flow score Sl.

Input: Test sample x, weights of logistic regression detector

αl, noise ε and C residual-flow for each layer: {fres
l,c : ∀l, c}

Initialize score vectors: SRF (x) = [Sl,c : ∀l, c]
for each layer l ∈ 1, . . . , L do

Find the most probable class:

ĉ = argmaxc pc(φl(x)− µ̂l,c)
Add small noise to test sample:

x̃ = x+ εsign ▽x pĉ (φl(x)− µ̂l,ĉ)
Computing confidence score:

Sl = max
c

pc (φl(x̃)− µ̂l,c)

end for

return Confidence score for test sample
∑

l
αlSl

3.5. OOD Detection Algorithm

In this section we describe the proposed procedure for

OOD detection. Using the training set, we first train a

collection of residual flows for each layer and each class

{fres
l,c : ∀l, c} according to Section 3.2. Given a test ex-

ample x, we extract the layers’ activations for this example

{φl(x) : ∀l}, and calculate the most probable class for each

layer ĉl. Using ĉl we calculate the pre-processed input x̃,

according to Eq. (5), and re-calculate the layers’ activations

{φl(x̃) : ∀l}. The probability of the most probable class

serves as a score of the layer Sl = max
c

pc (φl(x̃)− µ̂l,c).

Finally, the effective score is a weighted average of layers’

scores
∑

l αlSl. The weights are obtained using a similar

strategy as in [27], where the weights of the layers αl are

computed by training a logistic regression detector on a val-

idation set. The full algorithm is detailed in Algorithm 1.

3.6. Computational Overhead

It is important to evaluate the computational overhead of

using a more expressive model for network activations. We

compare our method to [27], and consider two cases: (i)

During training: our initialization step is equivalent to the

method of [27]. Thus, performance improvement comes at

a cost of additional training time. Figure 2(b) shows the

tradeoff between additional training iterations and perfor-

mance gain. Note that the improvement monotonically in-

creases with training iterations. (ii) During testing: In the

test phase, both methods first calculate a forward pass of

the test image through the classification network for feature

extraction. Then, [27] calculates the Mahalanobis distance,

while our method runs another forward pass of the residual

flow networks. In our experiments, the forward pass of the

classification network was the dominant complexity factor.

This may change with a larger flow model, but in our ex-

periments we did not require such. Thus, our performance

advantage does not incur significant overhead.
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4. Related Work

OOD detection has mostly been studied in the unlabelled

setting, where the data contains only samples (e.g., images)

but not class labels. Classical methods include one-class

SVM [36] and support vector data description [43], and

more recently, deep learning methods have become popu-

lar [5]. Methods such as [14, 3, 4, 6] extract features using

unsupervised learning techniques, and feed them to clas-

sical OOD detection methods. Deep SVDD [33] learns

a neural-network encoding that minimizes the volume of

data around a predetermined point in feature space. Re-

cently, Golan and El-Yaniv [17] proposed to learn features

by applying a fixed set of geometric transformations to im-

ages, and training a deep network to classify which trans-

formation was applied. Density estimation methods for de-

tecting OOD examples have originally been studied in low

dimensional space [32, 8, 16]. Recently, deep generative

models such as generative adversarial networks, variational

autoencoders, and deep energy-based models have been

proposed for OOD detection in high-dimensional spaces

[2, 39, 35, 44, 47, 38].

Our work focuses on the labelled setting, where a net-

work trained for image classification is provided, along with

the training data and labels. Hendrycks and Gimpel [20]

proposes the soft-max output as a confidence score for OOD

examples, and [15] compared this approach with the Monte-

Carlo dropout ensemble method. Liang et al. [28] pro-

posed ODIN, which combines temperature scaling and in-

put pre-processing. The geometric transformations method

of Golan and El-Yaniv [17] can also be applied to the la-

belled setting. The state-of-the-art is the method of Lee et

al. [27] that uses the Mahalanobis distance in feature space.

In our work we show that providing a better density model,

leads to a marked improvement over Lee et al.’s results.

Concurrent with our work, several OpenReview postings

suggested improvements to the method of [27]. Sastry et

al. [34] propose a scoring function for OOD detection based

on the correlation between different features of the same

layer, using higher-order Gram matrices, which can be seen

as a different form of incorporating higher-order statistics

beyond the Gaussian model. Yu et al. [46] investigate the

benefit of combining the global average of the feature maps

with their spatial pattern information, while using the Gaus-

sian model assumption. In principle, their approach can be

combined with our improved flow-based density model.

5. Experiments

In our experiments, we aim to answer the following

questions: (1) How does the residual flow model compare

with conventional flow and Gaussian models? (2) How does

our OOD detection method compare with state-of-the-art?

Our OOD detection evaluation follows the data sets and

experiments in [27], and consists of 3 training data sets: CI-

FAR10, CIFAR100, and SVHN, and 4 out-of-distribution

(OOD) data sets: CIFAR10, Tiny ImageNet, SVHN, and

LSUN. In the supplementary material we provide additional

experiments, which draw a comparison between residual

flow, LDA (Mahalanobis) and the GDA model. The full

residual flow implementation is available online.7

5.1. Residual Flow vs. Regular Flow

In this section we compare the performance of learn-

ing a residual flow model over learning regular non-linear

flow model. First, we inspect the performance of the pro-

posed approach on the task of distinguishing in- and out-

of-distribution examples based on the first layer of ResNet,

trained on CIFAR-100, where Tiny-ImageNet is used as

OOD. In our comparison, we evaluate residual flow against

regular non-linear flow and linear-flow/Mahalanobis den-

sity modeling. Figure 2(a) presents a receiver operating

characteristic (ROC) curve [9] comparison of the three

methods,8 demonstrating the superiority of the residual flow

model in modeling feature layer distribution of a neural net-

work. Next, in Figure 2(b), we evaluate the area under

the ROC (AUROC) curve as a function of training itera-

tions. Note that the linear flow9, as expected, converges to

the same AUROC as the baseline Gaussian density model.

The residual flow, however, starts at baseline performance

(equivalent to the Gaussian model), and steadily improves

upon it, as the non-linear components allow for better mod-

elling of the data. The conventional non-linear flow, on the

other hand, starts from a low AUROC score, rises errati-

cally, and is not guaranteed to improve upon the baseline.

The erratic behavior also makes it difficult to decide when

to stop training. Indeed, we found this model to be much

less stable in our evaluation.

5.2. OOD Detection Evaluation

We conduct a series of experiments to evaluate the per-

formance in detecting out-of-distribution examples. These

tests are used by contemporary state-of-the-art methods

[20, 28, 27] to benchmark the efficacy of an algorithm in

distinguishing abnormalities. We follow the practices pre-

sented in [27], in which already-trained neural networks are

used in conjunction with conventional datasets. The exper-

iments use DenseNet with 100 layers [22] and ResNet with

34 layers [19] as target networks, trained on one of the fol-

lowing datasets: CIFAR-10, CIFAR-100 [25] and SVHN

[30]. Feature extraction is performed as proposed by Lee

et al. [27]: At the outset, we extract the output of specific

7https://github.com/EvZissel/Residual-Flow
8Training the flow models throughout this paper (residual and regular)

is conducted using a validation set of 10K samples that are portioned from

the training set, and the stopping criterion is the overfit set-point at which

the validation likelihood ceases to increase.
9The linear model is described in Supplementary material – Section 2.
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Figure 2. (a) and (b) OOD detection using features taken from the first layer of ResNet trained on CIFAR-100, with TinyImageNet as OOD.

(a) ROC curve comparison of Residual flow (AUROC = 98.4), Non-linear flow (AUROC = 97.0) and Mahalanobis (AUROC = 97.0) [27].

(b) AUROC comparison as a function of training iterations for different models. Note that by our initialization method, the residual flow

starts at baseline performance of Mahalanobis. (c) ROC comparison of Mahalanobis (AUROC = 94.6) and Residual flow (AUROC = 98.9),

using a weighted average of the features taken from layers of DenseNet trained on CIFAR-100, with LSUN as OOD.

layers from the target network and average over the spatial

domain to produce a set of 1-dimensional feature vectors,

whose size matches the number of feature maps in the cor-

responding layer. The selected layers are the terminal layers

of every dense-block (or residual-block) of DenseNet (or

ResNet). Next, we train a set of residual flow networks,

each observing a different output layer of the target net-

work (e.g. DenseNet) activated by an entire class of ex-

amples from its original dataset. A portion of the training

set, 10K in total, is set aside as a validation set, to prevent

overfit during training. The process repeats for all classes

and for all end-block layers of the target network, yielding

a set of trained residual flows. At the test phase, a score is

calculated for every layer of the target network and the fi-

nal confidence score is obtained using weights produced by

training a logistic regression detector (see Algorithm 1).

The weights of the logistic regression decoder and the in-

put pre-processing parameter, ǫ, are the hyperparameters of

our model, tuned using a separate validation set of in- (pos-

itive class) and out-of-distribution (negative class) pairs,

consisting of 1,000 images of each class. Similarly to Lee et

al. [27], we also investigate performance when a validation

set of OOD samples is not available, and in this case we

tune the hyperparameters using validation sets of both in-

distribution samples and corresponding adversarial samples

generated by FGSM [18] as out-of-distribution samples.

The networks are tested using their original test set, with

the introduction of OOD samples from either LSUN [45],

CIFAR-10 [25], Tiny-ImageNet [10] or SVHN [30]. The

following performance measures are evaluated: true nega-

tive rate (TNR) at 95% true positive rate (TPR), area un-

der the receiver operating characteristic curve (AUROC),

area under the precision-recall curve (AUPR), and detec-

tion accuracy. We compare our method to the state-of-the-

art, which employs Mahalanobis score as a confidence score

[27]. Note that to accommodate a fair comparison, we adopt

the hyperparameter selection procedure presented in [27].

Table 1 aggregates the performance of our method com-

pared to Mahalanobis for the task of OOD detection across

all in- and out-of-distribution dataset pairs, when an OOD

validation set is available. Table 2 compares the perfor-

mance when the validation set is produced using FGSM,

as described above. We present the detection perfor-

mance measures of our method with and without input pre-

processing (right and middle columns respectively), and

compare it to Mahalanobis score method with input pre-

processing (left column). Tables 1 and 2 demonstrably

show that our method surpasses the current state-of-the-

art, significantly outperforming the Mahalanobis approach

in some cases – even without input pre-processing. For ex-

ample, applying our method on ResNet trained on CIFAR-

100 samples, when LSUN is used as OOD dataset, im-

proves the AUROC from 66.2% to 82.0% (without input

pre-processing) and 87.2% (with input pre-processing). In

summary, the results in tables 1 and 2 demonstrate that bet-

ter modeling of feature activations leads to better OOD de-

tection. Figure 2(c) further demonstrates the contribution

of our method compared to Mahalanobis [27]. We produce

a ROC curve using ResNet trained on CIFAR-100, with

LSUN dataset used as OOD. Note that the performance in

Figure 2(c) was obtained without any pre-processing of the

data. As seen from Figure 2(c), our method significantly

outperforms the Mahalanobis score method.

6. Conclusions

We proposed an efficient method for detecting out-of-

distribution inputs for trained neural networks, without re-

training the network or modifying its underlying architec-

ture, nor compromising its classification accuracy on in-

distribution data. Key to our approach is a novel deep gen-

erative model – the residual flow, which is a principled ex-

tension of a Gaussian distribution model using a non-linear

normalizing flow. This model, which is of independent

interest, is most suitable for modelling distributions that
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In-dist

(model)
Out-of-dist

TNR at TPR 95% AUROC Detection accuracy AUPR in AUPR out

Mahalanobis [27]/ Res-Flow without pre-processing / Res-Flow with pre-processing

CIFAR-10

(DenseNet)

SVHN 85.8 / 94.9 / 94.9 96.6 / 98.9 / 98.9 91.9 / 95.3 / 95.3 98.7 / 99.5 / 99.5 88.8 / 97.5 / 97.5

ImageNet 95.3 / 96.4 / 96.4 98.9 / 99.2 / 99.2 95.2 / 96.0 / 96.0 98.9 / 99.2 / 99.2 98.7 / 99.2 / 99.2

LSUN 97.9 / 98.2 / 98.2 99.3 / 99.5 / 99.5 96.8 / 97.1 / 97.1 99.3 / 99.6 / 99.6 98.2 / 99.5 / 99.5

CIFAR-100

(DenseNet)

SVHN 82.9 / 73.0 / 84.9 96.1 / 95.2 / 97.5 90.9 / 88.7 / 91.9 98.5 / 97.5 / 99.0 89.0 / 91.1 / 95.1

TinyImageNet 85.8 / 93.0/ 93.0 96.6 / 98.5 / 98.5 91.2 / 94.1 / 94.1 96.9 / 98.5 / 98.5 95.5 / 98.5 / 98.5

LSUN 83.6 / 96.3 / 96.3 94.9 / 98.9 / 98.9 89.9 / 95.7 / 95.7 95.7 / 99.0 / 99.0 93.0/ 98.8 / 98.8

SVHN

(DenseNet)

CIFAR-10 96.5 / 99.0 / 99.0 98.9 / 99.5 / 99.5 95.9 / 97.4 / 97.4 95.6 / 97.8 / 97.8 99.6 / 99.8 / 99.8

TinyImageNet 99.8 / 100.0 / 100.0 99.9 / 100.0 / 100.0 98.8 / 99.4 / 99.4 99.6 / 99.8 / 99.8 100.0 / 100.0 / 100.0

LSUN 100.0/ 100.00 / 100.00 99.9 / 100.0 / 100.0 99.3 / 99.7 / 99.7 99.7 / 99.9 / 99.9 100.0 / 100.0 / 100.0

CIFAR-10

(ResNet)

SVHN 96.4 / 94.5 / 96.5 99.1 / 98.9 / 99.1 95.8 / 94.9 / 95.8 99.6 / 99.6 / 99.6 98.3 / 97.6 / 98.3

TinyImageNet 97.1 / 97.8 / 97.8 99.5 / 99.6 / 99.6 96.3 / 96.9 / 96.9 99.5 / 99.6 / 99.6 99.5 / 99.6 / 99.6

LSUN 98.9 / 99.0 / 99.0 99.7 / 99.8 / 99.8 97.7 / 97.8 / 97.8 99.7 / 99.8 / 99.8 99.7 / 99.8 / 99.8

CIFAR-100

(ResNet)

SVHN 92.0 / 88.8 / 93.0 98.4 / 97.8 / 98.5 93.7 / 92.6 / 94.5 99.3 / 99.1 / 99.3 96.4 / 95.3 / 97.1

TinyImageNet 90.8 / 95.0 / 94.6 98.2 / 98.9 / 98.9 93.3 / 95.0 / 95.0 98.1 / 98.9 / 98.9 98.2 / 98.9 / 98.8

LSUN 90.9 /96.7 / 96.2 98.2 / 99.1 / 99.0 93.5 / 96.0 / 95.7 97.8 / 99.0 / 98.9 98.4 / 98.8 / 98.6

SVHN

(ResNet)

CIFAR-10 98.5 / 99.3 / 99.4 99.3 / 99.6 /99.6 96.9 / 97.7 / 97.7 97.0 / 98.3 / 98.3 99.7 / 99.9 / 99.9

TinyImageNet 99.9 / 100.0 / 100.0 99.9 / 100.0 / 99.9 99.1 / 99.5 / 99.3 99.1 / 99.8 / 99.7 99.9 / 100.0 / 100.0

LSUN 99.9 / 100.0 / 100.0 99.9 / 100.0 / 100.0 99.5 / 99.7 / 99.7 99.2 / 99.8 / 99.8 99.9 / 100.0 / 100.0

Table 1. A comparison between our method and Mahalanobis [27] on the task of out-of-distribution detection for image classification of

various in- and out-of-distribution data sets. The hyper-parameters were tuned using a validation set of in- and out-of-distribution datasets.

The values presented here are percentages and the best results are indicated in bold.

In-dist

(model)
Out-of-dist

TNR at TPR 95% AUROC Detection accuracy AUPR in AUPR out

Mahalanobis [27]/ Res-Flow without pre-processing / Res-Flow with pre-processing

CIFAR-10

(DenseNet)

SVHN 88.7 / 91.3/ 86.1 97.6 / 98.3 / 97.3 92.4 / 93.8 / 91.6 94.7 / 96.6 / 94.3 99.0 / 99.3 / 99.0

TinyImageNet 88.6 / 96.0 / 96.1 97.5 / 99.1 / 99.1 92.2 / 95.6 / 95.6 97.4 / 99.1 / 99.1 97.7 / 99.2 / 99.2

LSUN 92.4 / 98.0 / 98.1 98.3 / 99.5 / 99.5 93.9 / 96.7 / 96.9 98.4 / 99.5 / 99.5 98.2 / 99.4 / 99.5

CIFAR-100

(DenseNet)

SVHN 48.7 /59.8 / 48.9 85.6 / 91.4 / 87.9 80.0 / 83.7 / 80.0 63.7 /82.9/ 74.9 93.3 /96.1 / 94.3

TinyImageNet 80.4 / 91.7 / 91.5 92.7 / 98.3 / 98.1 88.0 / 93.6 / 93.4 87.4 / 98.3 / 98.0 94.5 / 98.4 / 98.3

LSUN 83.8 / 95.4 / 95.8 95.0 / 98.9 / 98.9 90.0 / 95.3 / 95.4 93.0 / 99.0 / 98.9 95.7 / 98.8 / 98.8

SVHN

(DenseNet)

CIFAR-10 92.5 / 95.1 / 90.0 96.7 / 98.7 / 98.0 93.8 / 95.3 / 93.4 97.9 / 99.6 / 99.7 93.5 / 95.2 / 93.6

TinyImageNet 99.1 / 99.7 / 99.9 99.5 / 99.9 / 99.9 98.7 / 99.2 / 99.0 99.6 / 100.0 / 100.0 99.2 / 99.8 / 99.6

LSUN 99.7 / 100.0 / 100.0 99.8 / 100.0 / 99.9 99.1 / 99.5 / 99.4 99.9 / 100.0 / 100.0 99.6 / 99.8 / 99.7

CIFAR-10

(ResNet)

SVHN 87.5 / 91.0 / 91.0 97.4 / 98.2 / 98.2 91.8 / 93.8 / 93.8 93.8 / 96.6 / 96.6 98.9 / 99.1 / 99.1

TinyIageNet 93.1 / 98.0 / 98.0 97.9 / 99.6 / 99.6 94.1 / 97.0 / 97.0 95.4 / 99.6 / 99.6 98.4 / 99.6 / 99.6

LSUN 97.0 / 99.1 / 99.1 99.2 / 99.8 / 99.8 96.3 / 98.0 / 98.0 98.6 / 99.8 / 99.8 99.3 / 99.8 / 99.8

CIFAR-100

(ResNet)

SVHN 66.5 / 57.2 / 74.1 93.2 / 90.7 / 95.1 85.9 / 83.8 / 88.7 86.4 / 80.5 / 90.4 96.6 / 95.4 / 97.5

TinyImageNet 56.7 / 71.6 / 77.5 76.9 / 86.8 / 90.1 77.6 / 84.3 / 87.1 63.0 / 74.8 / 79.6 83.7 / 90.4 / 93.1

LSUN 38.4 / 61.1 / 70.4 66.2 / 82.0 / 87.2 69.5 / 80.1 / 84.1 54.6 / 70.0 / 75.9 73.9 / 86.5 / 90.5

SVHN

(ResNet)

CIFAR-10 95.2 / 97.1 / 96.6 98.1 / 99.1 / 99.0 95.2 / 96.1 / 95.8 98.5 / 99.7 / 99.7 95.2 / 96.7 / 96.5

TinyImageNet 99.3 / 99.9 / 99.9 99.4 / 99.9 / 99.9 98.9 / 99.3 / 99.2 98.9 / 99.9 / 99.9 98.3 / 99.7 / 99.7

LSUN 99.9 / 100.0 / 100.0 99.9 / 100.0 / 100.0 99.5 / 99.7 / 99.6 99.9 / 100.0 / 100.0 98.8 / 99.7 / 99.7

Table 2. A comparison between our method and Mahalanobis [27] on the task of out-of-distribution detection for image classification

of various in- and out-of-distribution data sets. The hyper-parameters were tuned using strictly in-distribution and adversarial (FGSM)

samples. The values presented here are percentages and the best results are indicated in bold.

are approximately Gaussian. Our method is general, and

in principle can be applied to various data such as speech

recognition and natural language processing. On deep net-

works trained for image classification, we obtain state-of-

the-art out-of-distribution detection performance.
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